Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Simplification of Chua corsage memristor and hardware implementation of its neuron circuit

Guo Hui-Meng Liang Yan Dong Yu-Jiao Wang Guang-Yi

Citation:

Simplification of Chua corsage memristor and hardware implementation of its neuron circuit

Guo Hui-Meng, Liang Yan, Dong Yu-Jiao, Wang Guang-Yi
PDF
HTML
Get Citation
  • The Chua corsage memristor (CCM) is a voltage-controlled locally-active memristor, which has complex dynamic behaviors and potential applications in the field of neuromorphic computing. According to the DC V-I plot, the CCM can be classified as two-lobe, four-lobe, and six-lobe type. By analyzing their non-volatility and local activity, it is found that they have the same locally-active region and a common stable equilibrium. The mathematical models of the three CCMs are simplified based on the mechanism of neuromorphic behavior, namely, local activity. After the model simplification, the absolute value operation disappears, but the locally-active domain remains unchanged. For the simplified CCM, its small-signal equivalent circuit at the locally-active operating point is established, which is consistent with CCMs before being simplified. Hence, the model simplification does not change the small-signal characteristics of CCMs.To further investigate the application of voltage-controlled locally-active memristor in modeling the neuromorphic behavior of neurons, the simplified CCM model is used to connect a capacitor and an inductor to construct a third-order neuron circuit. By applying theoretical analysis methods such as local activity, edge of chaos, and Lyapunov exponents, we predict the parameter domains where different neuromorphic behaviors are generated. The distribution of neuromorphic behaviors is described on a dynamic map determined by the parameters of applied voltage VD and external inductance L. When the memristor is biased in the locally-active region, the system response changes among resting state, periodic spiking oscillation, and chaotic behaviors.Finally, according to the simplified CCM mathematical model, the corresponding emulator circuit is designed by using three operational amplifiers, two multipliers, a current conveyor, and several resistors and capacitors. Based on the presented memristor emulator circuit, the hardware implementation of the neuron circuit is given. The experimental results verify the correctness and feasibility of the simplified CCM emulator circuit, and show that the simplified CCM-based neuron circuit can produce a variety of neuromorphic behaviors, including resting state, periodic spiking, chaotic state, bimodal response, periodic oscillation, all-or-nothing phenomenon, and spike clustering phenomenon. We expect that this work is helpful in further studying the mechanism of neuromorphic behaviors of the neuron circuit and its practical applications.
      Corresponding author: Liang Yan, liangyan@hdu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62171173, 61771176), and the Natural Science Foundation of Zhejiang Province, China (Grant No. LY20F010008).
    [1]

    Nawrocki R A, Voyles R M, Shaheen S E 2016 IEEE Trans. Electron Devices 63 3819Google Scholar

    [2]

    Cassidy A S, Georgiou J, Andreou A G 2013 Neural Netw. 45 4Google Scholar

    [3]

    Shrestha A, Fang H W, Mei Z D, Rider D P, Wu Q, Qiu Q R 2022 IEEE Circuits Syst. Mag. 22 6Google Scholar

    [4]

    Shen Z J, Zhao C, Yang L, Zhao C Z 2020 International SoC Design Conference (ISOCC) Yeosu, Korea (South), October 21–24, 2020 p163

    [5]

    Babacan Y, Kaçar F, Gürkan K 2016 Neurocomputing 203 86Google Scholar

    [6]

    Liu Y, Iu H H C, Qian Y H 2021 IEEE Trans. Circuits Syst. Express Briefs 68 2982Google Scholar

    [7]

    Chatterjee D, Kottantharayil A 2019 IEEE Electron Device Lett. 40 1301Google Scholar

    [8]

    Kim S, Du C, Sheridan P, Ma W, Choi S, Lu W D 2015 Nano Lett. 11 2203Google Scholar

    [9]

    Weiher M, Herzig M, Tetzlaff R, Ascoli A, Mikolajick T, Slesazeck S 2019 IEEE Trans. Circuits Syst. Regul. Pap. 66 2627Google Scholar

    [10]

    Chua L O 2013 Nanotechnology 24 383001Google Scholar

    [11]

    Kumar S, Strachan J P, Williams R S 2017 Nature 548 318Google Scholar

    [12]

