Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Dynamical analysis of linear SDOF oscillator with fractional-order derivative (Ⅱ)

Shen Yong-Jun Yang Shao-Pu Xing Hai-Jun

Citation:

Dynamical analysis of linear SDOF oscillator with fractional-order derivative (Ⅱ)

Shen Yong-Jun, Yang Shao-Pu, Xing Hai-Jun
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • A linear single degree-of-freedom (SDOF) oscillator with two kinds of fractional-order derivatives is investigated by the averaging method, and the approximately analytical solution is obtained. The effects of the parameters on the dynamical properties, including the fractional coefficients and the fractional orders in the two kinds of fractional-order derivatives, are characterized by the equivalent linear damping coefficient and the equivalent linear stiffness, and the results is entirely different from the results given in the existing literature. A comparison of the analytical solution with the numerical results is made, and their satisfactory agreement verifies the correctness of the approximately analytical results. The following analysis of the effects of the fractional parameters on the amplitude-frequency is presented, and it is found that the fractional coefficients and the fractional orders can affect not only the resonance amplitude through the equivalent linear damping coefficient, but also the resonance frequency by the equivalent linear stiffness. Finally, the effects of the fractional coefficient in the second fractional-order derivative on resonance frequency are analyzed, and the design rule for the fractional coefficient in the second fractional-order derivative to meet the satisfactory vibration control performance is pointed out.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11072158, 10932006), the Natural Science Funds for Distinguished Young Scholar of Hebei Province (Grant No. E2010002047), the Program for New Century Excellent Talents in University and the Program for Changjiang Scholars and Innovative Research Team in University (Grant No. IRT0971).
    [1]

    Oldham K B, Spanier J 1974 The Fractional Calculus-Theory and Applications of Differentiation and Integration to Arbitrary Order (New York: Academic Press) p1

    [2]

    Podlubny I 1999 Fractional Differential Equations (London: Academic) p10

    [3]

    Petras I 2011 Fractional-Order Nonlinear System (China: Higher Education Press) p19

    [4]

    Rossikhin Y A, Shitikova M V 2010 Applied Mechanics Reviews 63 010801

    [5]

    Yang S P, Shen Y J 2009 Chao, Solitons and Fractals 40 1808

    [6]

    Wang Z Z, Hu H Y 2010 Science China: Physics, Mechanics & Astronomy 53 345

    [7]

    Wang Z Z, Du M L 2011 Shock and Vibration 18 257

    [8]

    Rossikhin Y A, Shitikova M V 1997 Acta Mechanica 120 109

    [9]

    Li G G, Zhu Z Y, Cheng C J 2011 Applied Mathematics and Mechanics 22 294

    [10]

    Cao J Y, Ma C B, Xie H, Jiang Z D 2010 ASME Journal of Computational and Nonlinear Dynamics 5 041012

    [11]

    Wu X J, Lu H T, Shen S L 2009 Physics Letters A 373 2329

    [12]

    Chen J H, Chen W C 2008 Chaos, Solitons and Fractals 35 188

    [13]

    Lu J G 2006 Physics Letters A 354 305

    [14]

    Zhang C F, Gao J F, Xu L 2007 Acta Phys. Sin. 56 5124 (in Chinese) [张成芬, 高金峰, 徐磊 2007 物理学报 56 5124]

    [15]

    Liu C X 2007 Acta Phys. Sin. 56 6865 (in Chinese) [刘崇新 2007 物理学报 56 6865]

    [16]

    Chen X R, Liu C X, Wang F Q, Li Q X 2008 Acta Phys. Sin. 57 1416 (in Chinese) [陈向荣, 刘崇新, 王发强, 李永勋 2008 物理学报 57 1416]

    [17]

    Zhang R X, Yang Y, Yang S P 2009 Acta Phys. Sin. 58 6039 (in Chinese) [张若洵, 杨洋, 杨世平 2009 物理学报 58 6039]

    [18]

    Hu J B, Xiao J, Zhao L D 2011 Acta Phys. Sin. 60 110515 (in Chinese) [胡建兵, 肖建, 赵灵冬 2011 物理学报 60 110515]

