Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Junk-neuron-deletion strategy for hyperparameter optimization of neural networks

Huang Ying Gu Chang-Gui Yang Hui-Jie

Citation:

Junk-neuron-deletion strategy for hyperparameter optimization of neural networks

Huang Ying, Gu Chang-Gui, Yang Hui-Jie
PDF
HTML
Get Citation
  • With the complexity of problems in reality increasing, the sizes of deep learning neural networks, including the number of layers, neurons, and connections, are increasing in an explosive way. Optimizing hyperparameters to improve the prediction performance of neural networks has become an important task. In literatures, the methods of finding optimal parameters, such as sensitivity pruning and grid search, are complicated and cost a large amount of computation time. In this paper, a hyperparameter optimization strategy called junk neuron deletion is proposed. A neuron with small mean weight in the weight matrix can be ignored in the prediction, and is defined subsequently as a junk neuron. This strategy is to obtain a simplified network structure by deleting the junk neurons, to effectively shorten the computation time and improve the prediction accuracy and model the generalization capability. The LSTM model is used to train the time series data generated by Logistic, Henon and Rossler dynamical systems, and the relatively optimal parameter combination is obtained by grid search with a certain step length. The partial weight matrix that can influence the model output is extracted under this parameter combination, and the neurons with smaller mean weights are eliminated with different thresholds. It is found that using the weighted mean value of 0.1 as the threshold, the identification and deletion of junk neurons can significantly improve the prediction efficiency. Increasing the threshold accuracy will gradually fall back to the initial level, but with the same prediction effect, more operating costs will be saved. Further reduction will result in prediction ability lower than the initial level due to lack of fitting. Using this strategy, the prediction performance of LSTM model for several typical chaotic dynamical systems is improved significantly.
      Corresponding author: Yang Hui-Jie, hjyang@usst.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11875042, 11505114).
    [1]

    邓帅 2019 计算机应用研究 36 1984

    Deng S 2019 Appl. Res. Comput. 36 1984

    [2]

    邵恩泽, 吴正勇, 王灿 2020 工业控制计算机 33 11Google Scholar

    Shao E Z, Wu Z Y, Wang C 2020 Ind. Contrl. Comput. 33 11Google Scholar

    [3]

    乔俊飞, 樊瑞元, 韩红桂, 阮晓钢 2010 控制理论与应用 27 111

    Qiao J F, Fan R Y, Han H G, Ruan X G 2010 Contl. Theor. Appl. 27 111

    [4]

    陈国茗, 于腾腾, 刘新为 2021 数值计算与计算机应用 42 215Google Scholar

    Chen G M, Yu T T, Liu X W 2021 J. Num. Method. Comp. Appl. 42 215Google Scholar

    [5]

    魏德志, 陈福集, 郑小雪 2015 物理学报 64 110503Google Scholar

    Wei D Z, Chen F J, Zheng X X 2015 Acta Phys. Sin. 64 110503Google Scholar

    [6]

    王新迎, 韩敏 2015 物理学报 64 070504Google Scholar

    Wang X Y, Han M 2015 Acta Phys. Sin 64 070504Google Scholar

    [7]

    黄伟建, 李永涛, 黄远 2021 物理学报 70 010501Google Scholar

    Huang W J, Li Y T, Huang Y 2021 Acta Phys. Sin. 70 010501Google Scholar

    [8]

    Yamaguti Y, Tsuda I 2021 Chaos 31 013137Google Scholar

    [9]

    Graves A 2013 arXiv: 1308.0850 [cs. NE]

    [10]

    Johnston D E 1978 Proc 8 th BHRA Int Conf Fluid Sealing Durham, UK, 1978 pC1-1

    [11]

    Sezer O B, Gudelek M U, Ozbayoglu A M 2020 Appl. Soft Comput. J. 90 106181Google Scholar

    [12]

    甘文娟, 陈永红, 韩静, 王亚飞 2020 计算机系统应用 29 212Google Scholar

    Gan W J, Chen Y H, Han J, Wang Y F 2020 Comput. Syst. Appl. 29 212Google Scholar

    [13]

    Farmelo G 2002 It Must Be Beautiful: Great Equations of Modern Science (London: Granta Publications) pp28–45

    [14]

    Grassberger P, Procaccia I 1983 Physica D 9 189Google Scholar

    [15]

    Nauenberg M 1983 Ann. N. Y. Acad. Sci. 410 317Google Scholar

    [16]

    张中华, 丁华福 2009 计算机技术与发展 19 185Google Scholar

    Zhang Z H, Ding H F 2009 Comput. Technol. Dev. 19 185Google Scholar

    [17]

