Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Self-driven near infrared photoelectric detector based on C14H31O3P-Ti3C2/Au Schottky junction

Du Li-Jie Chen Jing-Wen Wang Rong-Ming

Citation:

Self-driven near infrared photoelectric detector based on C14H31O3P-Ti3C2/Au Schottky junction

Du Li-Jie, Chen Jing-Wen, Wang Rong-Ming
PDF
HTML
Get Citation
  • Ti3C2Tx, as one of new two-dimensional materials MXene, has abundant surface functional groups (—OH, —F, and —O, etc.) and can exhibit semiconductor properties through further surface functionalization. In addition, it has excellent absorption capabilities for both infrared and visible light. Currently, there is limited research on applying the semiconductor properties of Ti3C2Tx to infrared photodetectors. In this study, a self-driven near-infrared photodetector based on a C14H31O3P-Ti3C2/Au Schottky junction is developed. The modified C14H31O3P-Ti3C2 two-dimensional semiconductor is prepared by a simple solution method, in which the phosphonic acid group reacts with the hydroxyl group on the Ti3C2Tx surface. The C14H31O3P-Ti3C2/Au photodetector is constructed by using a drop-coating method at room temperature. The observation of an S-shaped curve in the I-V characteristics indicates the formation of a Schottky junction between C14H31O3P-Ti3C2 nanosheets and the Au electrode. The device exhibits good detection performance in the near-infrared band (808–1342 nm), with a maximum responsivity of 0.28 A/W, a detectivity of 4.3×107 Jones and an external quantum efficiency (EQE) of 32.75% under 1064 nm infrared light illumination. The Ion/Ioff ratio is 10.4, which is about 7.3 times higher than that under 1342 nm light. The response time and the recovery time of the device are 0.9 s and 0.5 s, respectively. After 10 cycles of I-t, the photocurrent does not show any significant decay, indicating excellent repeatability and cycle stability of the device. Owing to the built-in electric field formed by the Schottky junction, photo-generated electrons and holes can quickly separate and produce photocurrent in the external circuit without the need for external voltage driving. In addition, the C14H31O3P-Ti3C2 film obtained by drop-casting on Au is composed of several layers of nanosheets that are randomly stacked, which can effectively relax the plasma momentum limitation, promote the generation of hot electrons, and contribute to the photocurrent. As the C14H31O3P-Ti3C2/Au Schottky junction photodetector possesses self-driven characteristics and simple fabrication process, it exhibits great potential applications in detecting weak light signals, such as in the fields of astronomy and biomedical science. The successful fabrication of this photodetector provides a new approach for designing and developing MXene-based near-infrared detectors, thus promoting further advancements in this field.
      Corresponding author: Wang Rong-Ming, rmwang@ustb.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Beijing, China (Grant No. 2212034) and the National Natural Science Foundation of China (Grant No. 51971025).
    [1]

    Tantum S L, Yu Y L, Collins L M 2008 IEEE Geosci. Remote Sens. Lett. 5 103Google Scholar

    [2]

    Xu H H, Liu J, Zhang J, Zhou G D, Luo N Q, Zhao N 2017 Adv. Mater. 29 1700975Google Scholar

    [3]

    Millan M S, Escofet J 2004 Opt. Lett. 29 1440Google Scholar

    [4]

    Jonsson P, Casselgren J, Thornberg B 2015 IEEE Sens. J. 15 1641Google Scholar

    [5]

    Homan K A, Souza M, Truby R, Luke G P, Green C, Vreeland E, Emelianov S 2012 ACS Nano 6 641Google Scholar

    [6]

    Zeng L H, Lin S H, Li Z J, Zhang Z X, Zhang T F, Xie C, Mak C H, Chai Y, Lau S P, Luo L B, Tsang Y H 2018 Adv. Funct. Mater. 28 1705970Google Scholar

    [7]

    Zhuo R R, Zeng L H, Yuan H Y, Wu D, Wang Y G, Shi Z F, Xu T T, Tian Y T, Li X J, Tsang Y H 2019 Nano Res. 12 183Google Scholar

    [8]

    Wang F, Wang Z X, Yin L, Cheng R Q, Wang J J, Wen Y, Shifa T A, Wang F M, Zhang Y, Zhan X Y, He J 2018 Chem. Soc. Rev. 47 6296Google Scholar

    [9]

    Liu J L, Li X, Wang H, Yuan G, Suvorova A, Gain S, Ren Y L, Lei W 2020 ACS Appl. Mater. Interfaces 12 31810Google Scholar

    [10]

    Chao J F, Xing S M, Liu Z D, Zhang X T, Zhao Y L, Zhao L H, Fan Q F 2018 Mater. Res. Bull. 98 194Google Scholar

    [11]

    Marques-Hueso J, Jones T D A, Watson D E, Ryspayeva A, Esfahani M N, Shuttleworth M P, Harris R A, Kay R W, Desmulliez M P Y 2018 Adv. Funct. Mater. 28 1704451Google Scholar

    [12]

    孙颖慧, 穆丛艳, 蒋文贵, 周亮, 王荣明 2022 物理学报 71 066801Google Scholar

    Sun Y H, Mu C Y, Jiang W G, Zhou L, Wang R M 2022 Acta Phys. Sin. 71 066801Google Scholar

