Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Mode separation for multimode Lamb waves based on dispersion compensation and fractional differential

Ni Long Chen Xiao

Citation:

Mode separation for multimode Lamb waves based on dispersion compensation and fractional differential

Ni Long, Chen Xiao
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • With the rapid development of material science and industrial technology, the application of ultrasonic Lamb wave to the industrial nondestructive testing has received considerable attention due to its advantages of rapidness, high efficiency, high accuracy, and low cost. However, the multimode and dispersion problem of Lamb waves are still challenging. Multimode mixed Lamb wave signals are often present at the same excitation frequency in the actual detection. To separate dispersive multimode Lamb waves overlapped in time and frequency domains, a separation method based on dispersion compensation and fractional differential is presented. The multimode Lamb waves overlapped in time and frequency domains are first compensated by using the dispersion characteristic. Based on the dispersion compensation, the time-delay function is modeled. The function is used as a transfer function. Its inverse is considered as a dispersion compensation function. Then, the amplitude spectra of Lamb waves are divided into fractional order differentials. The parameters of each mode are extracted by using the fitting polynomial between the maximum amplitude and the differential order and that between the peak frequency and the differential order. Its amplitude spectrum is extracted based on its parameters. By combining with its phase spectrum, the individual mode is constructed after the dispersion has been recovered. Simulation and experiments are performed on a 1 mm-thick stainless steel plate. The oblique transducers with the angle of 26 and the central frequency of 3 MHz are used to excite the S1 and A1 mode overlapped Lamb wave signal in the plate. The transducers are coupled with the stainless steel plate by using the ultrasonic couplant. Simulation and experimental analysis show that the present method can not only achieve the separation of time-frequency overlapped multimode Lamb waves, but also guarantee the separation precision. The main advantage of the presented method is the combination of the dispersion compensation and the fractional differential, which solves the problem of mixing with other mode signals after the single mode dispersion has been compensated, and improves the extraction precision of each mode. Therefore, this method can be used for separating the time-frequency overlapped multimode Lamb waves. It is conducible to the signal processing of multi-mode Lamb wave dispersion.
      Corresponding author: Chen Xiao, chenxiao@nuist.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20161536), the Six Talent Peaks Project in Jiangsu Province, China (Grant No. DZXX-006), the 333 High Level Personnel Training Project of Jiangsu Province, China, and the Priority Academic Program Development of Jiangsu Higher Education Institutions, China.
    [1]

    Gao G J, Geng M X 2012 Appl. Acoust. 31 42 (in Chinese)[高广健, 邓明晰 2012 应用声学 31 42]

    [2]

    Zhang H Y, Cao Y P, Yu J B, Chen X H 2011 Acta Phys. Sin. 60 114301 (in Chinese)[张海燕, 曹亚萍, 于建波, 陈先华 2011 物理学报 60 114301]

    [3]

    Zhai G, Jiang T, Kang L, Wang S 2010 IEEE Trans. Ultrason. Ferr. 57 2725

    [4]

    Yu Y L, Zhang H Y, Feng G R, Ma S W 2013 Acta Acustica 38 576 (in Chinese)[于勇凌, 张海燕, 冯国瑞, 马世伟 2013 声学学报 38 576]

    [5]

    Zhang H Y, Yao J C, Wang R, Ma S W 2014 Chin. Phys. Lett. 31 084301

    [6]

    Wang D, Mao G J, Huang H 2012 Nondestruct. Test. 34 22 (in Chinese)[王杜, 毛国均, 黄辉 2012 无损检测 34 22]

    [7]

    Xu B C, Wang M L, Jia Q 2014 Appl. Mech. Mater. 490 1698

    [8]

    Fan S X, Zhang H Y, Lv D H 2007 Tech. Acoust. 26 628 (in Chinese)[樊仕轩, 张海燕, 吕东辉 2007 声学技术 26 628]

    [9]

    Liu Z Q, Ta D A 2000 Tech. Acoust. 19 212 (in Chinese)[刘镇清, 他得安 2000 声学技术 19 212]

    [10]

    Wang Z G, Liu D, Ta D A 2015 Appl. Acoust. 34 189 (in Chinese)[张正罡, 刘丹, 他得安 2015 应用声学 34 189]

    [11]