    [19]

    Li Q D, Chen S, Zhou P 2011 Chin. Phys. B 20 010502

    [20]

    Zhang R X, Yang S P 2009 Chin. Phys. B 18 3295

    [21]

    Qi D L, Wang Q, Yang J 2011 Chin. Phys. B 20 100505

    [22]

    Wu Z M, Xie J Y 2007 Chin. Phys. 16 1901

    [23]

    Zhou P 2007 Chin. Phys. 16 1263

    [24]

    Deng W H, Li C P 2008 Phys. Lett. A 372 401

    [25]

    Deng W H. 2007 Journal of Computational Physics 227 1510

    [26]

    Chen L C, Zhu W Q 2009 Journal of Vibration and Control 15 1247

    [27]

    Wahi P, Chatterjee A 2004 Nonlinear Dynamics 38 3

    [28]

    Huang Z L, Jin X L 2009 Journal of Sound and Vibration 319 1121

    [29]

    Shen Y J, Yang S P, Xing H J 2012 Acta Phys. Sin. 61 110505 (in Chinese) [申永军, 杨绍普, 邢海军 2012 物理学报 61 110505]

    [30]

    Shen Y J, Yang S P, Xing H J, Gao G S 2012 Commun. Nonlinear Sci. Numer Simulat 17 3092

    [31]

    Sanders J A, Verhulst F, Murdock J 2007 Averaging methods in nonlinear dynamical systems (New York: Springer) p150

    [32]

    Ni Z H 1988 Vibration Mechanics p79 (Xi'an: Xi'an Jiaotong University Press) (in Chinese) [倪振华 1988 振动力学 (西安: 西安交通大学出版社) 第79页]

    [33]

    Liu Y Z, Chen W L, Chen L Q 1998 Vibration Mechanics p36 (Beijing: Higher Education Press) (in Chinese) [刘延柱, 陈文良, 陈立群 1998 振动力学 (北京: 高等教育出版社) 第36页]

  • [1]

    Oldham K B, Spanier J 1974 The Fractional Calculus-Theory and Applications of Differentiation and Integration to Arbitrary Order (New York: Academic Press) p1

    [2]

    Podlubny I 1999 Fractional Differential Equations (London: Academic) p10

    [3]

    Petras I 2011 Fractional-Order Nonlinear System (China: Higher Education Press) p19

    [4]

    Rossikhin Y A, Shitikova M V 2010 Applied Mechanics Reviews 63 010801

    [5]

    Yang S P, Shen Y J 2009 Chao, Solitons and Fractals 40 1808

    [6]

    Wang Z Z, Hu H Y 2010 Science China: Physics, Mechanics & Astronomy 53 345

    [7]

    Wang Z Z, Du M L 2011 Shock and Vibration 18 257

    [8]

    Rossikhin Y A, Shitikova M V 1997 Acta Mechanica 120 109

    [9]

    Li G G, Zhu Z Y, Cheng C J 2011 Applied Mathematics and Mechanics 22 294

    [10]

    Cao J Y, Ma C B, Xie H, Jiang Z D 2010 ASME Journal of Computational and Nonlinear Dynamics 5 041012

    [11]

    Wu X J, Lu H T, Shen S L 2009 Physics Letters A 373 2329

    [12]

    Chen J H, Chen W C 2008 Chaos, Solitons and Fractals 35 188

    [13]

    Lu J G 2006 Physics Letters A 354 305

    [14]

    Zhang C F, Gao J F, Xu L 2007 Acta Phys. Sin. 56 5124 (in Chinese) [张成芬, 高金峰, 徐磊 2007 物理学报 56 5124]

    [15]

    Liu C X 2007 Acta Phys. Sin. 56 6865 (in Chinese) [刘崇新 2007 物理学报 56 6865]

    [16]

    Chen X R, Liu C X, Wang F Q, Li Q X 2008 Acta Phys. Sin. 57 1416 (in Chinese) [陈向荣, 刘崇新, 王发强, 李永勋 2008 物理学报 57 1416]

