搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于模式分离的兰姆波逆时偏移成像

张海燕 杨杰 范国鹏 朱文发 柴晓冬

引用本文:
Citation:

基于模式分离的兰姆波逆时偏移成像

张海燕, 杨杰, 范国鹏, 朱文发, 柴晓冬

Reverse time migration Lamb wave imaging based on mode separation

Zhang Hai-Yan, Yang Jie, Fan Guo-Peng, Zhu Wen-Fa, Chai Xiao-Dong
PDF
导出引用
  • 应用频率域逆时偏移方法实现各向同性和各向异性板中缺陷的兰姆波成像.由于缺陷引起的多模态散射信号会在重建图像中形成伪像,根据基本导波模式振动对称性的差别进行了模式分离预处理.基于多元阵列超声技术,开展了铝板和复合板内缺陷频率域逆时偏移超声成像方法的数值仿真研究.首先,建立有限元模型,采用环形传感器数值采集由缺陷引起的兰姆波散射信号,然后,将采集到的多模式散射信号进行模式分离处理,再将模式分离后的兰姆波散射信号经时间反转后并在相应的接收器处重新激励,在频域中运用格林函数反向传播兰姆波散射信号,获取监测区域的声场信息,与正向传播声场进行互相关,重建缺陷图像.首先对铝板中单缺陷以及复合材料板中相邻的两个相同缺陷进行数值仿真,对比有无模式分离处理的缺陷逆时偏移成像效果,体现出模式分离的重要性.在此基础上,采用逆时偏移方法对复合板材内位置邻近、深度不同的双缺陷进行识别.数值结果表明,模式分离预处理后的缺陷重建图像能够有效去除多模式干扰产生的伪像.文中提出的成像方法对各向同性板和各向异性板内缺陷的检测和成像具有很好的发展潜力,可以准确地探测多个缺陷的形状、尺寸和深度.
    Frequency domain reverse time migration method is used to reconstruct damages in isotropic and anisotropic plates. Considering multimode overlapping, the Lamb wave signals scattered by the defects may result in artifacts in defect imaging. The scattering signals are thus pre-processed by using a mode separation method based on the vibration symmetry difference between the fundamental guided modes. Based on the multi-element array ultrasonic technique, a numerical study is carried out for defect imaging of aluminum and composite plates by using the frequency reverse time migration method. This paper is organized as follows. Firstly, in order to capture multi-directional information about damages, scattering Lamb wave signals caused by the defects are numerically collected by an annular array of transducers through using the finite element simulation. Secondly, after the pre-processing of mode separation, the separated scattering signals are time-reversed and used to stimulate the corresponding receivers. The Green's function is utilized to back-propagate the scattering Lamb signals in frequency domain, so that the back-propagated acoustic field information of monitored area can be obtained. Finally, the defect images are reconstructed by the cross-correlation between the incident acoustic field and the back-propagated acoustic field. To illustrate the influence of mode separation, the numerical experiments are carried out on an aluminum plate with single defect and on another composite plate with two adjacent identical defects. The reconstructed results from frequency domain reverse time migration method with and without mode separation are compared. The comparison indicates the importance of mode separation. Furthermore, the method is extended to detecting the double adjacent defects with different depths in the composite plate. The imaging result illustrates that the presupposed two adjacent defects with different depths are successfully identified. Numerical results demonstrate that the pre-processing of mode separation helps to effectively remove the artifacts resulting from the multimode interference in the imaging process. The proposed frequency reverse time migration method presents a strong potential for detecting and imaging defects in isotropic and anisotropic plates, which is capable of accurately measuring multi-site defects with information about geometry, size and depth.
      通信作者: 张海燕, hyzh@shu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11674214,11474195,51478258)和上海市科委重点支撑项目(批准号:16030501400)资助的课题.
      Corresponding author: Zhang Hai-Yan, hyzh@shu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11674214, 11474195, 51478258) and the Key Technology RD Project of Shanghai Committee of Science and Technology, China (Grant No. 16030501400).
    [1]

    Monkhouse R S C, Wilcox P D, Cawley P 1997 Ultrasonics 35 489

    [2]

    Lin X, Yuan F G 2001 AIAA J. 39 2206

    [3]

    Whitmore N D 1983 1983 SEG Annual Meeting Las Vegas, Nevada, USA, September 11-15, 1983 p382

    [4]

    Arnal B, Pernot M, Tanter M 2010 2010 IEEE Ultrasonics Symposium(IUS) San Diego, USA, October 11-14, 2010 p1039

    [5]

    Anderson B E, Griffa M, Bas P Y L, Ulrich T J, Johonson P A 2011 J. Acoust. Soc. Am. 129 EL8

    [6]