    Zhang Y, Tang B P, Deng L 2014 J. Mech. Eng. 50 1 (in Chinese)[张焱, 汤宝平, 邓蕾 2014 机械工程学报 50 1]

    [12]

    Chen X, Gao Y, Bao L 2014 J. Vibroeng. 16 464

    [13]

    Sicard R, Goyette J, Zellouf D 2002 Ultrasonics 40 727

    [14]

    Xu K, Ta D, Moilanen P, Wang W 2012 J. Acoust. Soc. Am. 131 2714

    [15]

    Xu K L, Tan Z, Ta D A, Wang W Q 2014 Acta Acustica 39 99 (in Chinese)[许凯亮, 谈钊, 他得安, 王威琪 2014 声学学报 39 99]

    [16]

    Wang J, Wang Q 2015 Inform. Res. 41 16 (in Chinese)[王晶, 王强 2015 信息化研究 41 16]

    [17]

    Chen L, Wang Y M, Geng H Q, Ye W, Deng W L 2016 China Measurement Test 42 132 (in Chinese)[陈乐, 王悦民, 耿海泉, 叶伟, 邓文力 2016 中国测试 42 132]

    [18]

    Samko S G, Kilbas A A, Marichev O I 1993 Fractional Integrals and Derivatives: Theory and Applications (Switzerland: Cordon and Breach Science Publishers) p21

    [19]

    Li Y L, Yu S L, Zhen G 2007 Science in China Series B: Chemistry 37 361 (in Chinese)[李远禄, 于盛林, 郑罡 2007 中国科学B辑 化学 37 361]

    [20]

    Chen X, Wang C L 2014 Acta Phys. Sin. 63 184301 (in Chinese)[陈晓, 汪陈龙 2014 物理学报 63 184301]

    [21]

    Chen X, Gao Y, Wang C 2015 J. Vibroeng 17 4211

    [22]

    Chen X, Wang C L 2015 Res. Nondestruc. Eval. 26 174

    [23]

    Chen X, Wang C L 2014 J. Vibroeng. 16 2676.

    [24]

    Yang Z Z, Zhou J L, Lang F N 2014 J. Image. Graph. 19 1418 (in Chinese)[杨柱中, 周激流, 郎方年 2014 中国图象图形学报 19 1418]

    [25]

    Zhang Y, Huang S, Zhao W, Wang K 2015 Electr. Meas. Instrum. 52 19 (in Chinese)[张宇, 黄松岭, 赵伟, 王珅 2015 电测与仪表 52 19]

  • [1]

    Gao G J, Geng M X 2012 Appl. Acoust. 31 42 (in Chinese)[高广健, 邓明晰 2012 应用声学 31 42]

    [2]

    Zhang H Y, Cao Y P, Yu J B, Chen X H 2011 Acta Phys. Sin. 60 114301 (in Chinese)[张海燕, 曹亚萍, 于建波, 陈先华 2011 物理学报 60 114301]

    [3]

    Zhai G, Jiang T, Kang L, Wang S 2010 IEEE Trans. Ultrason. Ferr. 57 2725

    [4]

    Yu Y L, Zhang H Y, Feng G R, Ma S W 2013 Acta Acustica 38 576 (in Chinese)[于勇凌, 张海燕, 冯国瑞, 马世伟 2013 声学学报 38 576]

    [5]

    Zhang H Y, Yao J C, Wang R, Ma S W 2014 Chin. Phys. Lett. 31 084301

    [6]

    Wang D, Mao G J, Huang H 2012 Nondestruct. Test. 34 22 (in Chinese)[王杜, 毛国均, 黄辉 2012 无损检测 34 22]

    [7]

    Xu B C, Wang M L, Jia Q 2014 Appl. Mech. Mater. 490 1698

    [8]

    Fan S X, Zhang H Y, Lv D H 2007 Tech. Acoust. 26 628 (in Chinese)[樊仕轩, 张海燕, 吕东辉 2007 声学技术 26 628]

    [9]

    Liu Z Q, Ta D A 2000 Tech. Acoust. 19 212 (in Chinese)[刘镇清, 他得安 2000 声学技术 19 212]

    [10]

    Wang Z G, Liu D, Ta D A 2015 Appl. Acoust. 34 189 (in Chinese)[张正罡, 刘丹, 他得安 2015 应用声学 34 189]

