-
Memristor, as a fundamental nonlinear circuit element, is very suitable for realizing new nonlinear circuits that are able to exhibit complex dynamical behaviors. A modified state-controlled cellular nonlinear network (SC-CNN) cell containing memristors, the output nonlinear function of which is implemented with the intrinsic nonlinearity of memristor, is presented in this paper. By using appropriate connection of four modified SC-CNN cells, a SC-CNN based memristive chaotic circuit is developed. In particular, an imitative memristive circuit is developed to experimentally investigate its dynamical behaviors. The resemblance of experimental results with those of numerical simulations shows that the memristive chaotic circuit can be efficiently implemented in terms of SC-CNN scheme.
-
Keywords:
- memristor /
- piecewise-linear /
- state-controlled cellular nonlinear networks /
- chaos
[1] Strukov D B, Snider G S, Stewart G R, Williams R S 2008 Nature 453 80
[2] Chua L O 1971 IEEE Trans. Circuit Theory 18 507
[3] Chua L O, Kang S M 1976 Proc. IEEE 64 209
[4] Shin S, Kim K, Kang S M 2012 Electronics Letters 48 78
[5] Shin S, Kim K, Kang, S M 2011 IEEE Trans. on Nanotechnology 10 266
[6] Itoh M, Chua L O 2008 Int. J. Bifurc. Chaos 18 3183
[7] Muthuswamy B, Kokate P P 2009 IETE Techn. Rev. 26 415
[8] Li Z J, Zeng Y C 2013 Chin. Phys. B 22 040502
[9] EI-Sayed A M A, Elsaid A, Nour H M, Elsonbaty 2013 Commun Nonlinear Sci. Numer Simulat. 18 148
[10] Bao B C, Liu Z, Xu J P 2010 Acta Phys. Sin. 59 3785 (in Chinese) [包伯成, 刘中, 许建平 2010 物理学报 59 3785]
[11] Liu Z, Bao B C, Xu J P 2010 Chin. Phys. B 19 030510
[12] Bao B C, Liu Z, Xu J P 2010 Chin. Phys. Lett. 27 070504
[13] Muthuswamy B, Chua L O 2010 Int. J. Bifurc. Chaos 20 1567
[14] Muthuswamy B 2010 Int. J. Bifurc. Chaos 20 1335
[15] Chua, L O, Yang L 1998 IEEE Trans. Circuits Syst. 35 1257
[16] Gunay E, Alci M 2005 Int. J. Bifurc. Chaos 15 4013
[17] Arena P, Baglio S, Fortuna L, Manganaro G 1995 IEEE Trans. Circuits Syst. I. 42 123
[18] Swathy P S, Thamilmaran K 2013 Nonlinear Dyn. 71 505
[19] Kilic R 2003 Circuit Syst. Sign. Process 22 475
[20] Gunay E, Alci M, Yildirim F 2005 Int. J. Bifurc. Chaos 15 2551
[21] Messias M, Nespoli C, Botta V A 2010 Int. J. Bifurc. Chaos 20 437
[22] Shin S, Kang S M 2010 IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems 29 590
[23] Biolek Z, Biolek D, Biolkova V 2009 Radioengineering 18 210
[24] Juan L, Mata-Machuca, Rafael Martí nez-Guerra, Ricardo Aguilar-Ló pez 2012 Commun Nonlinear Sci. Numer Simulat. 17 1706
-
[1] Strukov D B, Snider G S, Stewart G R, Williams R S 2008 Nature 453 80
[2] Chua L O 1971 IEEE Trans. Circuit Theory 18 507
[3] Chua L O, Kang S M 1976 Proc. IEEE 64 209
[4] Shin S, Kim K, Kang S M 2012 Electronics Letters 48 78
[5] Shin S, Kim K, Kang, S M 2011 IEEE Trans. on Nanotechnology 10 266
[6] Itoh M, Chua L O 2008 Int. J. Bifurc. Chaos 18 3183
[7] Muthuswamy B, Kokate P P 2009 IETE Techn. Rev. 26 415
[8] Li Z J, Zeng Y C 2013 Chin. Phys. B 22 040502
[9] EI-Sayed A M A, Elsaid A, Nour H M, Elsonbaty 2013 Commun Nonlinear Sci. Numer Simulat. 18 148
[10] Bao B C, Liu Z, Xu J P 2010 Acta Phys. Sin. 59 3785 (in Chinese) [包伯成, 刘中, 许建平 2010 物理学报 59 3785]
[11] Liu Z, Bao B C, Xu J P 2010 Chin. Phys. B 19 030510
[12] Bao B C, Liu Z, Xu J P 2010 Chin. Phys. Lett. 27 070504
[13] Muthuswamy B, Chua L O 2010 Int. J. Bifurc. Chaos 20 1567
[14] Muthuswamy B 2010 Int. J. Bifurc. Chaos 20 1335
[15] Chua, L O, Yang L 1998 IEEE Trans. Circuits Syst. 35 1257
[16] Gunay E, Alci M 2005 Int. J. Bifurc. Chaos 15 4013
[17] Arena P, Baglio S, Fortuna L, Manganaro G 1995 IEEE Trans. Circuits Syst. I. 42 123
[18] Swathy P S, Thamilmaran K 2013 Nonlinear Dyn. 71 505
[19] Kilic R 2003 Circuit Syst. Sign. Process 22 475
[20] Gunay E, Alci M, Yildirim F 2005 Int. J. Bifurc. Chaos 15 2551
[21] Messias M, Nespoli C, Botta V A 2010 Int. J. Bifurc. Chaos 20 437
[22] Shin S, Kang S M 2010 IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems 29 590
[23] Biolek Z, Biolek D, Biolkova V 2009 Radioengineering 18 210
[24] Juan L, Mata-Machuca, Rafael Martí nez-Guerra, Ricardo Aguilar-Ló pez 2012 Commun Nonlinear Sci. Numer Simulat. 17 1706
Catalog
Metrics
- Abstract views: 8189
- PDF Downloads: 1889
- Cited By: 0