    [17]

    Zhang R X, Yang Y, Yang S P 2009 Acta Phys. Sin. 58 6039 (in Chinese) [张若洵, 杨洋, 杨世平 2009 物理学报 58 6039]

    [18]

    Hu J B, Xiao J, Zhao L D 2011 Acta Phys. Sin. 60 110515 (in Chinese) [胡建兵, 肖建, 赵灵冬 2011 物理学报 60 110515]

    [19]

    Li Q D, Chen S, Zhou P 2011 Chin. Phys. B 20 010502

    [20]

    Zhang R X, Yang S P 2009 Chin. Phys. B 18 3295

    [21]

    Qi D L, Wang Q, Yang J 2011 Chin. Phys. B 20 100505

    [22]

    Wu Z M, Xie J Y 2007 Chin. Phys. 16 1901

    [23]

    Zhou P 2007 Chin. Phys. 16 1263

    [24]

    Deng W H, Li C P 2008 Phys. Lett. A 372 401

    [25]

    Deng W H. 2007 Journal of Computational Physics 227 1510

    [26]

    Chen L C, Zhu W Q 2009 Journal of Vibration and Control 15 1247

    [27]

    Wahi P, Chatterjee A 2004 Nonlinear Dynamics 38 3

    [28]

    Huang Z L, Jin X L 2009 Journal of Sound and Vibration 319 1121

    [29]

    Shen Y J, Yang S P, Xing H J 2012 Acta Phys. Sin. 61 110505 (in Chinese) [申永军, 杨绍普, 邢海军 2012 物理学报 61 110505]

    [30]

    Shen Y J, Yang S P, Xing H J, Gao G S 2012 Commun. Nonlinear Sci. Numer Simulat 17 3092

    [31]

    Sanders J A, Verhulst F, Murdock J 2007 Averaging methods in nonlinear dynamical systems (New York: Springer) p150

    [32]

    Ni Z H 1988 Vibration Mechanics p79 (Xi'an: Xi'an Jiaotong University Press) (in Chinese) [倪振华 1988 振动力学 (西安: 西安交通大学出版社) 第79页]

    [33]

    Liu Y Z, Chen W L, Chen L Q 1998 Vibration Mechanics p36 (Beijing: Higher Education Press) (in Chinese) [刘延柱, 陈文良, 陈立群 1998 振动力学 (北京: 高等教育出版社) 第36页]