    Butcher J C 1967 J. ACM 14 84Google Scholar

    [18]

    Liu C, Yin S Q, Zhang M, Zeng Y, Liu J Y 2014 Appl. Mech. Mater. 644-650 2216

    [19]

    Bao Y K, Liu Z T 2006 LNCS 4224 504

    [20]

    Ou Y Y, Chen G H, Oyang Y J 2006 LNCS 4099 1017

  • 图 1  LSTM神经网络 (a) LSTM模型网络结构; (b)单元内部运行逻辑

    Figure 1.  LSTM neural network: (a) network structure of LSTM; (b) run logic inside the cell.

    图 2  混沌时间序列 (a) Logistic系统, μ$ =3.9 $; (b) Henon系统; (c) Rossler系统

    Figure 2.  Chaotic time series: (a) Logistic system, μ$ =3.9 $; (b) Henon system; (c) Rossler system

    图 3  隐藏层输入神经元对输出神经元的权重热图

    Figure 3.  Heat map of weight of input neuron to output neuron in hidden layer.

    图 4  隐藏层各输入神经元对输出神经元的权重均值热图

    Figure 4.  Heat map of weights’ mean value of input neurons to output neurons in hidden layer.

    图 5  权重均值折线图

    Figure 5.  Line graph of the weights’ mean.

    图 6  不同混沌状态对应的最优权重阈值变化

    Figure 6.  The change of optimal weight threshold corresponding to different chaotic states.

    图 7  不同混沌状态对应的预测准确率变化

    Figure 7.  The change of prediction accuracy of different chaotic states.

    表 1  模型参数及结果

    Table 1.  Parameters and results of the models.

    模型 train test win L1 L2 D1 D2 准确率
    Logistic
    (μ = 3.6)
    5000 15 22 16 4 4 1 82.90%
    Logistic
    (μ = 3.7)
    5000 15 22 16 4 4 1 70.70%
    Logistic
    (μ = 3.8)
    500015 2 20 4 4 1 68.60%
    Logistic
    (μ = 3.9)
    500015 2 16 4 2 1 60.00%
    Logistic
    (μ = 3.99)
    500015 2 16 4 4 1 57.10%
    Henon500015 2 22 2 2 1 67.10%
    Rossler500015 2 16 4 4 1 77.10%
    DownLoad: CSV

    表 2  权重结构拆分

    Table 2.  Weight structure resolution.

    结构起始点终点
    input_gate0units
    forget_gateunits2×units
    cell2×units3×units
    output_gate3×units4×units
    DownLoad: CSV

    表 3  输出门权重矩阵图

    Table 3.  Heat diagram of output door’s weights.

    w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12 w13 w14 w15 w16
    x1 0.032129 0.144328 0.007293 0.003557 0.070465 0.011652 0.11142 0.048287 0.105727 0.039649 0.010162 0.119949 0.0771 0.126937 0.001947 0.089396
    x2 0.070867 0.013232 0.054503 0.073496 0.005734 0.064071 0.145835 0.083217 0.025553 0.033065 0.113584 0.028327 0.054085 0.177761 0.010123 0.046546
    x3 0.083647 0.046366 0.066226 0.044534 0.010054 0.077919 0.071001 0.018548 0.035294 0.071642 0.053888 0.028448 0.102273 0.096744 0.078535 0.114879
    x4 0.039123 0.113002 0.161581 0.113866 0.070651 0.085571 0.01836 0.015408 0.032978 0.018375 0.068342 0.059137 0.00701 0.070451 0.032602 0.099853
    x5 0.013762 0.055823 0.147481 0.055493 0.093444 0.027264 0.082384 0.058674 0.032903 0.033342 0.045937 0.035937 0.110378 0.004487 0.161653 0.041037
    x6 0.038079 0.089649 0.013102 0.021696 0.042833 0.109787 0.001024 0.0673 0.036916 0.134038 0.066291 0.146953 0.009803 0.081372 0.098701 0.042456
    x7 0.013865 0.001702 0.057869 0.072264 0.104456 0.029761 0.062669 0.07539 0.05715 0.102282 0.017876 0.012626 0.020022 0.100243 0.153076 0.11875
    x8 0.002042 0.006925 0.060008 0.13031 0.136406 0.056203 0.061606 0.028064 0.006926 0.099129 0.055122 0.117276 0.06846 0.014505 0.078184 0.078834
    x9 0.044205 0.171724 0.153162 0.13818 0.029189 0.025947 0.049391 0.012338 0.100584 0.028133 0.004946 0.017914 0.008463 0.014741 0.066944 0.134139
    x10 0.094619 0.0563 0.040223 0.096283 0.10152 0.145036 0.051991 0.075623 0.075216 0.061209 0.057986 0.066076 0.004787 0.01945 0.042341 0.011339
    x11 0.078909 0.005603 0.08149 0.125202 0.069081 0.10143 0.122451 0.027058 0.057647 0.016226 0.03275 0.050667 0.036795 0.11072 0.081767 0.002204
    x12 0.046159 0.005688 0.006237 0.004618 0.014815 0.005272 0.04598 0.037005 0.190933 0.065535 0.005131 0.015155 0.065812 0.099804 0.172294 0.21956
    x13 0.111226 0.027026 0.027497 0.074868 0.139154 0.084413 0.080342 0.038769 0.088824 0.047083 0.056548 0.002081 0.10549 0.049929 0.020529 0.04622
    x14 0.092772 0.03999 0.055938 0.128114 0.036386 0.013061 0.083943 0.051033 0.106374 0.007257 0.063049 0.091929 0.084821 0.020458 0.089496 0.035379
    x15 0.131586 0.038161 0.176303 0.041758 0.049173 0.096633 0.0033 0.045529 0.084262 0.050839 0.003322 0.063406 0.029601 0.045323 0.116047 0.024757
    x16 0.070289 0.05378 0.092472 0.03372 0.052087 0.110236 0.055639 0.124221 0.029371 0.06142 0.04904 0.043376 0.012261 0.041226 0.109564 0.061299

