Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Two types of nanoscale nonlinear memristor models and their series-parallel circuits

Dong Zhe-Kang Duan Shu-Kai Hu Xiao-Fang Wang Li-Dan

Citation:

Two types of nanoscale nonlinear memristor models and their series-parallel circuits

Dong Zhe-Kang, Duan Shu-Kai, Hu Xiao-Fang, Wang Li-Dan
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The memristor is a novel kind of electronic device with dynamic variable resistance that is dependent on the past history of the input current or voltage. As the fourth fundamental circuit element, the memristor captures a number of unique properties that have been found to possess attractive potentials in some promising fields such as nonvolatile memory, nonlinear circuit and system, and neuromorphic system. Additionally, compared with a circuit of single memristor, series-parallel circuit of memristors possesses more abundant device characteristics which arouses increasingly extensive interest from numerous researchers. In this paper, the mathematical closed-form charge-governed and flux-governed HP memristor nonlinear models are presented with constructive procedures. In particular, these models are more realistic by taking into account the nonlinear dopant drift effect nearby the terminals and the boundary conditions, and by adding a simple and effective window function. Furthermore, based on the internal parameters and threshold of the memristor respectively, the theoretical derivation and numerical analysis of the memristor-based series-parallel connection circuits have been made comprehensively. For obtaining the characteristics of the memristor-based combinational circuits intuitively, a graphical user interface is designed based on Matlab software, which is beneficial to displaying the properties of the memristive system clearly. The results in the present paper may provide theoretical reference and reliable experimental basis for the further development of the memristor-based combinational circuits.
    • Funds: Project supported by the Program for New Century Excellent Talents in University of Ministry of Education of China (Grant No. [2013]47), the National Natural Science Foundation of China (Grant Nos. 61372139, 61101233, 60972155), the "Spring Sunshine Plan" Research Project of Ministry of Education of China (Grant No. z2011148), the Technology Foundation for Selected Overseas Chinese Scholars, Ministry of Personnel in China (Grant No. [2012]186), the University Excellent Talents Supporting Foundation of Chongqing, China (Grant No. [2011]65), the University Key Teacher Supporting Foundation of Chongqing, China (Grant No. [2011]65), and the Fundamental Research Fund for the Central Universities, China (Grant Nos. XDJK2014A009, XDJK2013B011).
    [1]

    Chua L O 1971 IEEE Trans. Circ. Syst. I 18 507

    [2]

    Tour J M, Tao H 2008 Nature 453 42

    [3]

    Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80

    [4]

    Williams R S 2008 IEEE Spectr. 45 28

    [5]

    Hu X F, Duan S K, Wang L D, Liao X F 2011 Sci. China Inf. Sci. 41 500

    [6]

    Li Y T, Long S B, Lu H B, Liu Q, Wang Q, Wang Y, Zhang S, Lian W T, Liu S, Liu L 2011 Chin. Phys. B 20 017305

    [7]

    Itoh M, Chua L O 2008 Int. J. Bifurcat. Chaos 18 3183

    [8]

    Duan S K, Hu X F, Wang L D, Li C D, Mazumder P 2012 Sci. China Inf. Sci. 42 754

    [9]

    Bao B C, Liu Z, Xu J P 2010 Chin. Phys. B 19 030510

    [10]

    Hu X F, Duan S K, Wang L D, Li C D 2011 J. Univ. Electron. Technol. China 40 642

    [11]

    Gao S Y, Duan S K, Wang L D 2012 Adv. Mater. Res. 9 204

    [12]

    Vontobel P O, Robinett W, Kuekes P J, Stewart D R, Williams R S, Straznicky J 2009 Nanotechnology 20 21

    [13]

    Jo S H, Chang T, Ebong I, Bhadviya B B, Mazumder P, Lu W 2010 Nano Lett. 10 1297

    [14]

    Borghetti J, Snider G S, Kuekes P J, Yang J J, Stewart D R, Williams R S 2010 Nature 464 873

    [15]

    McDonald N R, Pino R E, Rozwood P J, Wysocki B T 2010 The 2010 International Joint Conference on Neural Networks Barcelona, Spain, July 18-23, 2010 p1

    [16]

    Wang X Y, Andrew L F, Herbert H C I, Victor S, Qi W G 2012 Chin. Phys. B 21 108501

    [17]

    Kvatinsky S, Friedman E G, Kolodny A, Weiser U C 2012 IEEE Trans. Circ. Syst. I 60 211

    [18]

    Mahvash M, Parker A C 2010 IEEE International Midwest Symposium on Circuits and Systems Seattle, USA, August 1-4, 2010 p989

    [19]

    Fang X D, Tang Y H, Wu J J 2012 Chin. Phys. B 21 098901

    [20]

    Batas D, Fiedler H 2011 IEEE Trans. Nanotechnol. 2 250

    [21]

    Wang L D, Drakakis E, Duan S K, He P F 2012 Int. J. Bifurcat. Chaos 22 1250205

    [22]

    Wang L D, Duan S K 2012 Abstr. Appl. Anal. 2012 726927

    [23]

