-
Compared with conventional computation relying on the von Neumann architecture, brain-inspired computing has shown superior strength in various cognitive tasks. It has been generally accepted that information in the brain is represented and formed by vastly interconnected synapses. So the physical implementation of electronic synaptic devices is crucial to the development of brain-based computing systems. Among a large number of electronic synaptic devices, the memristors have attracted significant attention due to its simple structure and similarities to biological synapses. In this work, we first use two-dimensional material MXene as a resistive material and fabricate an electronic synapse based on a Cu/MXene/SiO2/W memristor. By using the unique properties of MXene, the conductance of the memristor can be modulated by the accumulation or reflux of Cu2+ at the physical switching layer, which can vividly simulate the mechanism of bio-synapses. Experimental results show that the Cu/MXene/SiO2/W memristor not only achieves stable bipolar analog resistance switching but also shows excellent long-term and short-term synaptic behaviors, including paired-pulse facilitation (PPF) and long-term potential/depression. By adjusting the pulse interval, the PPF index will change accordingly. In a biological system, the short-term plasticity is considered to be the key point for performing computational functions while the long-term plasticity is believed to underpin learning and memory functions. This work indicates that Cu/MXene/SiO2/W memristor with both long-term and short-term plasticity will have great application prospects for brain-inspired intelligence in the future.
-
Keywords:
- MXene /
- memristor /
- ion diffusion /
- synaptic plasticity
[1] Chen Y H, Yu H Y, Gong J D, Ma M X, Han H, Wei H H, Xu W T 2019 Nanotechnology 30 012001Google Scholar
[2] Mead C 1990 Proc. IEEE 78 1629
[3] Zhao Y H, Jie J 2018 J. Nanosci. Nanotechnol. 18 8003Google Scholar
[4] 梁定康, 陈义豪, 徐威, 吉新村, 童祎, 吴国栋 2018 物理学报 67 237302Google Scholar
Liang D K, Chen Y H, Xu W, Ji X C, Tong Y, Wu G D 2018 Acta Phys. Sin. 67 237302Google Scholar
[5] Dmitri B S, Gregory S S, Duncan R S, Williams R S 2008 Nature 453 80Google Scholar
[6] Jeong H, Shi L P 2019 J. Phys. D: Appl. Phys. 52 023003
[7] Waser R, Dittmann R, Staikov G, Kristof S 2009 Adv. Mater. 21 2632Google Scholar
[8] 余志强, 刘敏丽, 郎建勋, 钱楷, 张昌华 2018 物理学报 67 157302Google Scholar
Yu Z Q, Liu M L, Lang J X, Qian K, Zhang C H 2018 Acta Phys. Sin. 67 157302Google Scholar
[9] Chang T, Jo S H, Lu W 2011 ACS Nano 5 7669Google Scholar
[10] Kim M K, Lee J S 2018 ACS Nano 12 1680
[11] Hirano T 2018 Cerebellum 17 756Google Scholar
[12] Wang C H, He W, Tong Y, Zhao R 2016 Sci. Rep. 6 22970Google Scholar
[13] Wang Z Q, Xu H Y, Li X H, Yu H, Liu Y C, Zhu X J 2012 Adv. Funct. Mater. 22 2759
[14] Zhang X M, Liu S, Zhao X L, Wu F C, Wu Q T, Wang W, Cao R R, Fang Y L, Lv H B, Long S B, Liu Q, Liu M 2017 IEEE Electron Dev. Lett. 38 1208Google Scholar
