搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于串并联磁控忆阻器的耦合行为研究

王颜 杨玖 王丽丹 段书凯

引用本文:
Citation:

基于串并联磁控忆阻器的耦合行为研究

王颜, 杨玖, 王丽丹, 段书凯

Research of coupling behavior based on series-parallel flux-controlled memristor

Wang Yan, Yang Jiu, Wang Li-Dan, Duan Shu-Kai
PDF
导出引用
  • 忆阻器是纳米级器件, 其功耗低, 集成度高, 有着巨大的应用潜能. 单个器件具有丰富的电学性质, 其串并联电路更展现了丰富的动力学行为. 然而, 忆阻器在高密度集成的环境下, 其耦合效应不可忽视. 因此, 本文首先基于磁控忆阻器推导了耦合忆阻器的数学模型. 其次, 在考虑不同极性连接和耦合强度的前提下, 讨论两个磁控忆阻器串并联的耦合情况, 进行了详细的理论分析, 并通过数值仿真探索了耦合效应对忆阻系统的影响. 同时, 设计了基于Matlab的图形用户界面, 直观地展示了不同参数下的耦合特性曲线. 进一步, 本文展示了有无耦合情况下, 初始阻值对忆阻器正常工作范围的影响. 最后, 构建耦合忆阻器的Pspice仿真器, 从电路的角度再次验证了忆阻器间的耦合效应. 实验结果表明: 同极性耦合增强了阻值的改变, 相反极性的耦合减缓了阻值的改变. 这些动力学特性可以很好地应用于忆阻网络中, 也为全面考虑忆阻系统电路的设计提供了强大的理论基础.
    Memristor is a nanoscale element with low power consumption and high integration, having great potential in applications. A single memristor has rich electrical properties, and its series-parallel circuit exhibits more abundant dynamic behaviors. However, memristors' coupled effects cannot be ignored in high-density integrated environment. Therefore, this paper first deduces the mathematical model of coupled memristor in detail based on the coupled flux controlled memristors. Second, considering the different polarity connection and coupling strength, we discuss the coupled condition of two flux-controlled memristors in series and parallel connections. Then the detailed theoretical analysis is illustrated, and the variation of memristance in terms of voltage, time and flux as well as the relations between voltage and currents are examined via numerical simulations to further explore the influence of coupled effects on the memristive system. At the same time, a graphical user interface of series-parallel coupled circuit based on Matlab is designed. Through this interface, we can adjust the initial value of memristor and coupling coefficient, select different connection modes, obtain corresponding connection diagram and output waveform which intuitively show the dynamic behavior of different parameters directly and provide experimental reference for further study of the circuit design. Furthermore, this paper shows the influence of initial value on the normal working range of memristors in the presence of coupling. From the table 1 it can be easily obtained that when the memristors are connected in the same direction, the range of memristance without coupling is greater than that with coupling. And the situation is opposite when the memristors are connected in different directions. Finally, the hysteresis curve with different coupling coefficients and the change of memristance with time are shown via building the Pspice simulator of coupled memristors, so the coupling effects of memristor is confirmed by circuit simulations. Experimental results reflect that the coupling with the same polarity enhances the change of resistance, and the coupling with different polarity with slow down it. Such dynamical properties can be well utilized in memristive networks and provide a strong theoretical basis for the comprehensive consideration of the design of memristive system.
      通信作者: 王丽丹, ldwang@swu.edu.cn
    • 基金项目: 教育部新世纪优秀人才支持计划(批准号: 教技函[2013] 47号)、 国家自然科学基金(批准号: 61372139, 61571372, 60972155)、 教育部春晖计划 科研项目(批准号: z2011148)、 留学人员科技活动项目(批准号: 渝人社办[2012] 186号)、重庆市高等学校优秀人才支持计划(批准号: 渝教人[2011] 65号)、重庆市高等学校青年骨干教师资助计划(批准号: 渝教人[2011]65号)和中央高校基本科研业务费(批准号: XDJK2014A009, XDJK2013B011) 资助的课题.
      Corresponding author: Wang Li-Dan, ldwang@swu.edu.cn
    • Funds: Project supported by the Program for New Century Excellent Talents in University of Ministry of Education of China (Grant No. [2013]47), the National Natural Science Foundation of China (Grant Nos. 61372139, 61571372, 60972155), the Spring Sunshine Plan Research Project of Ministry of Education of China (Grant No. z2011148), the Technology Foundation for Selected Overseas Chinese Scholars, Ministry of Personnel in China (Grant No. [2012]186), the University Excellent Talents Supporting Foundation of Chongqing, China (Grant No. [2011]65), the University Key Teacher Supporting Foundation of Chongqing, China (Grant No. [2011]65), and the Fundamental Research Fund for the Central Universities, China (Grant Nos. XDJK2014A009, XDJK2013B011).
    [1]