    Yi W, Tsang K K, Lam S K, Bai X W, Crowell J A, Flores E A 2018 Nat. Commun. 9 4661Google Scholar

    [13]

    李国林 2017 电子电路与系统基础 (北京: 清华大学出版社) 第61页

    Li G L 2017 Foundations of Electronic Circuits and Systems (Beijing: Tsinghua University Press) p61 (in Chinese)

    [14]

    王世场, 卢振洲, 梁燕, 王光义 2022 物理学报 71 050502Google Scholar

    Wang S C, Lu Z Z, Liang Y, Wang G Y 2022 Acta Phys. Sin. 71 050502Google Scholar

    [15]

    Lu Z Z, Liang Y, Dong Y J, Wang S C 2022 Electron. Lett. 58 681Google Scholar

    [16]

    Mannan Z I, Choi H, Kim H 2016 Int. J. Bifurcation Chaos 26 1630009Google Scholar

    [17]

    Mannan Z I, Yang C, Kim H 2018 IEEE Circuits Syst. Mag. 18 14Google Scholar

    [18]

    Mannan Z I, Yang C, Adhikari S P, Kim H 2018 Complexity 2018 8405978Google Scholar

    [19]

    Mannan Z I, Adhikari S P, Kim H, Chua L O 2020 Nonlinear Dyn. 99 3169Google Scholar

    [20]

    Jin P P, Wang G Y, Liang Y, Iu H H C, Chua L O 2021 IEEE Trans. Circuits Syst. Regul. Pap. 68 4419Google Scholar

    [21]

    Dong Y J, Wang G Y, Wang Z R, Iu H H C, Chen L 2022 Int. J. Bifurcation Chaos 32 2250058Google Scholar

    [22]

    Chua L O 2011 Int. J. Bifurcation Chaos 15 3435Google Scholar

    [23]

    Chua L O, Sbitnev V, Kim H 2012 Int. J. Bifurcation Chaos 22 1250098Google Scholar

    [24]

    Ahmer M, Kidwai N R, Yusuf Yasin M 2022 Mater. Today Proc. 51 150Google Scholar

  • 图 1  CCMs的POP (a) 二翼CCM; (b) 四翼CCM; (c) 六翼CCM

    Figure 1.  POP of CCMs: (a) 2-lobe CCM; (b) 4-lobe CCM; (c) 6-lobe CCM.

    图 2  CCM的DC V-I曲线及其局部有源区的放大图 (a) 二翼CCM; (b) 四翼CCM; (c) 六翼CCM

    Figure 2.  DC V-I curves of CCM and the magnification of their locally-active region: (a) 2-lobe CCM; (b) 4-lobe CCM; (c) 6-lobe CCM.

    图 3  简化后的CCM电学特性 (a) 滞回曲线; (b) DC V-I曲线

    Figure 3.  Electrical characteristics of the simplified CCM: (a) Pinched hysteresis loops; (b) DC V-I curve.

    图 4  简化CCM的小信号等效电路

    Figure 4.  Small-signal equivalent circuit of the simplified CCM

    图 5  基于简化CCM的三阶神经元电路模型

    Figure 5.  Third-order neuron circuit based on the simplified memristor.

    图 6  李雅普诺夫指数图 (a) L = 0.5 H, C = 68 nF, 分岔参数为VD∈(–3 V, –1 V); (b) VD = –2.6 V, C = 68 nF, 分岔参数为L∈(0 H, 1 H)

    Figure 6.  Lyapunov exponents diagram: (a) L = 0.5 H, C = 68 nF, the bifurcation parameter VD∈[–3 V, –1 V]; (b) VD = –2.6 V, C = 68 nF, the bifurcation parameter L∈[0 H, 1 H].

    图 7  C = 68 nF时, 三阶电路随参数LVD变化的动力学地图

    Figure 7.  Dynamic map of the neuron circuit defined by parameters VD and L.

    图 8  基于简化CCM的神经元电路结构框图

    Figure 8.  Circuit implementation of the neuron circuit based on the simplified CCM.

    图 9  简化CCM的电学特性实测曲线 (a) 忆阻器两端施加正弦电压时vmvI的瞬时波形; (b) 滞回曲线; (c) 忆阻器两端施加三角波信号时vmvI的瞬时波形; (d) 准静态 V-I曲线

    Figure 9.  Experimentally measured the simplified CCM electrical characteristics: (a) Time-domain waveforms of vm and vI under sine excitation; (b) hysteresis curve; (c) time-domain waveforms of vm and vI under quasi-static state; (d) quasi-static V-I curve.

