Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Prediction of chaotic time series based on the fractional-order maximum correntropy criterion algorithm

Wang Shi-Yuan Shi Chun-Fen Qian Guo-Bing Wang Wan-Li

Citation:

Prediction of chaotic time series based on the fractional-order maximum correntropy criterion algorithm

Wang Shi-Yuan, Shi Chun-Fen, Qian Guo-Bing, Wang Wan-Li
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Recently, adaptive filters have been widely used to perform the prediction of chaotic time series. Generally, the Gaussian noise is considered for the system noise. However, many non-Gaussian noises, e.g., impulse noise and alpha noise, exist in real systems. Adaptive filters are therefore required to reduce such non-Gaussian noises for practical applications. For improving the robustness against non-Gaussian noise, the maximum correntropy criterion (MCC) is successfully used to derive various robust adaptive filters. In these robust adaptive filters, the steepest ascent method based on the first-order derivative is generally utilized to construct the weight update form. It is well known that the traditional derivative can be generalized by the fractional-order derivative effectively. Therefore, to further improve the performance of adaptive filters based on the MCC, the fractional-order derivative is applied to the MCC-based algorithm, generating a novel fractional-order maximum correntropy criterion (FMCC) algorithm. Under the non-Gaussian noises, the proposed FMCC algorithm can be applied to predicting the chaotic time series effectively. In the proposed FMCC algorithm, the weight update form is constructed by using a combination of the first-order derivative based term and the fractional-order derivative based term. The Riemann-Liouville definition is utilized for calculating the fractional-order derivative in the proposed FMCC algorithm. The order of the fractional-order derivative is a crucial parameter of the proposed FMCC algorithm. However, it is difficult to obtain the optimal fractional order for different nonlinear systems theoretically. Therefore, the influence of the fractional order on the prediction performance is determined by trials for different nonlinear systems. The appropriate fractional order corresponds to the optimum of prediction accuracy, and can be chosen in advance. Simulations in the context of prediction of Mackey-Glass time series and Lorenz time series demonstrate that in the case of non-Gaussian noises the proposed FMCC algorithm achieves better prediction accuracy and faster convergence rate than the least mean square (LMS) algorithm, the MCC algorithm, and the fractional-order least mean square (FLMS) algorithm. In addition, the computational complexity of different filters is compared with each other under the example of the prediction of Marckey-Glass time series by using mean consumed time. It can be found that the computational complexity of FMCC algorithm is higher than those of the MCC and the LMS algorithms, but only slightly higher than that of the FLMS algorithm. As a result, comparing with other filters, the FMCC algorithm can improve the prediction performances of chaotic time series at the cost of the increasing computational complexity.
      Corresponding author: Wang Shi-Yuan, wsy@swu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61671389), China Postdoctoral Science Foundation Funded Project (Grant No. 2017M610583), Chongqing Postdoctoral Science Foundation Special Funded Project, China (Grant No. Xm2017107), and the Fundamental Research Funds for the Central Universities, China (Grant Nos. XDJK2017D177, XDJK2017D178).
    [1]

    Tang Z J, Ren F, Peng T, Wang W B 2014 Acta Phys. Sin. 63 050505(in Chinese) [唐舟进, 任峰, 彭涛, 王文博 2014 物理学报 63 050505]

    [2]

    Song T, Li H 2012 Acta Phys. Sin. 61 080506(in Chinese) [宋彤, 李菡 2012 物理学报 61 080506]

    [3]

    Zhang J S, Xiao X C 2000 Chin. Phys. Lett. 17 88

    [4]

    Farmer J D, Sidorowich J J 1987 Phys. Rev. Lett. 59 845

    [5]

    Zheng Y F, Wang S Y, Feng J C, Tse C K 2016 Digit. Signal Process. 48 130

    [6]

    Meng Q F, Zhang Q, Mou W Y 2006 Acta Phys. Sin. 55 1666(in Chinese) [孟庆芳, 张强, 牟文英 2006 物理学报 55 1666]

    [7]

    Takens F 1981 Lecture Notes Math. 898 366

    [8]

