-
The dynamical characteristics of super-harmonic resonance of van der Pol oscillator with fractional-order derivative are studied. First the approximate analytical solution are obtained by the averaging method, and the definitions of equivalent linear damping and equivalent linear stiffness for super-harmonic resonance are established. Effects of the fractional-order parameters on the dynamical characteristics of the system are also studied through the equivalent linear damping and equivalent linear stiffness. Moreover, the amplitude-frequency equation and the stability condition for the steady-state solution are analytically presented, and the definitions of equivalent nonlinear damping coefficient and nonlinear stability parameter are also established. Finally, the comparisons of the fractional-order and the traditional integer-order van der Pol oscillators are carried out by numerical simulation. The effects of the parameters in fractional-order derivative on the steady-state amplitude, the amplitude-frequency curves, and the system stability are also analyzed.
-
Keywords:
- fractional-order derivative /
- van der Pol oscillator /
- super-harmonic resonance /
- averaging method
[1] Shen Y J, Yang S P, Xing H J 2012 Acta Phys. Sin. 61 110505 (in Chinese) [申永军, 杨绍普, 邢海军 2012 物理学报 61 110505]
[2] Shen Y J, Yang S P, Xing H J 2012 Acta Phys. Sin. 61 150503 (in Chinese) [申永军, 杨绍普, 邢海军 2012 物理学报 61 150503]
[3] Shen Y J, Yang S P, Xing H J, Gao G S 2012 Commun. Nonlinear Sci. Numer. Simulat. 17 3092
[4] Shen Y J, Yang S P, Xing H J, Ma H X 2012 Int. J. Non-Linear Mech. 47 975
[5] Gorenflo R, Abdel R E A 2007 J. Comput. Appl. Mathe. 205 871
[6] Jumarie G 2006 Compu. Mathe. Appl. 51 1367
[7] Ishteva M, Scherer R, Boyadjiev L 2005 Mathe. Sciences Research J. 9 161
[8] Agnieszka B M, Delfim F M T 2011 Fract. Calc. Appl. Anal. 14 523
[9] Wang Z H, Du M L 2011 Shock Vib. 18 257
[10] Wang Z H, Hu H Y 2009 Science in China Series G: Phys. Mech. Astron. 39 1495 (in Chinese) [王在华, 胡海岩 2009 中国科学G辑: 物理学力学天文学 39 1495]
[11] Wang Z H, Hu H Y 2010 Sci. Chin. Phys. Mech. Astron. 53 345
[12] Shi M, Wang Z H 2013 Science Sinica: Phys. Mech. Astron. 43 467 (in Chinese) [石敏, 王在华 2013 中国科学: 物理学力学天文学 43 467]
[13] Yang J H, Zhu H 2013 Acta Phys. Sin. 62 024501 (in Chinese) [杨建华, 朱华 2013 物理学报 62 024501]
[14] Gu R C, Xu Y, Zhang H Q, Sun Z K 2011 Acta Phys. Sin. 60 110514 (in Chinese) [顾仁财, 许勇, 张慧清, 孙中奎 2011 物理学报 60 110514]
[15] Cao J X, Ding H F, Li C P 2013 Commun. Appl. Mathe. Comput. 27 61 (in Chinese) [曹建雄, 丁恒飞, 李常品 2013 应用数学与计算数学学报 27 61]
[16] Jia H Y, Chen Z Q, Xue W 2013 Acta Phys. Sin. 62 140503 (in Chinese) [贾红艳, 陈增强, 薛薇 2011 物理学报 62 140503]
[17] Chen L C, Zhu W Q 2009 J. Vib. Control. 15 1247
[18] Huang Z L, Jin X L 2009 J. Sound Vib. 319 1121
[19] Yin H, Chen N 2012 Chin. J. Comput. Mech. 29 966 (in Chinese) [银花, 陈宁 2012 计算力学学报 29 966]
[20] Zhou C Y, Li G L, Zhang C, Chi B Y, Li D M, Wang Z H 2009 J. Semicon. 30 075008
[21] Wu R C, Hei X D, Chen L P 2013 Commun. Theor. Phys. 60 189
[22] Zhou G Q, Wang X G, Chu X X 2013 Science China: Phys. Mech. Astron. 56 1487
[23] Zeng F H, Li C P 2013 Chin. J. Comput. Phys. 30 491 (in Chinese) [曾凡海, 李常品 2013 计算物理 30 491]
[24] Li C P, Zhao Z G 2009 J. Shanghai Univ. (Engl. Ed.) 13 197 (in Chinese) [李常品, 赵振刚 2009 上海大学学报(英文版) 13 197]
[25] Hu J B, Zhao L D, Xie Z G 2013 Chin. Phys. B 22 080506
[26] Rajneesh K, Vandana G 2013 Chin. Phys. B 22 074601
[27] Tian Y S 2013 Acta. Mathe. Appl. Sin. 29 661
[28] Liu D, Xu W, Xu Y 2013 Acta. Mech. Sin. 29 443
[29] Lan Y H, Li W J, Zhou Y, Luo Y P 2013 Inter. J. Auto. Comput. 10 296