    Chua L O 1971 IEEE Trans. Circ. Syst.I. 18 507

    [2]

    Williams R S 2008 IEEE Spectr. 45 28

    [3]

    Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80

    [4]

    Biolek Z, Biolek D, Biolkova V 2009 Radio. Eng 18 210

    [5]

    Adhikari S P, Sah M P, Kim H, Chua L O 2013 IEEE Trans. Circ. Syst.I. 60 3008

    [6]

    Ho Y, Huang G M, Li P 2011 IEEE Trans. Circ. Syst.I. 58 724

    [7]

    Hu X F, Duan S K, Wang L D, Liao X F 2012 Sci. China Inf. Sci. 55 461

    [8]

    Duan S K, Hu X F Wang L D, Li C D, Mazumder P 2012 Sci. China Inf. Sci. 55 1446

    [9]

    Zhou J, Huang D 2012 Chin. Phys. B 21 048401

    [10]

    Bao B C, Hu F W, Liu Z, Xu J P 2014 Chin. Phys. B 23 070503

    [11]

    Chua L 2011 Appl. Phy. A 102 765

    [12]

    Jo S H, Chang T, Ebong I, Bhadviya B B, Mazumder P, Lu W 2010 Nano Lett 10 1297

    [13]

    Shin S, Kim K, Kang S M 2013 IEEE Trans. Circ. Syst.I. 60 1241

    [14]

    Wang X B, Chen Y R, Xi H W, Li H 2009 IEEE Elec. Dev. Lett. 30 294

    [15]

    Kvatinsky S, Friedman E G, Kolodny A, Weiser U C 2013 IEEE Trans. Circ. Syst.I. 60 211

    [16]

    Wang L D, Drakakis E, Duan S K, He P F 2012 Int. J. Bifurcat. Chaos 22 1250205

    [17]

    Budhathoki R K, Sah M P, Adhikari S P, Kim H, Chua L O 2013 IEEE Trans. Circ. Syst.I. 60 2688

    [18]

    Yin W H, Wang L D, Duan S K 2013 Appl. Mech. Mater. 284 2485

    [19]

    Dong Z K, Duan S K, Hu X F, Wang L D 2014 Acta Phys.Sin. 63 128502 (in Chinese)[董哲康, 段书凯, 胡小方, 王丽丹 2014 物理学报 63 128502]

    [20]

    Budhathoki R K, Sah M P D, Yang C, Kim H, Chua L O 2014 Int. J. Bifurcat. Chaos 24 1430006

    [21]

    Cai W R, Tetzlaff R 2014 2014 IEEE International Symposium on Circuits and Systems (ISCAS) Melbourne VIC, June 1259-1262, 2014

    [22]

    Yu D S, Iu H H C, Liang Y, Fernando T, Chua L O 2015 IEEE Trans. Circ. Syst.I. 62 1607

  • [1]

    Chua L O 1971 IEEE Trans. Circ. Syst.I. 18 507

    [2]