    图 10  实验设备图

    Figure 10.  Photo of experimental equipment.

    图 11  VD = –1.2 V时, 实验测量静息状态 (a) voutvx时域图; (b) voutvx相位图

    Figure 11.  Experimentally measured resting state at VD = –1.2 V: (a) Transient waveforms of vout and vx; (b) phase portrait on the vout-vx plane.

    图 12  实验测量周期尖峰状态 (a) VD = –2.1 V时voutvx时域图; (b) VD = –2.1 V时vout-vx相位图; (c) VD = –2.2 V时voutvx时域图; (d) VD = –2.2 V时vout-vx相位图

    Figure 12.  Experimentally measured periodic spiking phenomenon: (a) Transient waveforms of vout and vx at VD = –2.1 V; (b) phase portrait on the vout-vx plane at VD = –2.1 V; (c) transient waveforms of vout and vx at VD = –2.2 V; (d) phase portrait on the vout-vx plane at VD = –2.2 V.

    图 13  VD = –2.8 V实验测量的混沌状态 (a) voutvx时域图; (b) voutvx相位图

    Figure 13.  Experimentally measured chaos state at VD = –2.8 V: (a) Transient waveforms of vout and vx; (b) phase portrait on the vout-vx plane.

    图 14  VD = –2.87 V实验测量的双峰响应 (a) voutvx时域图; (b) voutvx相位图

    Figure 14.  Experimentally measured bimodal response at VD = –2.87 V: (a) Transient waveforms of vout and vx; (b) phase portrait on the vout-vx plane.

    图 15  VD = –2.9 V实验测量周期振荡 (a) voutvx时域波形; (b) vout-vx相位图

    Figure 15.  Experimentally measured periodic oscillation at VD = –2.9 V: (a) Transient waveforms of vout and vx; (b) phase portrait on the vout-vx plane.

    图 16  实验测量的全或无现象

    Figure 16.  Experimentally measured all-or-nothing behavior.

    图 17  实验测量的尖峰簇发现象

    Figure 17.  Experimentally measured spike clustering behavior.

    表 1  CCM与简化的CCM模型对比

    Table 1.  Comparisons of CCM and simplified CCM model.

    模型种类DC V-I图段数局部有源区间易失/非易失性绝对值符号数目
    简化CCM模型1[–3 V, –1 V]易失型0
    CCM二翼3[–3 V, –1 V]二值型2
    四翼5[–3 V, –1 V]三值型4
    六翼7[–3 V, –1 V]四值型6
    DownLoad: CSV

    表 2  硬件电路参数配置

    Table 2.  Parameter configuration of the hardware circuit.

    参数参数
    VCC+15 VVEE–15 V
    R1, R2, Rin1 kΩR3, R55 kΩ
    R6, R81 kΩR425 kΩ
    R7, R99 kΩC1150 nF
    C68 nFL500 mH
    DownLoad: CSV
  • [1]

    Nawrocki R A, Voyles R M, Shaheen S E 2016 IEEE Trans. Electron Devices 63 3819Google Scholar

    [2]

    Cassidy A S, Georgiou J, Andreou A G 2013 Neural Netw. 45 4Google Scholar

    [3]

    Shrestha A, Fang H W, Mei Z D, Rider D P, Wu Q, Qiu Q R 2022 IEEE Circuits Syst. Mag. 22 6Google Scholar

    [4]

    Shen Z J, Zhao C, Yang L, Zhao C Z 2020 International SoC Design Conference (ISOCC) Yeosu, Korea (South), October 21–24, 2020 p163

    [5]

    Babacan Y, Kaçar F, Gürkan K 2016 Neurocomputing 203 86Google Scholar

    [6]

    Liu Y, Iu H H C, Qian Y H 2021 IEEE Trans. Circuits Syst. Express Briefs 68 2982Google Scholar

    [7]

    Chatterjee D, Kottantharayil A 2019 IEEE Electron Device Lett. 40 1301Google Scholar

    [8]