[15] Wang F, Ke S l, Qin C Z, Wang B, Long H, Wang K, Lu P X 2018 Opt. Laser Technol. 103 272Google Scholar
[16] Sun D, Ye D L, Liu P, Tang Y G, Guo J, Wang L Z, Wang H Y 2018 Adv. Energy Mater. 8 1702383Google Scholar
[17] Cai Z Y, Liu B L, Zou X L, Cheng H M 2018 Chem. Rev. 118 6091Google Scholar
[18] 吴全潭, 时拓, 赵晓龙, 张续猛, 伍法才, 曹荣荣, 龙世兵, 吕杭炳, 刘琦, 刘明 2017 物理学报 66 217304Google Scholar
Wu Q T, Shi T, Zhao X L, Zhang X M, Wu F C, Cao R R, Long S B, Lv H B, Liu Q, Liu M 2017 Acta Phys. Sin. 66 217304Google Scholar
[19] Liu C Y, Zhang Y X, Yang C P 2017 Sensors Mater. 30 463Google Scholar
[20] Wang M, Cai S H, Pan C, Wang C Y, Lian X J, Zhuo Y, Xu K, Cao T J, Pan X Q, Wang B G, Liang S J, Yang J J, Wang P, Miao F 2018 Nat. Electron. 1 130
[21] Voigt C A, Ghidiu M, Natu V, Barsoum M W 2018 J. Phys. Chem. C 122 23172
[22] Shahzad F, Alhabeb M, Hatter C B, Anasori B, Hong S M, Koo C M, Gogotsi Y 2016 Science 353 1137Google Scholar
[23] Wu Y T, Nie P, Wu L Y, Dou H, Zhang X G 2018 Chem. Eng. J. 334 932
[24] Jiang X T, Liu S X, Liang W Y, Luo S J, He Z L, Ge Y Q, Wang H D, Cao R, Zhang F, Wen Q, Li J Q, Bao Q L, Fan D Y, Zhang H 2018 Laser Photon. Rev. 12 1700229
[25] Zhao X L, Liu S, Niu J B, Liao L, Liu Q, Xiao X H, Lv H B, Long S B, Banerjee W, Li W Q, Si S Y, Liu M 2017 Small 13 1603948Google Scholar
[26] Zhao X L, Ma J, Xiao X H, Liu Q, Shao L, Chen D, Liu S, Niu J B, Zhang X M, Wang Y, Cao R R, Wang W, Di Z F, Lv H B, Long S B, Liu M 2018 Adv. Mater. 30 1705193
[27] Scott T, Salvatore A, Woo P, Lee Y Y, Salvati E A, Della Valle A G 2018 J. Arthroplast. 33 1120Google Scholar
[28] Tempia F, Hoxha E, Negro G, Alshammari M A, Alshammari T K, Panova-Elektronova N, Laezza F 2015 Front. Cell. Neurosci. 9 205
[29] Liu S L, Friel D D 2008 J. Physiol.-London 586 4501
[30] Yang J J, Miao F, Pickett M D, Ohlberg D A A, Stewart D R, Lau C N, Williams R S 2009 Nanotechnology 20 215201
[31] Liu D Q, Cheng H F, Zhu X, Wang G, Wang N N 2013 ACS Appl. Mater. Interfaces 5 11258
[32] Liu Q, Zhang X M, Luo Q, Zhao X L, Lv H B, Long S B, Liu M 2018 Sci. China: Phys. Mech. Astron. 61 088711
[33] Suk J W, Kitt A, Magnuson C W, Hao Y, Ahmed S, An J, Swan A K, Boldberg B B, Ruoff R S 2011 ACS Nano 5 6916Google Scholar
-
图 2 (a) 连续正向电压扫描下模拟特性I-V曲线; (b) 正向扫描电导与扫描次数的关系; (c) 连续负向电压扫描下模拟特性I-V曲线; (d) 负向扫描电导与扫描次数的关系
Figure 2. (a) Analog I-V curves under consecutive positive sweep voltage; (b) relationship between conductivity and scanning number under consecutive positive sweep voltage; (c) analog I-V curves under consecutive negative sweep voltage; (d) relationship between conductivity and scanning number under consecutive negative sweep voltage.
图 5 Cu/MXene/SiO2/W忆阻器生物响应机理 (a)正偏压下Cu2+的扩散与迁移运动; (b)负偏压下Cu2+的扩散与迁移运动; (c)撤去偏压, 电导丝的自主破灭; (d)残余电导丝与新形成的电导丝
Figure 5. Synapse-like mechanism of Cu/MXene/SiO2/W memristor: (a) Diffusion and migration of Cu2+ under positive voltage; (b) diffusion and migration of Cu2+ under negative voltage; (c) spontaneous rupture of conductive filament when the voltage is removed; (d) residual conductive filaments and newly formed conductive filaments.