    Williams R S 2008 IEEE Spectr. 45 28

    [3]

    Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80

    [4]

    Biolek Z, Biolek D, Biolkova V 2009 Radio. Eng 18 210

    [5]

    Adhikari S P, Sah M P, Kim H, Chua L O 2013 IEEE Trans. Circ. Syst.I. 60 3008

    [6]

    Ho Y, Huang G M, Li P 2011 IEEE Trans. Circ. Syst.I. 58 724

    [7]

    Hu X F, Duan S K, Wang L D, Liao X F 2012 Sci. China Inf. Sci. 55 461

    [8]

    Duan S K, Hu X F Wang L D, Li C D, Mazumder P 2012 Sci. China Inf. Sci. 55 1446

    [9]

    Zhou J, Huang D 2012 Chin. Phys. B 21 048401

    [10]

    Bao B C, Hu F W, Liu Z, Xu J P 2014 Chin. Phys. B 23 070503

    [11]

    Chua L 2011 Appl. Phy. A 102 765

    [12]

    Jo S H, Chang T, Ebong I, Bhadviya B B, Mazumder P, Lu W 2010 Nano Lett 10 1297

    [13]

    Shin S, Kim K, Kang S M 2013 IEEE Trans. Circ. Syst.I. 60 1241

    [14]

    Wang X B, Chen Y R, Xi H W, Li H 2009 IEEE Elec. Dev. Lett. 30 294

    [15]

    Kvatinsky S, Friedman E G, Kolodny A, Weiser U C 2013 IEEE Trans. Circ. Syst.I. 60 211

    [16]

    Wang L D, Drakakis E, Duan S K, He P F 2012 Int. J. Bifurcat. Chaos 22 1250205

    [17]

    Budhathoki R K, Sah M P, Adhikari S P, Kim H, Chua L O 2013 IEEE Trans. Circ. Syst.I. 60 2688

    [18]

    Yin W H, Wang L D, Duan S K 2013 Appl. Mech. Mater. 284 2485

    [19]

    Dong Z K, Duan S K, Hu X F, Wang L D 2014 Acta Phys.Sin. 63 128502 (in Chinese)[董哲康, 段书凯, 胡小方, 王丽丹 2014 物理学报 63 128502]

    [20]

    Budhathoki R K, Sah M P D, Yang C, Kim H, Chua L O 2014 Int. J. Bifurcat. Chaos 24 1430006

    [21]

    Cai W R, Tetzlaff R 2014 2014 IEEE International Symposium on Circuits and Systems (ISCAS) Melbourne VIC, June 1259-1262, 2014

    [22]

    Yu D S, Iu H H C, Liang Y, Fernando T, Chua L O 2015 IEEE Trans. Circ. Syst.I. 62 1607