  • [1] Liu Hai-Ping, Zhang Shi-Cheng, Men Ling-Ling, He Zhen-Qiang. Theoretical analysis and experimental evaluation of vibration isolation system with broadband characteristic for laser tracker. Acta Physica Sinica, 2022, 71(16): 160701. doi: 10.7498/aps.71.20220307
    [2] Yang Jian-Hua, Ma Qiang, Wu Cheng-Jin, Liu Hou-Guang. A periodic vibrational resonance in the fractional-order bistable system. Acta Physica Sinica, 2018, 67(5): 054501. doi: 10.7498/aps.67.20172046
    [3] Wang Shi-Yuan, Shi Chun-Fen, Qian Guo-Bing, Wang Wan-Li. Prediction of chaotic time series based on the fractional-order maximum correntropy criterion algorithm. Acta Physica Sinica, 2018, 67(1): 018401. doi: 10.7498/aps.67.20171803
    [4] Ni Long, Chen Xiao. Mode separation for multimode Lamb waves based on dispersion compensation and fractional differential. Acta Physica Sinica, 2018, 67(20): 204301. doi: 10.7498/aps.67.20180561
    [5] Wang Jian-Li, Guo Liang, Xu Xian-Fan, Ni Zhong-Hua, Chen Yun-Fei. Manipulation of lattice vibration by ultrafast spectroscopy. Acta Physica Sinica, 2017, 66(1): 014203. doi: 10.7498/aps.66.014203
    [6] Wen Shao-Fang, Shen Yong-Jun, Yang Shao-Pu. Dynamical analysis of Duffing oscillator with fractional-order feedback with time delay. Acta Physica Sinica, 2016, 65(9): 094502. doi: 10.7498/aps.65.094502
    [7] Lu Yong-Kun. Robust fractional-order proportional-derivative control of unified chaotic systems with parametric uncertainties. Acta Physica Sinica, 2015, 64(5): 050503. doi: 10.7498/aps.64.050503
    [8] Li Yong-Qiang, Liu Ling. A study of capillary flow in variable interior corners under microgravity. Acta Physica Sinica, 2014, 63(21): 214704. doi: 10.7498/aps.63.214704
    [9] Ye Yang, Wang Shu-Lin. Characteristics of micro fine copper particles impact damping. Acta Physica Sinica, 2014, 63(22): 224304. doi: 10.7498/aps.63.224304
    [10] Chen Xiao, Wang Chen-Long. Noise suppression for Lamb wave signals by Tsallis mode and fractional-order differential. Acta Physica Sinica, 2014, 63(18): 184301. doi: 10.7498/aps.63.184301
    [11] Wei Peng, Shen Yong-Jun, Yang Shao-Pu. Super-harmonic resonance of fractional-order van der Pol oscillator. Acta Physica Sinica, 2014, 63(1): 010503. doi: 10.7498/aps.63.010503
    [12] Lu Fa-Lin, Chen Chang-Yuan, You Yuan. Approximate analytical solutions of bound states for the double ring-shaped Hulthn potential. Acta Physica Sinica, 2013, 62(20): 200301. doi: 10.7498/aps.62.200301
    [13] Wang Meng-Jiao, Zeng Yi-Cheng, Xie Chang-Qing, Zhu Gao-Feng, Tang Shu-Hong. Application of Chen's system to detecting weak harmonic signals. Acta Physica Sinica, 2012, 61(18): 180502. doi: 10.7498/aps.61.180502
    [14] Shen Yong-Jun, Yang Shao-Pu, Xing Hai-Jun. Dynamical analysis of linear single degree-of-freedom oscillator with fractional-order derivative. Acta Physica Sinica, 2012, 61(11): 110505. doi: 10.7498/aps.61.110505
    [15] Wang Meng-Jiao, Zeng Yi-Cheng, Chen Guang-Hui, He Juan. Nonresonant parametric control of Chens system. Acta Physica Sinica, 2011, 60(1): 010509. doi: 10.7498/aps.60.010509
    [16] Zhang Yan, Zheng Lian-Cun, Zhang Xin-Xin. The analytical approximate solution for Marangoni convection in a liquid layer with coupled boundary conditions. Acta Physica Sinica, 2009, 58(8): 5501-5506. doi: 10.7498/aps.58.5501
    [17] Wei Gao-Feng, Long Chao-Yun, Qin Shui-Jie, Zhang Xin. Analytical approximations to the arbitrary l-wave bound state solutions of the Klein-Gordon equation for the Manning-Rosen potential. Acta Physica Sinica, 2008, 57(11): 6730-6735. doi: 10.7498/aps.57.6730
    [18] Zheng Lian-Cun, Feng Zhi-Feng, Zhang Xin-Xin. Approximate analytical solutions for a class of nonlinear differential equations. Acta Physica Sinica, 2007, 56(3): 1549-1554. doi: 10.7498/aps.56.1549
    [19] Yang Peng-Fei. Analytical solution for a class of coupled linear second-order differential equations limited by transformations. Acta Physica Sinica, 2006, 55(11): 5579-5584. doi: 10.7498/aps.55.5579
    [20] Zheng Lian-Cun, Sheng Xiao-Yan, Zhang Xin-Xin. Analytical approximate solutions for Marangoni convection boundary layer equations. Acta Physica Sinica, 2006, 55(10): 5298-5304. doi: 10.7498/aps.55.5298
Metrics
  • Abstract views:  7306
  • PDF Downloads:  810
  • Cited By: 0
Publishing process
  • Received Date:  30 December 2011
  • Accepted Date:  05 January 2012
  • Published Online:  05 August 2012

/

返回文章
返回