[30] Kumar R, Gupta V 2013 Chin. Phys. B 22 074601
[31] Wang H Q 1992 Nonlinear Vibration (Bei Jing: Higher Education Press) p131 (in Chinese) [王海期 1992 非线性振动 (北京: 高等教育出版社) 第131页]
[32] Leung A Y T, Yang H X, Guo Z J 2012 J. Sound Vib. 331 1115
[33] Sardar T, Ray S S, Bera R K, Biswas B B 2009 Phys. Scr. 80 025003
[34] Xie F, Lin X Y 2009 Phys. Scr. 136 014033
[35] Chu Y Q, Li C Y 1996 Analysis of Nonlinear Vibrations (Beijing: Beijing Institute of Technology Press) pp828–832 (in Chinese) [褚亦清, 李翠英 1996 非线性振动分析 (北京: 北京理工大学出版社) 第828–832页]
-
[1] Shen Y J, Yang S P, Xing H J 2012 Acta Phys. Sin. 61 110505 (in Chinese) [申永军, 杨绍普, 邢海军 2012 物理学报 61 110505]
[2] Shen Y J, Yang S P, Xing H J 2012 Acta Phys. Sin. 61 150503 (in Chinese) [申永军, 杨绍普, 邢海军 2012 物理学报 61 150503]
[3] Shen Y J, Yang S P, Xing H J, Gao G S 2012 Commun. Nonlinear Sci. Numer. Simulat. 17 3092
[4] Shen Y J, Yang S P, Xing H J, Ma H X 2012 Int. J. Non-Linear Mech. 47 975
[5] Gorenflo R, Abdel R E A 2007 J. Comput. Appl. Mathe. 205 871
[6] Jumarie G 2006 Compu. Mathe. Appl. 51 1367
[7] Ishteva M, Scherer R, Boyadjiev L 2005 Mathe. Sciences Research J. 9 161
[8] Agnieszka B M, Delfim F M T 2011 Fract. Calc. Appl. Anal. 14 523
[9] Wang Z H, Du M L 2011 Shock Vib. 18 257
[10] Wang Z H, Hu H Y 2009 Science in China Series G: Phys. Mech. Astron. 39 1495 (in Chinese) [王在华, 胡海岩 2009 中国科学G辑: 物理学力学天文学 39 1495]
[11] Wang Z H, Hu H Y 2010 Sci. Chin. Phys. Mech. Astron. 53 345
[12] Shi M, Wang Z H 2013 Science Sinica: Phys. Mech. Astron. 43 467 (in Chinese) [石敏, 王在华 2013 中国科学: 物理学力学天文学 43 467]
[13] Yang J H, Zhu H 2013 Acta Phys. Sin. 62 024501 (in Chinese) [杨建华, 朱华 2013 物理学报 62 024501]
[14] Gu R C, Xu Y, Zhang H Q, Sun Z K 2011 Acta Phys. Sin. 60 110514 (in Chinese) [顾仁财, 许勇, 张慧清, 孙中奎 2011 物理学报 60 110514]
[15] Cao J X, Ding H F, Li C P 2013 Commun. Appl. Mathe. Comput. 27 61 (in Chinese) [曹建雄, 丁恒飞, 李常品 2013 应用数学与计算数学学报 27 61]
[16] Jia H Y, Chen Z Q, Xue W 2013 Acta Phys. Sin. 62 140503 (in Chinese) [贾红艳, 陈增强, 薛薇 2011 物理学报 62 140503]
[17] Chen L C, Zhu W Q 2009 J. Vib. Control. 15 1247
[18] Huang Z L, Jin X L 2009 J. Sound Vib. 319 1121
[19] Yin H, Chen N 2012 Chin. J. Comput. Mech. 29 966 (in Chinese) [银花, 陈宁 2012 计算力学学报 29 966]
[20] Zhou C Y, Li G L, Zhang C, Chi B Y, Li D M, Wang Z H 2009 J. Semicon. 30 075008
[21] Wu R C, Hei X D, Chen L P 2013 Commun. Theor. Phys. 60 189
[22] Zhou G Q, Wang X G, Chu X X 2013 Science China: Phys. Mech. Astron. 56 1487
[23] Zeng F H, Li C P 2013 Chin. J. Comput. Phys. 30 491 (in Chinese) [曾凡海, 李常品 2013 计算物理 30 491]
[24] Li C P, Zhao Z G 2009 J. Shanghai Univ. (Engl. Ed.) 13 197 (in Chinese) [李常品, 赵振刚 2009 上海大学学报(英文版) 13 197]
[25] Hu J B, Zhao L D, Xie Z G 2013 Chin. Phys. B 22 080506
[26] Rajneesh K, Vandana G 2013 Chin. Phys. B 22 074601
[27] Tian Y S 2013 Acta. Mathe. Appl. Sin. 29 661
[28] Liu D, Xu W, Xu Y 2013 Acta. Mech. Sin. 29 443
[29] Lan Y H, Li W J, Zhou Y, Luo Y P 2013 Inter. J. Auto. Comput. 10 296
[30] Kumar R, Gupta V 2013 Chin. Phys. B 22 074601
[31] Wang H Q 1992 Nonlinear Vibration (Bei Jing: Higher Education Press) p131 (in Chinese) [王海期 1992 非线性振动 (北京: 高等教育出版社) 第131页]
[32] Leung A Y T, Yang H X, Guo Z J 2012 J. Sound Vib. 331 1115
[33] Sardar T, Ray S S, Bera R K, Biswas B B 2009 Phys. Scr. 80 025003
[34] Xie F, Lin X Y 2009 Phys. Scr. 136 014033
[35] Chu Y Q, Li C Y 1996 Analysis of Nonlinear Vibrations (Beijing: Beijing Institute of Technology Press) pp828–832 (in Chinese) [褚亦清, 李翠英 1996 非线性振动分析 (北京: 北京理工大学出版社) 第828–832页]
Catalog
Metrics
- Abstract views: 7563
- PDF Downloads: 858
- Cited By: 0