    Al-saggaf U M, Moinuddin M, Arif M, Zerguine A 2015 Signal Process. 111 50

    [9]

    Gui G, Peng W, Adachi F 2014 Int. J. Commun. Syst. 27 2956

    [10]

    Ozeki K, Umeda T 1984 Electr. Commun. Jpn. 67 19

    [11]

    Van V S, Lazarogredilla M, Santamaria I 2012 IEEE Trans. Neural Netw. Learn. Syst. 23 1313

    [12]

    Qiao B Q, Liu S M, Zeng H D, Li X, Dai B Z 2017 Sci. China: Phys. Mech. 60 040521

    [13]

    Erdogmus D, Principe J C 2002 IEEE Trans. Neural Netw. 13 1035

    [14]

    Hu T, Wu Q, Zhou D X 2016 IEEE Trans. Signal Process 64 6571

    [15]

    Chen B D, Xing L, Liang J L, Zheng N N, Principe J C 2014 Signal Process. Lett. 21 880

    [16]

    Shi L M, Lin Y 2014 Signal Process. Lett. 21 1385

    [17]

    Chen B D, Principe J C 2012 IEEE Trans. Process. Lett. 19 491

    [18]

    Chen Y, Li S G, Liu H 2016 Acta Phys. Sin. 65 170501(in Chinese) [陈晔, 李生刚, 刘恒 2016 物理学报 65 170501]

    [19]

    Shah S M, Samar R, Khan N M, Raja M A Z 2016 Nonlinear Dyn. 88 839

    [20]

    Zhou Y, Ionescu C, Machado J A T 2015 Nonlinear Dyn. 80 1661

    [21]

    Shah S M, Samar R, Raja M A Z, Chambers J A 2014 Electron. Lett. 50 973

    [22]

    Santamaria I, Pokharel P P, Principe J C 2006 IEEE Trans. Signal Process. 54 2187

    [23]

    Liu W, Pokharel P P, Principe J C 2007 IEEE Trans. Signal Process. 55 5286

    [24]

    Aronszajn A 1950 IEEE Trans. Am. Math. Soc. 68 337

    [25]

    Duan J W, Ding X, Liu T 2017 Sci. China: Inf. Sci. 60 1

    [26]

    Huang S, Zhang R, Chen D 2016 J. Computat. Nonlinear Dyn. 11 031007

    [27]

    Shoaib B, Qureshi I M 2014 Chin. Phys.. 23 050503

    [28]

    Mackey M C, Glass L 1977 Science 197 87

    [29]

    Lorenz E N 1963 J. Atmos. Sci. 20 130

    [30]

    Li B B, Ma H S, Liu M Q 2014 J. Electron. Inf. Technol. 36 868(in Chinese) [李兵兵, 马洪帅, 刘明骞 2014 电子与信息学报 36 868]

    [31]

    Stewart I 2000 Nature 406 948

  • [1]

    Tang Z J, Ren F, Peng T, Wang W B 2014 Acta Phys. Sin. 63 050505(in Chinese) [唐舟进, 任峰, 彭涛, 王文博 2014 物理学报 63 050505]

    [2]

    Song T, Li H 2012 Acta Phys. Sin. 61 080506(in Chinese) [宋彤, 李菡 2012 物理学报 61 080506]

    [3]

    Zhang J S, Xiao X C 2000 Chin. Phys. Lett. 17 88

    [4]

    Farmer J D, Sidorowich J J 1987 Phys. Rev. Lett. 59 845

    [5]

    Zheng Y F, Wang S Y, Feng J C, Tse C K 2016 Digit. Signal Process. 48 130

    [6]

    Meng Q F, Zhang Q, Mou W Y 2006 Acta Phys. Sin. 55 1666(in Chinese) [孟庆芳, 张强, 牟文英 2006 物理学报 55 1666]

    [7]

    Takens F 1981 Lecture Notes Math. 898 366

    [8]

    Al-saggaf U M, Moinuddin M, Arif M, Zerguine A 2015 Signal Process. 111 50

    [9]

    Gui G, Peng W, Adachi F 2014 Int. J. Commun. Syst. 27 2956

    [10]