-
[1] Chen Y H, Yu H Y, Gong J D, Ma M X, Han H, Wei H H, Xu W T 2019 Nanotechnology 30 012001Google Scholar
[2] Mead C 1990 Proc. IEEE 78 1629
[3] Zhao Y H, Jie J 2018 J. Nanosci. Nanotechnol. 18 8003Google Scholar
[4] 梁定康, 陈义豪, 徐威, 吉新村, 童祎, 吴国栋 2018 物理学报 67 237302Google Scholar
Liang D K, Chen Y H, Xu W, Ji X C, Tong Y, Wu G D 2018 Acta Phys. Sin. 67 237302Google Scholar
[5] Dmitri B S, Gregory S S, Duncan R S, Williams R S 2008 Nature 453 80Google Scholar
[6] Jeong H, Shi L P 2019 J. Phys. D: Appl. Phys. 52 023003
[7] Waser R, Dittmann R, Staikov G, Kristof S 2009 Adv. Mater. 21 2632Google Scholar
[8] 余志强, 刘敏丽, 郎建勋, 钱楷, 张昌华 2018 物理学报 67 157302Google Scholar
Yu Z Q, Liu M L, Lang J X, Qian K, Zhang C H 2018 Acta Phys. Sin. 67 157302Google Scholar
[9] Chang T, Jo S H, Lu W 2011 ACS Nano 5 7669Google Scholar
[10] Kim M K, Lee J S 2018 ACS Nano 12 1680
[11] Hirano T 2018 Cerebellum 17 756Google Scholar
[12] Wang C H, He W, Tong Y, Zhao R 2016 Sci. Rep. 6 22970Google Scholar
[13] Wang Z Q, Xu H Y, Li X H, Yu H, Liu Y C, Zhu X J 2012 Adv. Funct. Mater. 22 2759
[14] Zhang X M, Liu S, Zhao X L, Wu F C, Wu Q T, Wang W, Cao R R, Fang Y L, Lv H B, Long S B, Liu Q, Liu M 2017 IEEE Electron Dev. Lett. 38 1208Google Scholar
[15] Wang F, Ke S l, Qin C Z, Wang B, Long H, Wang K, Lu P X 2018 Opt. Laser Technol. 103 272Google Scholar
[16] Sun D, Ye D L, Liu P, Tang Y G, Guo J, Wang L Z, Wang H Y 2018 Adv. Energy Mater. 8 1702383Google Scholar
[17] Cai Z Y, Liu B L, Zou X L, Cheng H M 2018 Chem. Rev. 118 6091Google Scholar
[18] 吴全潭, 时拓, 赵晓龙, 张续猛, 伍法才, 曹荣荣, 龙世兵, 吕杭炳, 刘琦, 刘明 2017 物理学报 66 217304Google Scholar
Wu Q T, Shi T, Zhao X L, Zhang X M, Wu F C, Cao R R, Long S B, Lv H B, Liu Q, Liu M 2017 Acta Phys. Sin. 66 217304Google Scholar
[19] Liu C Y, Zhang Y X, Yang C P 2017 Sensors Mater. 30 463Google Scholar
[20] Wang M, Cai S H, Pan C, Wang C Y, Lian X J, Zhuo Y, Xu K, Cao T J, Pan X Q, Wang B G, Liang S J, Yang J J, Wang P, Miao F 2018 Nat. Electron. 1 130
[21] Voigt C A, Ghidiu M, Natu V, Barsoum M W 2018 J. Phys. Chem. C 122 23172
[22] Shahzad F, Alhabeb M, Hatter C B, Anasori B, Hong S M, Koo C M, Gogotsi Y 2016 Science 353 1137Google Scholar
[23] Wu Y T, Nie P, Wu L Y, Dou H, Zhang X G 2018 Chem. Eng. J. 334 932
[24] Jiang X T, Liu S X, Liang W Y, Luo S J, He Z L, Ge Y Q, Wang H D, Cao R, Zhang F, Wen Q, Li J Q, Bao Q L, Fan D Y, Zhang H 2018 Laser Photon. Rev. 12 1700229
[25] Zhao X L, Liu S, Niu J B, Liao L, Liu Q, Xiao X H, Lv H B, Long S B, Banerjee W, Li W Q, Si S Y, Liu M 2017 Small 13 1603948Google Scholar
[26] Zhao X L, Ma J, Xiao X H, Liu Q, Shao L, Chen D, Liu S, Niu J B, Zhang X M, Wang Y, Cao R R, Wang W, Di Z F, Lv H B, Long S B, Liu M 2018 Adv. Mater. 30 1705193
[27] Scott T, Salvatore A, Woo P, Lee Y Y, Salvati E A, Della Valle A G 2018 J. Arthroplast. 33 1120Google Scholar
[28] Tempia F, Hoxha E, Negro G, Alshammari M A, Alshammari T K, Panova-Elektronova N, Laezza F 2015 Front. Cell. Neurosci. 9 205
[29] Liu S L, Friel D D 2008 J. Physiol.-London 586 4501
[30] Yang J J, Miao F, Pickett M D, Ohlberg D A A, Stewart D R, Lau C N, Williams R S 2009 Nanotechnology 20 215201
[31] Liu D Q, Cheng H F, Zhu X, Wang G, Wang N N 2013 ACS Appl. Mater. Interfaces 5 11258
[32] Liu Q, Zhang X M, Luo Q, Zhao X L, Lv H B, Long S B, Liu M 2018 Sci. China: Phys. Mech. Astron. 61 088711
[33] Suk J W, Kitt A, Magnuson C W, Hao Y, Ahmed S, An J, Swan A K, Boldberg B B, Ruoff R S 2011 ACS Nano 5 6916Google Scholar
Catalog
Metrics
- Abstract views: 13109
- PDF Downloads: 308
- Cited By: 0