  • [1] 陈开辉, 樊贞, 董帅, 李文杰, 陈奕宏, 田国, 陈德杨, 秦明辉, 曾敏, 陆旭兵, 周国富, 高兴森, 刘俊明. 钙钛矿相界面插层对SrFeOx基忆阻器的性能提升. 物理学报, 2023, 72(9): 097301. doi: 10.7498/aps.72.20221934
    [2] 丁大为, 卢小齐, 胡永兵, 杨宗立, 王威, 张红伟. 分数阶忆阻耦合异质神经元的多稳态及硬件实现. 物理学报, 2022, 71(23): 230501. doi: 10.7498/aps.71.20221525
    [3] 何斌, 何雄, 刘国强, 朱璨, 王嘉赋, 孙志刚. SnSe2的忆阻及磁阻效应. 物理学报, 2020, 69(11): 117301. doi: 10.7498/aps.69.20200160
    [4] 罗旭, 朱海燕, 丁雅萍. 基于力磁耦合效应的铁磁材料修正磁化模型. 物理学报, 2019, 68(18): 187501. doi: 10.7498/aps.68.20190765
    [5] 吕晏旻, 闵富红. 基于现场可编程逻辑门阵列的磁控忆阻电路对称动力学行为分析. 物理学报, 2019, 68(13): 130502. doi: 10.7498/aps.68.20190453
    [6] 林毅, 刘文波, 沈骞. 五阶压控忆阻蔡氏混沌电路的双稳定性. 物理学报, 2018, 67(23): 230502. doi: 10.7498/aps.67.20181283
    [7] 王晓媛, 俞军, 王光义. 忆阻器、忆容器和忆感器的Simulink建模及其特性分析. 物理学报, 2018, 67(9): 098501. doi: 10.7498/aps.67.20172674
    [8] 许雅明, 王丽丹, 段书凯. 磁控二氧化钛忆阻混沌系统及现场可编程逻辑门阵列硬件实现. 物理学报, 2016, 65(12): 120503. doi: 10.7498/aps.65.120503
    [9] 刘东青, 程海峰, 朱玄, 王楠楠, 张朝阳. 忆阻器及其阻变机理研究进展. 物理学报, 2014, 63(18): 187301. doi: 10.7498/aps.63.187301
    [10] 董哲康, 段书凯, 胡小方, 王丽丹. 两类纳米级非线性忆阻器模型及串并联研究. 物理学报, 2014, 63(12): 128502. doi: 10.7498/aps.63.128502
    [11] 胡丰伟, 包伯成, 武花干, 王春丽. 荷控忆阻器等效电路分析模型及其电路特性研究. 物理学报, 2013, 62(21): 218401. doi: 10.7498/aps.62.218401
    [12] 洪庆辉, 曾以成, 李志军. 含磁控和荷控两种忆阻器的混沌电路设计与仿真. 物理学报, 2013, 62(23): 230502. doi: 10.7498/aps.62.230502
    [13] 李鑫, 羊梦诗, 叶志鹏, 陈亮, 徐灿, 储修祥. 甘氨酸色氨酸寡肽链的红外光谱的密度泛函研究. 物理学报, 2013, 62(15): 156103. doi: 10.7498/aps.62.156103
    [14] 梁燕, 于东升, 陈昊. 基于模拟电路的新型忆感器等效模型. 物理学报, 2013, 62(15): 158501. doi: 10.7498/aps.62.158501
    [15] 贾林楠, 黄安平, 郑晓虎, 肖志松, 王玫. 界面效应调制忆阻器研究进展. 物理学报, 2012, 61(21): 217306. doi: 10.7498/aps.61.217306
    [16] 孙中华, 王红艳, 王辉, 张志东, 张中月. 金纳米环双体尺寸和耦合效应对表面等离子体共振特性的影响. 物理学报, 2012, 61(12): 125202. doi: 10.7498/aps.61.125202
    [17] 周铁戈, 宋凤斌, 左 涛, 顾 静, 夏侯海, 胡雅婷, 赵新杰, 方 兰, 阎少林. 本征约瑟夫森结阵列的PSpice模型及混沌行为研究. 物理学报, 2007, 56(11): 6307-6314. doi: 10.7498/aps.56.6307
    [18] 胡辉勇, 张鹤鸣, 吕 懿, 戴显英, 侯 慧, 区健锋, 王 伟, 王喜嫒. SiGe HBT大信号等效电路模型. 物理学报, 2006, 55(1): 403-408. doi: 10.7498/aps.55.403
    [19] 彭 麟, 谭惠丽, 孔令江, 刘慕仁. 开放性边界条件下双车道元胞自动机交通流模型耦合效应研究. 物理学报, 2003, 52(12): 3007-3013. doi: 10.7498/aps.52.3007
    [20] 董正超. 磁多层金属系统的界面反射效应. 物理学报, 1999, 48(11): 2116-2124. doi: 10.7498/aps.48.2116
计量
  • 文章访问数:  5274
  • PDF下载量:  336
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-24
  • 修回日期:  2015-08-26
  • 刊出日期:  2015-12-05

/

返回文章
返回