    0.060205 0.054331 0.075087 0.072372 0.064091 0.065266 0.065459 0.050404 0.066666 0.054326 0.043998 0.056204 0.049428 0.067134 0.082113 0.072915
    DownLoad: CSV

    表 4  μ = 3.99时不同参数的预测准确率

    Table 4.  The prediction accuracy of different parameters when μ = 3.99.

    指标 调整前以各权重阀值调整后变化趋势
    0.090.10.11
    L116151210
    准确率57.10%59.30%56.40%51.40%
    DownLoad: CSV

    表 5  神经元数及预测准确率变化表

    Table 5.  Table of neuron numbers and prediction accuracy.

    模型 调整前L1 调整后L1 调整前准确率 调整后准确率 神经元数调整准确率变化趋势
    Logistic
    (μ = 3.6)
    16 15 82.90% 90.70% –1
    Logistic
    (μ = 3.7)
    16 13 70.70% 71.40% –3
    Logistic
    (μ = 3.8)
    2016 68.60% 68.60% –4
    Logistic
    (μ = 3.9)
    1612 60.00% 60.00% –4
    Logistic
    (μ = 3.99)
    1615 57.10% 59.30% –1
    Henon 22 21 67.10% 70.00% –1
    Rossler1614 77.10% 83.60% –2
    DownLoad: CSV

    表 6  μ = 3.6 时不同参数的预测准确率

    Table 6.  The prediction accuracy of different parameters when μ = 3.6.

    指标 调整前以各权重阀值调整后变化趋势
    0.080.090.095
    L116151210
    准确率82.90%90.70%87.90%78.60%
    DownLoad: CSV

    表 7  μ = 3.7 时不同参数的预测准确率

    Table 7.  The prediction accuracy of different parameters when μ = 3.7.

    指标 调整前以各权重阀值调整后变化趋势
    0.0750.090.105
    L11613119
    准确率70.70%71.40%65.00%60.70%
    DownLoad: CSV

    表 8  μ = 3.8时不同参数的预测准确率

    Table 8.  The prediction accuracy of different parameters when μ = 3.8.

    指标 调整前以各权重阀值调整后变化趋势
    0.0850.0950.105
    L120181612
    准确率68.60%68.60%68.60%65.00%
    DownLoad: CSV

    表 9  μ = 3.9 时不同参数的预测准确率

    Table 9.  The prediction accuracy of different parameters when μ = 3.9.

    指标 调整前以各权重阀值调整后变化趋势
    0.090.0950.1
    L116141210
    准确率60.00%60.00%60.00%55.00%
    DownLoad: CSV

    表 10  Henon系统取不同参数的预测准确率

    Table 10.  Prediction accuracy of Henon system for different parameters.

    指标 调整前以各权重阀值调整后变化趋势
    0.10.110.12 0.14
    L122 21191614
    准确率67.10% 70.00%66.40%65.70%65.00%
    DownLoad: CSV

    表 11  Rossler系统取不同参数的预测准确率

    Table 11.  Prediction accuracy of Rossler system for different parameters.