    Ozeki K, Umeda T 1984 Electr. Commun. Jpn. 67 19

    [11]

    Van V S, Lazarogredilla M, Santamaria I 2012 IEEE Trans. Neural Netw. Learn. Syst. 23 1313

    [12]

    Qiao B Q, Liu S M, Zeng H D, Li X, Dai B Z 2017 Sci. China: Phys. Mech. 60 040521

    [13]

    Erdogmus D, Principe J C 2002 IEEE Trans. Neural Netw. 13 1035

    [14]

    Hu T, Wu Q, Zhou D X 2016 IEEE Trans. Signal Process 64 6571

    [15]

    Chen B D, Xing L, Liang J L, Zheng N N, Principe J C 2014 Signal Process. Lett. 21 880

    [16]

    Shi L M, Lin Y 2014 Signal Process. Lett. 21 1385

    [17]

    Chen B D, Principe J C 2012 IEEE Trans. Process. Lett. 19 491

    [18]

    Chen Y, Li S G, Liu H 2016 Acta Phys. Sin. 65 170501(in Chinese) [陈晔, 李生刚, 刘恒 2016 物理学报 65 170501]

    [19]

    Shah S M, Samar R, Khan N M, Raja M A Z 2016 Nonlinear Dyn. 88 839

    [20]

    Zhou Y, Ionescu C, Machado J A T 2015 Nonlinear Dyn. 80 1661

    [21]

    Shah S M, Samar R, Raja M A Z, Chambers J A 2014 Electron. Lett. 50 973

    [22]

    Santamaria I, Pokharel P P, Principe J C 2006 IEEE Trans. Signal Process. 54 2187

    [23]

    Liu W, Pokharel P P, Principe J C 2007 IEEE Trans. Signal Process. 55 5286

    [24]

    Aronszajn A 1950 IEEE Trans. Am. Math. Soc. 68 337

    [25]

    Duan J W, Ding X, Liu T 2017 Sci. China: Inf. Sci. 60 1

    [26]

    Huang S, Zhang R, Chen D 2016 J. Computat. Nonlinear Dyn. 11 031007

    [27]

    Shoaib B, Qureshi I M 2014 Chin. Phys.. 23 050503

    [28]

    Mackey M C, Glass L 1977 Science 197 87

    [29]

    Lorenz E N 1963 J. Atmos. Sci. 20 130

    [30]

    Li B B, Ma H S, Liu M Q 2014 J. Electron. Inf. Technol. 36 868(in Chinese) [李兵兵, 马洪帅, 刘明骞 2014 电子与信息学报 36 868]

    [31]