    Kim S, Du C, Sheridan P, Ma W, Choi S, Lu W D 2015 Nano Lett. 11 2203Google Scholar

    [9]

    Weiher M, Herzig M, Tetzlaff R, Ascoli A, Mikolajick T, Slesazeck S 2019 IEEE Trans. Circuits Syst. Regul. Pap. 66 2627Google Scholar

    [10]

    Chua L O 2013 Nanotechnology 24 383001Google Scholar

    [11]

    Kumar S, Strachan J P, Williams R S 2017 Nature 548 318Google Scholar

    [12]

    Yi W, Tsang K K, Lam S K, Bai X W, Crowell J A, Flores E A 2018 Nat. Commun. 9 4661Google Scholar

    [13]

    李国林 2017 电子电路与系统基础 (北京: 清华大学出版社) 第61页

    Li G L 2017 Foundations of Electronic Circuits and Systems (Beijing: Tsinghua University Press) p61 (in Chinese)

    [14]

    王世场, 卢振洲, 梁燕, 王光义 2022 物理学报 71 050502Google Scholar

    Wang S C, Lu Z Z, Liang Y, Wang G Y 2022 Acta Phys. Sin. 71 050502Google Scholar

    [15]

    Lu Z Z, Liang Y, Dong Y J, Wang S C 2022 Electron. Lett. 58 681Google Scholar

    [16]

    Mannan Z I, Choi H, Kim H 2016 Int. J. Bifurcation Chaos 26 1630009Google Scholar

    [17]

    Mannan Z I, Yang C, Kim H 2018 IEEE Circuits Syst. Mag. 18 14Google Scholar

    [18]

    Mannan Z I, Yang C, Adhikari S P, Kim H 2018 Complexity 2018 8405978Google Scholar

    [19]

    Mannan Z I, Adhikari S P, Kim H, Chua L O 2020 Nonlinear Dyn. 99 3169Google Scholar

    [20]

    Jin P P, Wang G Y, Liang Y, Iu H H C, Chua L O 2021 IEEE Trans. Circuits Syst. Regul. Pap. 68 4419Google Scholar

    [21]

    Dong Y J, Wang G Y, Wang Z R, Iu H H C, Chen L 2022 Int. J. Bifurcation Chaos 32 2250058Google Scholar

    [22]

    Chua L O 2011 Int. J. Bifurcation Chaos 15 3435Google Scholar

    [23]

    Chua L O, Sbitnev V, Kim H 2012 Int. J. Bifurcation Chaos 22 1250098Google Scholar

    [24]