    [11]

    Zhang Y, Tang B P, Deng L 2014 J. Mech. Eng. 50 1 (in Chinese)[张焱, 汤宝平, 邓蕾 2014 机械工程学报 50 1]

    [12]

    Chen X, Gao Y, Bao L 2014 J. Vibroeng. 16 464

    [13]

    Sicard R, Goyette J, Zellouf D 2002 Ultrasonics 40 727

    [14]

    Xu K, Ta D, Moilanen P, Wang W 2012 J. Acoust. Soc. Am. 131 2714

    [15]

    Xu K L, Tan Z, Ta D A, Wang W Q 2014 Acta Acustica 39 99 (in Chinese)[许凯亮, 谈钊, 他得安, 王威琪 2014 声学学报 39 99]

    [16]

    Wang J, Wang Q 2015 Inform. Res. 41 16 (in Chinese)[王晶, 王强 2015 信息化研究 41 16]

    [17]

    Chen L, Wang Y M, Geng H Q, Ye W, Deng W L 2016 China Measurement Test 42 132 (in Chinese)[陈乐, 王悦民, 耿海泉, 叶伟, 邓文力 2016 中国测试 42 132]

    [18]

    Samko S G, Kilbas A A, Marichev O I 1993 Fractional Integrals and Derivatives: Theory and Applications (Switzerland: Cordon and Breach Science Publishers) p21

    [19]

    Li Y L, Yu S L, Zhen G 2007 Science in China Series B: Chemistry 37 361 (in Chinese)[李远禄, 于盛林, 郑罡 2007 中国科学B辑 化学 37 361]

    [20]

    Chen X, Wang C L 2014 Acta Phys. Sin. 63 184301 (in Chinese)[陈晓, 汪陈龙 2014 物理学报 63 184301]

    [21]

    Chen X, Gao Y, Wang C 2015 J. Vibroeng 17 4211

    [22]

    Chen X, Wang C L 2015 Res. Nondestruc. Eval. 26 174

    [23]

    Chen X, Wang C L 2014 J. Vibroeng. 16 2676.

    [24]

    Yang Z Z, Zhou J L, Lang F N 2014 J. Image. Graph. 19 1418 (in Chinese)[杨柱中, 周激流, 郎方年 2014 中国图象图形学报 19 1418]

    [25]

    Zhang Y, Huang S, Zhao W, Wang K 2015 Electr. Meas. Instrum. 52 19 (in Chinese)[张宇, 黄松岭, 赵伟, 王珅 2015 电测与仪表 52 19]