    Fink M 1992 IEEE Trans. Ultrason. Ferr. 39 555

    [7]

    Mller S, Niederleithinger E, Bohlen T 2012 Int. J. Geophys. 2012 128465

    [8]

    Ma F Z, Guo S J, Wang J 2016 Prog. Geophys. 31 741 (in Chinese) [马方正, 郭书娟, 王杰 2016 地球物理学进展 31 741]

    [9]

    Lin X, Yuan F G 2005 Struct. Health. Monit. 4 341

    [10]

    Zheng L, Guo J Z 2016 Acta Phys. Sin. 65 044305 (in Chinese) [郑莉, 郭建中 2016 物理学报 65 044305]

    [11]

    Xu Y F, Hu W X 2014 Acta Phys. Sin. 63 154302 (in Chinese) [徐琰锋, 胡文祥 2014 物理学报 63 154302]

    [12]

    Claerbout J F 1971 Geophysics 36 467

    [13]

    Qiu L, Yuan S F, Zhang X Y, Wang Q, Zhang B L, Yang W W 2010 Acta Mater. Compos. Sin. 27 101 (in Chinese) [邱雷, 袁慎芳, 张逍越, 王强, 张炳良, 杨伟伟 2010 复合材料学报 27 101]

    [14]

    Wang Q, Yuan S F, Qiu L, Sun Y J 2008 Chin. J. Sci. Instrum. 29 1816 (in Chinese) [王强, 袁慎芳, 邱雷, 孙亚杰 2008 仪器仪表学报 29 1816]

    [15]

    Rose L R F, Wang C H, Chan E 2015 Wave Motion 58 222

    [16]

    Xu K, Zhou B, McMechan G A 2010 Geophysics 75 61

    [17]

    Zheng Y, Zhou J J 2014 Eng. Plast. Appl. 31 21 (in Chinese) [郑阳, 周进节 2014 工程力学 31 21]

    [18]

    Chan E, Rose L R F, Wang C H 2015 Ultrasonics 59 1

    [19]

    Wang L, Yuan F G 2005 Struct. Health. Monit. 4 3

  • [1]

    Monkhouse R S C, Wilcox P D, Cawley P 1997 Ultrasonics 35 489

    [2]

    Lin X, Yuan F G 2001 AIAA J. 39 2206

    [3]

    Whitmore N D 1983 1983 SEG Annual Meeting Las Vegas, Nevada, USA, September 11-15, 1983 p382

    [4]

    Arnal B, Pernot M, Tanter M 2010 2010 IEEE Ultrasonics Symposium(IUS) San Diego, USA, October 11-14, 2010 p1039

    [5]

    Anderson B E, Griffa M, Bas P Y L, Ulrich T J, Johonson P A 2011 J. Acoust. Soc. Am. 129 EL8

    [6]

    Fink M 1992 IEEE Trans. Ultrason. Ferr. 39 555

    [7]

    Mller S, Niederleithinger E, Bohlen T 2012 Int. J. Geophys. 2012 128465

    [8]

    Ma F Z, Guo S J, Wang J 2016 Prog. Geophys. 31 741 (in Chinese) [马方正, 郭书娟, 王杰 2016 地球物理学进展 31 741]

    [9]

    Lin X, Yuan F G 2005 Struct. Health. Monit. 4 341

    [10]

    Zheng L, Guo J Z 2016 Acta Phys. Sin. 65 044305 (in Chinese) [郑莉, 郭建中 2016 物理学报 65 044305]

    [11]

    Xu Y F, Hu W X 2014 Acta Phys. Sin. 63 154302 (in Chinese) [徐琰锋, 胡文祥 2014 物理学报 63 154302]

    [12]

    Claerbout J F 1971 Geophysics 36 467

    [13]

    Qiu L, Yuan S F, Zhang X Y, Wang Q, Zhang B L, Yang W W 2010 Acta Mater. Compos. Sin. 27 101 (in Chinese) [邱雷, 袁慎芳, 张逍越, 王强, 张炳良, 杨伟伟 2010 复合材料学报 27 101]

    [14]

    Wang Q, Yuan S F, Qiu L, Sun Y J 2008 Chin. J. Sci. Instrum. 29 1816 (in Chinese) [王强, 袁慎芳, 邱雷, 孙亚杰 2008 仪器仪表学报 29 1816]

    [15]

    Rose L R F, Wang C H, Chan E 2015 Wave Motion 58 222

    [16]

    Xu K, Zhou B, McMechan G A 2010 Geophysics 75 61

    [17]

    Zheng Y, Zhou J J 2014 Eng. Plast. Appl. 31 21 (in Chinese) [郑阳, 周进节 2014 工程力学 31 21]

    [18]

    Chan E, Rose L R F, Wang C H 2015 Ultrasonics 59 1

    [19]