    指标调整前以各权重阀值调整后变化趋势
    0.0850.0950.105 0.115
    L116 1412118
    准确率77.10% 83.60%81.40%80.70%71.40%
    DownLoad: CSV
  • [1]

    邓帅 2019 计算机应用研究 36 1984

    Deng S 2019 Appl. Res. Comput. 36 1984

    [2]

    邵恩泽, 吴正勇, 王灿 2020 工业控制计算机 33 11Google Scholar

    Shao E Z, Wu Z Y, Wang C 2020 Ind. Contrl. Comput. 33 11Google Scholar

    [3]

    乔俊飞, 樊瑞元, 韩红桂, 阮晓钢 2010 控制理论与应用 27 111

    Qiao J F, Fan R Y, Han H G, Ruan X G 2010 Contl. Theor. Appl. 27 111

    [4]

    陈国茗, 于腾腾, 刘新为 2021 数值计算与计算机应用 42 215Google Scholar

    Chen G M, Yu T T, Liu X W 2021 J. Num. Method. Comp. Appl. 42 215Google Scholar

    [5]

    魏德志, 陈福集, 郑小雪 2015 物理学报 64 110503Google Scholar

    Wei D Z, Chen F J, Zheng X X 2015 Acta Phys. Sin. 64 110503Google Scholar

    [6]

    王新迎, 韩敏 2015 物理学报 64 070504Google Scholar

    Wang X Y, Han M 2015 Acta Phys. Sin 64 070504Google Scholar

    [7]

    黄伟建, 李永涛, 黄远 2021 物理学报 70 010501Google Scholar

    Huang W J, Li Y T, Huang Y 2021 Acta Phys. Sin. 70 010501Google Scholar

    [8]

    Yamaguti Y, Tsuda I 2021 Chaos 31 013137Google Scholar

    [9]

    Graves A 2013 arXiv: 1308.0850 [cs. NE]

    [10]

    Johnston D E 1978 Proc 8 th BHRA Int Conf Fluid Sealing Durham, UK, 1978 pC1-1

    [11]

    Sezer O B, Gudelek M U, Ozbayoglu A M 2020 Appl. Soft Comput. J. 90 106181Google Scholar

    [12]

    甘文娟, 陈永红, 韩静, 王亚飞 2020 计算机系统应用 29 212Google Scholar

    Gan W J, Chen Y H, Han J, Wang Y F 2020 Comput. Syst. Appl. 29 212Google Scholar

    [13]

    Farmelo G 2002 It Must Be Beautiful: Great Equations of Modern Science (London: Granta Publications) pp28–45

    [14]

    Grassberger P, Procaccia I 1983 Physica D 9 189Google Scholar

    [15]

    Nauenberg M 1983 Ann. N. Y. Acad. Sci. 410 317Google Scholar

    [16]

    张中华, 丁华福 2009 计算机技术与发展 19 185Google Scholar

    Zhang Z H, Ding H F 2009 Comput. Technol. Dev. 19 185Google Scholar

    [17]

    Butcher J C 1967 J. ACM 14 84Google Scholar

    [18]

    Liu C, Yin S Q, Zhang M, Zeng Y, Liu J Y 2014 Appl. Mech. Mater. 644-650 2216

    [19]

    Bao Y K, Liu Z T 2006 LNCS 4224 504

    [20]