    Ahmer M, Kidwai N R, Yusuf Yasin M 2022 Mater. Today Proc. 51 150Google Scholar

  • [1] Wu Chao-Jun, Fang Li-Yi, Yang Ning-Ning. Dynamic analysis and experiment of chaotic circuit of non-homogeneous fractional memristor with bias voltage source. Acta Physica Sinica, 2024, 73(1): 010501. doi: 10.7498/aps.73.20231211
    [2] Gu Ya-Na, Liang Yan, Wang Guang-Yi, Xia Chen-Yang. Design of NbOx memristive neuron and its application in spiking neural networks. Acta Physica Sinica, 2022, 71(11): 110501. doi: 10.7498/aps.71.20220141
    [3] Wang Shi-Chang, Lu Zhen-Zhou, Liang Yan, Wang Guang-Yi. Neuromorphic behaviors of N-type locally-active memristor. Acta Physica Sinica, 2022, 71(5): 050502. doi: 10.7498/aps.71.20212017
    [4] Xu Wei, Wang Yu-Qi, Li Yue-Feng, Gao Fei, Zhang Miao-Cheng, Lian Xiao-Juan, Wan Xiang, Xiao Jian, Tong Yi. Design of novel memristor-based neuromorphic circuit and its application in classical conditioning. Acta Physica Sinica, 2019, 68(23): 238501. doi: 10.7498/aps.68.20191023
    [5] Shao Nan, Zhang Sheng-Bing, Shao Shu-Yuan. Analysis of memristor model with learning-experience behavior. Acta Physica Sinica, 2019, 68(19): 198502. doi: 10.7498/aps.68.20190808
    [6] Shao Nan,  Zhang Sheng-Bing,  Shao Shu-Yuan. Mathematical model of memristor with sensory memory. Acta Physica Sinica, 2019, 68(1): 018501. doi: 10.7498/aps.68.20181577
    [7] Chen Yi-Hao, Xu Wei, Wang Yu-Qi, Wan Xiang, Li Yue-Feng, Liang Ding-Kang, Lu Li-Qun, Liu Xin-Wei, Lian Xiao-Juan, Hu Er-Tao, Guo Yu-Feng, Xu Jian-Guang, Tong Yi, Xiao Jian. Fabrication of synaptic memristor based on two-dimensional material MXene and realization of both long-term and short-term plasticity. Acta Physica Sinica, 2019, 68(9): 098501. doi: 10.7498/aps.68.20182306
    [8] Yan Deng-Wei, Wang Li-Dan, Duan Shu-Kai. Memristor-based multi-scroll chaotic system and its pulse synchronization control. Acta Physica Sinica, 2018, 67(11): 110502. doi: 10.7498/aps.67.20180025
    [9] Wu Jie-Ning, Wang Li-Dan, Duan Shu-Kai. A memristor-based time-delay chaotic systems and pseudo-random sequence generator. Acta Physica Sinica, 2017, 66(3): 030502. doi: 10.7498/aps.66.030502
    [10] Wang Wei, Zeng Yi-Cheng, Sun Rui-Ting. Research on a six-order chaotic circuit with three memristors. Acta Physica Sinica, 2017, 66(4): 040502. doi: 10.7498/aps.66.040502
    [11] Xu Ya-Ming, Wang Li-Dan, Duan Shu-Kai. A memristor-based chaotic system and its field programmable gate array implementation. Acta Physica Sinica, 2016, 65(12): 120503. doi: 10.7498/aps.65.120503
    [12] Ruan Jing-Ya, Sun Ke-Hui, Mou Jun. Memristor-based Lorenz hyper-chaotic system and its circuit implementation. Acta Physica Sinica, 2016, 65(19): 190502. doi: 10.7498/aps.65.190502
    [13] Yu Ya-Juan, Wang Zai-Hua. A fractional-order memristor model and the fingerprint of the simple series circuits including a fractional-order memristor. Acta Physica Sinica, 2015, 64(23): 238401. doi: 10.7498/aps.64.238401
    [14] Liu Yu-Dong, Wang Lian-Ming. Application of memristor-based spiking neural network in image edge extraction. Acta Physica Sinica, 2014, 63(8): 080503. doi: 10.7498/aps.63.080503
    [15] Hong Qing-Hui, Li Zhi-Jun, Zeng Jin-Fang, Zeng Yi-Cheng. Design and simulation of a memristor chaotic circuit based on current feedback op amp. Acta Physica Sinica, 2014, 63(18): 180502. doi: 10.7498/aps.63.180502
    [16] Yang Fang-Yan, Leng Jia-Li, Li Qing-Du. The 4-dimensional hyperchaotic memristive circuit based on Chua’s circuit. Acta Physica Sinica, 2014, 63(8): 080502. doi: 10.7498/aps.63.080502
    [17] Li Zhi-Jun, Zeng Yi-Cheng, Li Zhi-Bin. Memristive chaotic circuit based on modified SC-CNNs. Acta Physica Sinica, 2014, 63(1): 010502. doi: 10.7498/aps.63.010502
    [18] Xu Bi-Rong. A simplest parallel chaotic system of memristor. Acta Physica Sinica, 2013, 62(19): 190506. doi: 10.7498/aps.62.190506
    [19] Bao Bo-Cheng, Hu Wen, Xu Jian-Ping, Liu Zhong, Zou Ling. Analysis and implementation of memristor chaotic circuit. Acta Physica Sinica, 2011, 60(12): 120502. doi: 10.7498/aps.60.120502
    [20] Zhang Chao-Xia, Yu Si-Min. Wireless chaotic speech communication via digital signal processor ——system design and hardware implementation. Acta Physica Sinica, 2010, 59(5): 3017-3026. doi: 10.7498/aps.59.3017
Metrics
  • Abstract views:  6480
  • PDF Downloads:  202
  • Cited By: 0
Publishing process
  • Received Date:  21 October 2022
  • Accepted Date:  15 November 2022
  • Available Online:  01 February 2023
  • Published Online:  05 April 2023

/

返回文章
返回