    Stewart I 2000 Nature 406 948

  • [1] Huang Ying, Gu Chang-Gui, Yang Hui-Jie. Junk-neuron-deletion strategy for hyperparameter optimization of neural networks. Acta Physica Sinica, 2022, 71(16): 160501. doi: 10.7498/aps.71.20220436
    [2] Qi Le-Tian, Wang Shi-Yuan, Shen Ming-Lin, Huang Gang-Yi. Prediction of chaotic time series based on Nyström Cauchy kernel conjugate gradient algorithm. Acta Physica Sinica, 2022, 71(10): 108401. doi: 10.7498/aps.71.20212274
    [3] Ni Long, Chen Xiao. Mode separation for multimode Lamb waves based on dispersion compensation and fractional differential. Acta Physica Sinica, 2018, 67(20): 204301. doi: 10.7498/aps.67.20180561
    [4] Wen Shao-Fang, Shen Yong-Jun, Yang Shao-Pu. Dynamical analysis of Duffing oscillator with fractional-order feedback with time delay. Acta Physica Sinica, 2016, 65(9): 094502. doi: 10.7498/aps.65.094502
    [5] Wei Peng, Shen Yong-Jun, Yang Shao-Pu. Super-harmonic resonance of fractional-order van der Pol oscillator. Acta Physica Sinica, 2014, 63(1): 010503. doi: 10.7498/aps.63.010503
    [6] Tang Zhou-Jin, Ren Feng, Peng Tao, Wang Wen-Bo. A least square support vector machine prediction algorithm for chaotic time series based on the iterative error correction. Acta Physica Sinica, 2014, 63(5): 050505. doi: 10.7498/aps.63.050505
    [7] Chen Xiao, Wang Chen-Long. Noise suppression for Lamb wave signals by Tsallis mode and fractional-order differential. Acta Physica Sinica, 2014, 63(18): 184301. doi: 10.7498/aps.63.184301
    [8] Tang Zhou-Jin, Peng Tao, Wang Wen-Bo. A local least square support vector machine prediction algorithm of small scale network traffic based on correlation analysis. Acta Physica Sinica, 2014, 63(13): 130504. doi: 10.7498/aps.63.130504
    [9] Wang Xin-Ying, Han Min, Wang Ya-Nan. Analysis of noisy chaotic time series prediction error. Acta Physica Sinica, 2013, 62(5): 050504. doi: 10.7498/aps.62.050504
    [10] Shen Yong-Jun, Yang Shao-Pu, Xing Hai-Jun. Dynamical analysis of linear single degree-of-freedom oscillator with fractional-order derivative. Acta Physica Sinica, 2012, 61(11): 110505. doi: 10.7498/aps.61.110505
    [11] Wang Xin-Ying, Han Min. Multivariate chaotic time series prediction based on extreme learning machine. Acta Physica Sinica, 2012, 61(8): 080507. doi: 10.7498/aps.61.080507
    [12] Shen Yong-Jun, Yang Shao-Pu, Xing Hai-Jun. Dynamical analysis of linear SDOF oscillator with fractional-order derivative (Ⅱ). Acta Physica Sinica, 2012, 61(15): 150503. doi: 10.7498/aps.61.150503
    [13] Song Tong, Li Han. Chaotic time series prediction based on wavelet echo state network. Acta Physica Sinica, 2012, 61(8): 080506. doi: 10.7498/aps.61.080506
    [14] Song Qing-Song, Feng Zu-Ren, Li Ren-Hou. Multiple clusters echo state network for chaotic time series prediction. Acta Physica Sinica, 2009, 58(7): 5057-5064. doi: 10.7498/aps.58.5057
    [15] Zhang Yong, Guan Wei. Predication of multivariable chaotic time series based on maximal Lyapunov exponent. Acta Physica Sinica, 2009, 58(2): 756-763. doi: 10.7498/aps.58.756
    [16] Han Min, Shi Zhi-Wei, Guo Wei. Reservoir neural state reconstruction and chaotic time series prediction. Acta Physica Sinica, 2007, 56(1): 43-50. doi: 10.7498/aps.56.43
    [17] Hu Yu-Xia, Gao Jin-Feng. A neuro-fuzzy method for predicting the chaotic time series. Acta Physica Sinica, 2005, 54(11): 5034-5038. doi: 10.7498/aps.54.5034
    [18] Gan Jian-Chao, Xiao Xian-Ci. Adaptive predict-filter of chaotic time series constructed Based on the neighbou rhood in the reconstructed phase space(Ⅰ)linear adaptive filter. Acta Physica Sinica, 2003, 52(5): 1096-1101. doi: 10.7498/aps.52.1096
    [19] Wei Biao-Lin, Luo Xiao-Shu, Wang Bing-Hong, Quan Hong-Jun, Guo Wei, Fu Jin-Jie. . Acta Physica Sinica, 2002, 51(10): 2205-2210. doi: 10.7498/aps.51.2205
    [20] ZHANG JIA-SHU, XIAO XIAN-CI. A REDUCED PARAMETER SECOND-ORDER VOLTERRA FILTER WITH APPLICATION TO NONLINEAR ADAPTIVE PREDICTION OF CHAOTIC TIME SERIES. Acta Physica Sinica, 2001, 50(7): 1248-1254. doi: 10.7498/aps.50.1248
Metrics
  • Abstract views:  6719
  • PDF Downloads:  380
  • Cited By: 0
Publishing process
  • Received Date:  08 August 2017
  • Accepted Date:  09 September 2017
  • Published Online:  05 January 2018

/

返回文章
返回