    Ou Y Y, Chen G H, Oyang Y J 2006 LNCS 4099 1017

  • [1] Qi Le-Tian, Wang Shi-Yuan, Shen Ming-Lin, Huang Gang-Yi. Prediction of chaotic time series based on Nyström Cauchy kernel conjugate gradient algorithm. Acta Physica Sinica, 2022, 71(10): 108401. doi: 10.7498/aps.71.20212274
    [2] Wang Shi-Yuan, Shi Chun-Fen, Qian Guo-Bing, Wang Wan-Li. Prediction of chaotic time series based on the fractional-order maximum correntropy criterion algorithm. Acta Physica Sinica, 2018, 67(1): 018401. doi: 10.7498/aps.67.20171803
    [3] Li Rui-Guo, Zhang Hong-Li, Fan Wen-Hui, Wang Ya. Hermite orthogonal basis neural network based on improved teaching-learning-based optimization algorithm for chaotic time series prediction. Acta Physica Sinica, 2015, 64(20): 200506. doi: 10.7498/aps.64.200506
    [4] Tang Zhou-Jin, Peng Tao, Wang Wen-Bo. A local least square support vector machine prediction algorithm of small scale network traffic based on correlation analysis. Acta Physica Sinica, 2014, 63(13): 130504. doi: 10.7498/aps.63.130504
    [5] Tang Zhou-Jin, Ren Feng, Peng Tao, Wang Wen-Bo. A least square support vector machine prediction algorithm for chaotic time series based on the iterative error correction. Acta Physica Sinica, 2014, 63(5): 050505. doi: 10.7498/aps.63.050505
    [6] Zhao Yong-Ping, Wang Kang-Kang. Chaotic time series prediction using add-delete mechanism based regularized extreme learning machine. Acta Physica Sinica, 2013, 62(24): 240509. doi: 10.7498/aps.62.240509
    [7] Wang Xin-Ying, Han Min, Wang Ya-Nan. Analysis of noisy chaotic time series prediction error. Acta Physica Sinica, 2013, 62(5): 050504. doi: 10.7498/aps.62.050504
    [8] Gao Guang-Yong, Jiang Guo-Ping. Prediction of multivariable chaotic time series using optimized extreme learning machine. Acta Physica Sinica, 2012, 61(4): 040506. doi: 10.7498/aps.61.040506
    [9] Zhang Wen-Zhuan, Long Wen, Jiao Jian-Jun. Parameter determination based on composite evolutionary algorithm for reconstructing phase-space in chaos time series. Acta Physica Sinica, 2012, 61(22): 220506. doi: 10.7498/aps.61.220506
    [10] Wang Xin-Ying, Han Min. Multivariate chaotic time series prediction based on extreme learning machine. Acta Physica Sinica, 2012, 61(8): 080507. doi: 10.7498/aps.61.080507
    [11] Song Tong, Li Han. Chaotic time series prediction based on wavelet echo state network. Acta Physica Sinica, 2012, 61(8): 080506. doi: 10.7498/aps.61.080506
    [12] Ma Jun, Su Wen-Tao, Gao Jia-Zhen. Optimization of self-adaptive synchronization and parameters estimation in chaotic Hindmarsh-Rose neuron model. Acta Physica Sinica, 2010, 59(3): 1554-1561. doi: 10.7498/aps.59.1554
    [13] Zhang Chun-Tao, Ma Qian-Li, Peng Hong. Chaotic time series prediction based on information entropy optimized parameters of phase space reconstruction. Acta Physica Sinica, 2010, 59(11): 7623-7629. doi: 10.7498/aps.59.7623
    [14] Song Qing-Song, Feng Zu-Ren, Li Ren-Hou. Multiple clusters echo state network for chaotic time series prediction. Acta Physica Sinica, 2009, 58(7): 5057-5064. doi: 10.7498/aps.58.5057
    [15] Zhang Yong, Guan Wei. Predication of multivariable chaotic time series based on maximal Lyapunov exponent. Acta Physica Sinica, 2009, 58(2): 756-763. doi: 10.7498/aps.58.756
    [16] Wang Yong-Sheng, Sun Jin, Wang Chang-Jin, Fan Hong-Da. Prediction of the chaotic time series from parameter-varying systems using artificial neural networks. Acta Physica Sinica, 2008, 57(10): 6120-6131. doi: 10.7498/aps.57.6120
    [17] Han Min, Shi Zhi-Wei, Guo Wei. Reservoir neural state reconstruction and chaotic time series prediction. Acta Physica Sinica, 2007, 56(1): 43-50. doi: 10.7498/aps.56.43
    [18] Li Jun, Liu Jun-Hua. On the prediction of chaotic time series using a new generalized radial basis function neural networks. Acta Physica Sinica, 2005, 54(10): 4569-4577. doi: 10.7498/aps.54.4569
    [19] Hu Yu-Xia, Gao Jin-Feng. A neuro-fuzzy method for predicting the chaotic time series. Acta Physica Sinica, 2005, 54(11): 5034-5038. doi: 10.7498/aps.54.5034
    [20] Tan Wen, Wang Yao-Nan, Zhou Shao-Wu, Liu Zu-Run. Prediction of the chaotic time series using neuro-fuzzy networks. Acta Physica Sinica, 2003, 52(4): 795-801. doi: 10.7498/aps.52.795
Metrics
  • Abstract views:  4065
  • PDF Downloads:  69
  • Cited By: 0
Publishing process
  • Received Date:  10 March 2022
  • Accepted Date:  21 April 2022
  • Available Online:  12 August 2022
  • Published Online:  20 August 2022

/

返回文章
返回