  • [1] Zhang Hong-Wei, Fu Chang-Lei, Pan Zhi-Xiang, Ding Da-Wei, Wang Jin, Yang Zong-Li, Liu Tao. Controllable multistability of fractional-order memristive Henon map and its application in video encryption. Acta Physica Sinica, 2024, 73(18): 180501. doi: 10.7498/aps.73.20240942
    [2] Dong Rui, Liu Cheng-Cheng, Cai Xun-Bin, Shao Liu-Lei, Li Bo-Yi, Ta De-An. Measurement and compensation of frequency-dependent attenuation in ultrasonic backscatter signal from cancellous bone. Acta Physica Sinica, 2019, 68(18): 184301. doi: 10.7498/aps.68.20190599
    [3] Jiao Jing-Pin, Li Hai-Ping, He Cun-Fu, Wu Bin, Xue Yan. Lamb wave imaging method based on difference signal in reverse path. Acta Physica Sinica, 2019, 68(12): 124301. doi: 10.7498/aps.68.20190101
    [4] Wang Shi-Yuan, Shi Chun-Fen, Qian Guo-Bing, Wang Wan-Li. Prediction of chaotic time series based on the fractional-order maximum correntropy criterion algorithm. Acta Physica Sinica, 2018, 67(1): 018401. doi: 10.7498/aps.67.20171803
    [5] Zhang Hai-Yan, Xu Meng-Yun, Zhang Hui, Zhu Wen-Fa, Chai Xiao-Dong. Full focal imaging of ultrasonic Lamb waves using diffuse field information. Acta Physica Sinica, 2018, 67(22): 224301. doi: 10.7498/aps.67.20181268
    [6] Zhang Hai-Yan, Yang Jie, Fan Guo-Peng, Zhu Wen-Fa, Chai Xiao-Dong. Reverse time migration Lamb wave imaging based on mode separation. Acta Physica Sinica, 2017, 66(21): 214301. doi: 10.7498/aps.66.214301
    [7] Wen Shao-Fang, Shen Yong-Jun, Yang Shao-Pu. Dynamical analysis of Duffing oscillator with fractional-order feedback with time delay. Acta Physica Sinica, 2016, 65(9): 094502. doi: 10.7498/aps.65.094502
    [8] Lu Yong-Kun. Robust fractional-order proportional-derivative control of unified chaotic systems with parametric uncertainties. Acta Physica Sinica, 2015, 64(5): 050503. doi: 10.7498/aps.64.050503
    [9] Tan Cheng, Liang Zhi-Shan, Zhang Ju-Qiu. Non-linear control for the fractional boost converter in pseudo continuous conduction mode. Acta Physica Sinica, 2014, 63(20): 200502. doi: 10.7498/aps.63.200502
    [10] Tan Cheng, Liang Zhi-Shan. Modeling and simulation analysis of fractional-order Boost converter in pseudo-continuous conduction mode. Acta Physica Sinica, 2014, 63(7): 070502. doi: 10.7498/aps.63.070502
    [11] Fan Wen-Ping, Jiang Xiao-Yun. Parameters estimation for a one-dimensional time fractional thermal wave equation with fractional heat flux conditions. Acta Physica Sinica, 2014, 63(14): 140202. doi: 10.7498/aps.63.140202
    [12] Wei Peng, Shen Yong-Jun, Yang Shao-Pu. Super-harmonic resonance of fractional-order van der Pol oscillator. Acta Physica Sinica, 2014, 63(1): 010503. doi: 10.7498/aps.63.010503
    [13] Chen Xiao, Wang Chen-Long. Noise suppression for Lamb wave signals by Tsallis mode and fractional-order differential. Acta Physica Sinica, 2014, 63(18): 184301. doi: 10.7498/aps.63.184301
    [14] Li Kun, Fang Shi-Liang, An Liang. Studies on mode feature extraction and source range and depth estimation with a single hydrophone based on the dispersion characteristic. Acta Physica Sinica, 2013, 62(9): 094303. doi: 10.7498/aps.62.094303
    [15] Shen Yong-Jun, Yang Shao-Pu, Xing Hai-Jun. Dynamical analysis of linear single degree-of-freedom oscillator with fractional-order derivative. Acta Physica Sinica, 2012, 61(11): 110505. doi: 10.7498/aps.61.110505
    [16] Shen Yong-Jun, Yang Shao-Pu, Xing Hai-Jun. Dynamical analysis of linear SDOF oscillator with fractional-order derivative (Ⅱ). Acta Physica Sinica, 2012, 61(15): 150503. doi: 10.7498/aps.61.150503
    [17] Ding Hong-Xing, Shen Zhong-Hua, Li Jia, Zhu Xue-Feng, Ni Xiao-Wu. Large partial band-gaps for Lamb waves in multiple phononic crystals thin plates. Acta Physica Sinica, 2012, 61(19): 196301. doi: 10.7498/aps.61.196301
    [18] Zhang Hai-Yan, Cao Ya-Ping, Yu Jian-Bo, Chen Xian-Hua. Actuating frequency selection of single mode Lamb waves using single piezoelectric transducer. Acta Physica Sinica, 2011, 60(11): 114301. doi: 10.7498/aps.60.114301
    [19] Li Fu-Cai, Meng Guang. Dispersion analysis of Lamb waves with narrow frequency bands. Acta Physica Sinica, 2008, 57(7): 4265-4272. doi: 10.7498/aps.57.4265
    [20] Shen Shou-Feng. Virasoro symmetry subalgebra, multi-linear variable separation solutions and localized excitations of higher-dimensional differential-difference models. Acta Physica Sinica, 2006, 55(11): 5606-5610. doi: 10.7498/aps.55.5606
Metrics
  • Abstract views:  6339
  • PDF Downloads:  93
  • Cited By: 0
Publishing process
  • Received Date:  29 March 2018
  • Accepted Date:  02 July 2018
  • Published Online:  20 October 2019

/

返回文章
返回