    Yin W H, Wang L D, Duan S K 2013 Appl. Mech. Mater. 284 2485

    [24]

    Biolek Z, Biolek D, Biolková V 2009 Radio. Eng. 18 210

    [25]

    Kim H, Sah M, Yang C, Cho S, Chua L O 2012 IEEE Trans. Circ. Syst. 59 2422

    [26]

    Adhikari S P, Yang C, Kim H, Chua L O 2012 IEEE Trans. Neural Netw. Learning Syst. 23 1426

    [27]

    Kim H, Sah M, Yang C, Roska T, Chua L O 2012 Proc. IEEE 100 2061

    [28]

    Prodromakis T, Peh B P, Papavassiliou C, Toumazou C 2011 IEEE Trans. Electron. Dev. 58 3099

  • [1]

    Chua L O 1971 IEEE Trans. Circ. Syst. I 18 507

    [2]

    Tour J M, Tao H 2008 Nature 453 42

    [3]

    Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80

    [4]

    Williams R S 2008 IEEE Spectr. 45 28

    [5]

    Hu X F, Duan S K, Wang L D, Liao X F 2011 Sci. China Inf. Sci. 41 500

    [6]

    Li Y T, Long S B, Lu H B, Liu Q, Wang Q, Wang Y, Zhang S, Lian W T, Liu S, Liu L 2011 Chin. Phys. B 20 017305

    [7]

    Itoh M, Chua L O 2008 Int. J. Bifurcat. Chaos 18 3183

    [8]

    Duan S K, Hu X F, Wang L D, Li C D, Mazumder P 2012 Sci. China Inf. Sci. 42 754

    [9]

    Bao B C, Liu Z, Xu J P 2010 Chin. Phys. B 19 030510

    [10]

    Hu X F, Duan S K, Wang L D, Li C D 2011 J. Univ. Electron. Technol. China 40 642

    [11]

    Gao S Y, Duan S K, Wang L D 2012 Adv. Mater. Res. 9 204

    [12]

    Vontobel P O, Robinett W, Kuekes P J, Stewart D R, Williams R S, Straznicky J 2009 Nanotechnology 20 21

    [13]

    Jo S H, Chang T, Ebong I, Bhadviya B B, Mazumder P, Lu W 2010 Nano Lett. 10 1297

    [14]

    Borghetti J, Snider G S, Kuekes P J, Yang J J, Stewart D R, Williams R S 2010 Nature 464 873

    [15]

    McDonald N R, Pino R E, Rozwood P J, Wysocki B T 2010 The 2010 International Joint Conference on Neural Networks Barcelona, Spain, July 18-23, 2010 p1

    [16]

    Wang X Y, Andrew L F, Herbert H C I, Victor S, Qi W G 2012 Chin. Phys. B 21 108501

    [17]

    Kvatinsky S, Friedman E G, Kolodny A, Weiser U C 2012 IEEE Trans. Circ. Syst. I 60 211

    [18]

    Mahvash M, Parker A C 2010 IEEE International Midwest Symposium on Circuits and Systems Seattle, USA, August 1-4, 2010 p989

    [19]

    Fang X D, Tang Y H, Wu J J 2012 Chin. Phys. B 21 098901

    [20]

    Batas D, Fiedler H 2011 IEEE Trans. Nanotechnol. 2 250

    [21]

    Wang L D, Drakakis E, Duan S K, He P F 2012 Int. J. Bifurcat. Chaos 22 1250205

    [22]

    Wang L D, Duan S K 2012 Abstr. Appl. Anal. 2012 726927

    [23]

    Yin W H, Wang L D, Duan S K 2013 Appl. Mech. Mater. 284 2485

    [24]

    Biolek Z, Biolek D, Biolková V 2009 Radio. Eng. 18 210

    [25]

    Kim H, Sah M, Yang C, Cho S, Chua L O 2012 IEEE Trans. Circ. Syst. 59 2422

    [26]

    Adhikari S P, Yang C, Kim H, Chua L O 2012 IEEE Trans. Neural Netw. Learning Syst. 23 1426

    [27]

    Kim H, Sah M, Yang C, Roska T, Chua L O 2012 Proc. IEEE 100 2061

    [28]

    Prodromakis T, Peh B P, Papavassiliou C, Toumazou C 2011 IEEE Trans. Electron. Dev. 58 3099