    Wang L, Yuan F G 2005 Struct. Health. Monit. 4 3

  • [1] 焦敬品, 李海平, 何存富, 吴斌, 薛岩. 基于反转路径差信号的兰姆波成像方法. 物理学报, 2019, 68(12): 124301. doi: 10.7498/aps.68.20190101
    [2] 纪丹丹, 张劭光. 三区域膜泡相分离模式之间转变的研究. 物理学报, 2018, 67(18): 188701. doi: 10.7498/aps.67.20180828
    [3] 张海燕, 徐梦云, 张辉, 朱文发, 柴晓冬. 利用扩散场信息的超声兰姆波全聚焦成像. 物理学报, 2018, 67(22): 224301. doi: 10.7498/aps.67.20181268
    [4] 倪龙, 陈晓. 基于频散补偿和分数阶微分的多模式兰姆波分离. 物理学报, 2018, 67(20): 204301. doi: 10.7498/aps.67.20180561
    [5] 解万财, 黄素娟, 邵蔚, 朱福全, 陈木生. 基于混合光模式阵列的自由空间编码通信. 物理学报, 2017, 66(14): 144102. doi: 10.7498/aps.66.144102
    [6] 孙小亮, 陈长虹, 孟德佳, 冯士高, 于洪浩. 复合金属光栅模式分离与高性能气体传感器应用. 物理学报, 2015, 64(14): 147302. doi: 10.7498/aps.64.147302
    [7] 周静, 王鸣, 倪海彬, 马鑫. 环形狭缝腔阵列光学特性的研究. 物理学报, 2015, 64(22): 227301. doi: 10.7498/aps.64.227301
    [8] 宋玉来, 卢奂采, 金江明. 单层传声器阵列信号空间重采样的声波分离方法. 物理学报, 2014, 63(19): 194305. doi: 10.7498/aps.63.194305
    [9] 梁宝军. 裂缝诱导TTI双孔隙介质的纵波偏移成像研究. 物理学报, 2014, 63(11): 119101. doi: 10.7498/aps.63.119101
    [10] 陈晓, 汪陈龙. 基于赛利斯模型和分数阶微分的兰姆波信号消噪. 物理学报, 2014, 63(18): 184301. doi: 10.7498/aps.63.184301
    [11] 徐琰锋, 胡文祥. 纵向带状裂隙形貌的逆时偏移超声成像. 物理学报, 2014, 63(15): 154302. doi: 10.7498/aps.63.154302
    [12] 高东宝, 曾新吾, 周泽民, 田章福. 一维亥姆霍兹共振腔声子晶体中缺陷模式的实验研究. 物理学报, 2013, 62(9): 094304. doi: 10.7498/aps.62.094304
    [13] 丁红星, 沈中华, 李加, 祝雪丰, 倪晓武. 复合兰姆波声子晶体中超宽部分禁带. 物理学报, 2012, 61(19): 196301. doi: 10.7498/aps.61.196301
    [14] 高红利, 赵永志, 刘格思, 陈友川, 郑津洋. 阻尼对水平滚筒内二元颗粒体系径向分离模式形成的影响. 物理学报, 2011, 60(7): 074501. doi: 10.7498/aps.60.074501
    [15] 张海燕, 曹亚萍, 于建波, 陈先华. 采用单个压电传感器的单模式兰姆波激发频率的选择. 物理学报, 2011, 60(11): 114301. doi: 10.7498/aps.60.114301
    [16] 赵啦啦, 刘初升, 闫俊霞, 蒋小伟, 朱艳. 不同振动模式下颗粒分离行为的数值模拟. 物理学报, 2010, 59(4): 2582-2588. doi: 10.7498/aps.59.2582
    [17] 赵永志, 程 易. 水平滚筒内二元颗粒体系径向分离模式的数值模拟研究. 物理学报, 2008, 57(1): 322-328. doi: 10.7498/aps.57.322
    [18] 沈守枫. 高维微分-差分模型的Virasoro对称子代数,多线性变量分离解和局域激发模式. 物理学报, 2006, 55(11): 5606-5610. doi: 10.7498/aps.55.5606
    [19] 沈守枫. (1+1)维广义的浅水波方程的变量分离解和孤子激发模式. 物理学报, 2006, 55(3): 1016-1022. doi: 10.7498/aps.55.1016
    [20] 陆璇辉, 黄凯凯. 衍射光学元件改善激光谐振腔输出特性的研究. 物理学报, 2001, 50(8): 1409-1414. doi: 10.7498/aps.50.1409
计量
  • 文章访问数:  5527
  • PDF下载量:  262
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-31
  • 修回日期:  2017-06-30
  • 刊出日期:  2017-11-05

/

返回文章
返回