  • [1] Wu Chao-Jun, Fang Li-Yi, Yang Ning-Ning. Dynamic analysis and experiment of chaotic circuit of non-homogeneous fractional memristor with bias voltage source. Acta Physica Sinica, 2024, 73(1): 010501. doi: 10.7498/aps.73.20231211
    [2] Guo Hui-Meng, Liang Yan, Dong Yu-Jiao, Wang Guang-Yi. Simplification of Chua corsage memristor and hardware implementation of its neuron circuit. Acta Physica Sinica, 2023, 72(7): 070501. doi: 10.7498/aps.72.20222013
    [3] Xu Wei, Wang Yu-Qi, Li Yue-Feng, Gao Fei, Zhang Miao-Cheng, Lian Xiao-Juan, Wan Xiang, Xiao Jian, Tong Yi. Design of novel memristor-based neuromorphic circuit and its application in classical conditioning. Acta Physica Sinica, 2019, 68(23): 238501. doi: 10.7498/aps.68.20191023
    [4] Shao Nan,  Zhang Sheng-Bing,  Shao Shu-Yuan. Mathematical model of memristor with sensory memory. Acta Physica Sinica, 2019, 68(1): 018501. doi: 10.7498/aps.68.20181577
    [5] Shao Nan, Zhang Sheng-Bing, Shao Shu-Yuan. Analysis of memristor model with learning-experience behavior. Acta Physica Sinica, 2019, 68(19): 198502. doi: 10.7498/aps.68.20190808
    [6] Wang Wei, Zeng Yi-Cheng, Sun Rui-Ting. Research on a six-order chaotic circuit with three memristors. Acta Physica Sinica, 2017, 66(4): 040502. doi: 10.7498/aps.66.040502
    [7] Shao Nan, Zhang Sheng-Bing, Shao Shu-Yuan. Modification of memristor model with synaptic characteristics and mechanism analysis of the model's learning-experience behavior. Acta Physica Sinica, 2016, 65(12): 128503. doi: 10.7498/aps.65.128503
    [8] Ruan Jing-Ya, Sun Ke-Hui, Mou Jun. Memristor-based Lorenz hyper-chaotic system and its circuit implementation. Acta Physica Sinica, 2016, 65(19): 190502. doi: 10.7498/aps.65.190502
    [9] Meng Fan-Yi, Duan Shu-Kai, Wang Li-Dan, Hu Xiao-Fang, Dong Zhe-Kang. An improved WOx memristor model with synapse characteristic analysis. Acta Physica Sinica, 2015, 64(14): 148501. doi: 10.7498/aps.64.148501
    [10] Yu Ya-Juan, Wang Zai-Hua. A fractional-order memristor model and the fingerprint of the simple series circuits including a fractional-order memristor. Acta Physica Sinica, 2015, 64(23): 238401. doi: 10.7498/aps.64.238401
    [11] Wang Yan, Yang Jiu, Wang Li-Dan, Duan Shu-Kai. Research of coupling behavior based on series-parallel flux-controlled memristor. Acta Physica Sinica, 2015, 64(23): 237303. doi: 10.7498/aps.64.237303
    [12] Liu Dong-Qing, Cheng Hai-Feng, Zhu Xuan, Wang Nan-Nan, Zhang Chao-Yang. Research progress of memristors and memristive mechanism. Acta Physica Sinica, 2014, 63(18): 187301. doi: 10.7498/aps.63.187301
    [13] Hong Qing-Hui, Li Zhi-Jun, Zeng Jin-Fang, Zeng Yi-Cheng. Design and simulation of a memristor chaotic circuit based on current feedback op amp. Acta Physica Sinica, 2014, 63(18): 180502. doi: 10.7498/aps.63.180502
    [14] Yang Fang-Yan, Leng Jia-Li, Li Qing-Du. The 4-dimensional hyperchaotic memristive circuit based on Chua’s circuit. Acta Physica Sinica, 2014, 63(8): 080502. doi: 10.7498/aps.63.080502
    [15] Li Zhi-Jun, Zeng Yi-Cheng, Li Zhi-Bin. Memristive chaotic circuit based on modified SC-CNNs. Acta Physica Sinica, 2014, 63(1): 010502. doi: 10.7498/aps.63.010502
    [16] Li Zhi-Wei, Liu Hai-Jun, Xu Xin. Effects of pristine state on conductive percolation model of memristor. Acta Physica Sinica, 2013, 62(9): 096401. doi: 10.7498/aps.62.096401
    [17] Liang Yan, Yu Dong-Sheng, Chen Hao. A novel meminductor emulator based on analog circuits. Acta Physica Sinica, 2013, 62(15): 158501. doi: 10.7498/aps.62.158501
    [18] Jia Lin-Nan, Huang An-Ping, Zheng Xiao-Hu, Xiao Zhi-Song, Wang Mei. Progress of memristor modulated by interfacial effect. Acta Physica Sinica, 2012, 61(21): 217306. doi: 10.7498/aps.61.217306
    [19] Bao Bo-Cheng, Hu Wen, Xu Jian-Ping, Liu Zhong, Zou Ling. Analysis and implementation of memristor chaotic circuit. Acta Physica Sinica, 2011, 60(12): 120502. doi: 10.7498/aps.60.120502
    [20] ZHANG JIA-SHU, XIAO XIAN-CI. PREDICTION OF CHAOTIC TIME SERIES BY USING ADAPTIVE HIGHER-ORDER NONLINEAR FOUR IER INFRARED FILTER. Acta Physica Sinica, 2000, 49(7): 1221-1227. doi: 10.7498/aps.49.1221
Metrics
  • Abstract views:  5934
  • PDF Downloads:  812
  • Cited By: 0
Publishing process
  • Received Date:  04 January 2014
  • Accepted Date:  06 March 2014
  • Published Online:  05 June 2014

/

返回文章
返回