    [13]

    Jiang X T, Kuklin A V, Baev A, Ge Y Q, Agren H, Zhang H, Prasad P N 2020 Phys. Rep. Rev. Sec. Phys. Lett. 848 1Google Scholar

    [14]

    Xu H, Ren A B, Wu J, Wang Z M 2020 Adv. Funct. Mater. 30 2000907Google Scholar

    [15]

    Li R Y, Zhang L B, Shi L, Wang P 2017 ACS Nano 11 3752Google Scholar

    [16]

    Fu H C, Ramalingam V, Kim H, Lin C H, Fang X S, Alshareef H N, He J H 2019 Adv. Energy Mater. 9 1900180Google Scholar

    [17]

    Li Y B, Shao H, Lin Z F, Lu J, Liu L Y, Duployer B, Persson P O A, Eklund P, Hultman L, Li M, Chen K, Zha X H, Du S Y, Rozier P, Chai Z F, Raymundo-Pinero E, Taberna P L, Simon P, Huang Q 2020 Nat. Mater. 19 894Google Scholar

    [18]

    Hantanasirisakul K, Zhao M Q, Urbankowski P, Halim J, Anasori B, Kota S, Ren C E, Barsoum M W, Gogotsi Y 2016 Adv. Electron. Mater. 2 1600050Google Scholar

    [19]

    Zhang C F J, Pinilla S, McEyoy N, Cullen C P, Anasori B, Long E, Park S H, Seral-Ascaso A, Shmeliov A, Krishnan D, Morant C, Liu X H, Duesberg G S, Gogotsi Y, Nicolosi V 2017 Chem. Mater. 29 4848Google Scholar

    [20]

    Song W D, Chen J X, Li Z L, Fang X S 2021 Adv. Mater. 33 2101059Google Scholar

    [21]

    Zhang X W, Shao J H, Yan C X, Wang X M, Wang Y F, Lu Z H, Qin R J, Huang X W, Tian J L, Zeng L H 2021 Mater. Des. 207 109850Google Scholar

    [22]

    Hu C Q, Li L, Shen G Z 2021 Chin. J. Chem. 39 2141Google Scholar

    [23]

    Khazaei M, Arai M, Sasaki T, Chung C Y, Venkataramanan N S, Estili M, Sakka Y, Kawazoe Y 2013 Adv. Funct. Mater. 23 2185Google Scholar

    [24]

    Zhang X, Zhang Z H, Zhou Z 2018 J. Energy Chem. 27 73Google Scholar

    [25]

    Yan L, Zhu J J, Wang B T, He J J, Song H Z, Chu W B, Tretiak S, Zhou L J 2022 Nano Lett. 22 5592Google Scholar

    [26]

    Zha X H, Huang Q, He J, He H M, Zhai J Y, Francisco J S, Du S Y 2016 Sci. Rep. 6 27971Google Scholar

    [27]

    Feng Q, Deng F K, Li K C, Dou M Y, Zou S, Huang F C A 2021 Colloid Surf. A-Physicochem. Eng. Asp. 625 126903Google Scholar

    [28]

    Mutin P H, Guerrero G, Vioux A 2005 J. Mater. Chem. 15 3761Google Scholar

    [29]

    Yang S, Zhang P P, Wang F X, Ricciardulli A G, Lohe M R, Blom P W M, Feng X L 2018 Angew. Chem. Int. Edit. 57 15491Google Scholar

    [30]

    Lin Z Y, Sun D F, Huang Q, Yang J, Barsoum M W, Yan X B 2015 J. Mater. Chem. A 3 14096Google Scholar

    [31]

    Anasori B, Lukatskaya M R, Gogotsi Y 2017 Nat. Rev. Mater. 2 16098Google Scholar

    [32]

    Ye H J, Shao W Z, Zhen L 2013 Colloid Surf. A-Physicochem. Eng. Asp. 427 19Google Scholar

    [33]

    Ye Y T, Yi W C, Liu W, Zhou Y, Bai H, Li J F, Xi G C 2020 Sci. China Mater. 63 794Google Scholar

    [34]

    Jimmy J, Kandasubramanian B 2020 Eur. Polym. J. 122 109367Google Scholar

    [35]

    Xu H, Chen R, Ali M, Lee H, Ko M J 2020 Adv. Funct. Mater. 30 2002739Google Scholar

    [36]

    Shuck C E, Han M K, Maleski K, Hantanasirisakul K, Kim S J, Choi J, Reil W E B, Gogotsi Y 2019 ACS Appl. Nano Mater. 2 3368Google Scholar

    [37]

    Lipatov A, Alhabeb M, Lukatskaya M R, Boson A, Gogotsi Y, Sinitskii A 2016 Adv. Electron. Mater. 2 1600255Google Scholar

    [38]

    Cho K, Pak J, Kim J K, Kang K, Kim T Y, Shin J, Choi B Y, Chung S, Lee T 2018 Adv. Mater. 30 1705540Google Scholar

    [39]

    Zeng L H, Wang M Z, Hu H, Nie B, Yu Y Q, Wu C Y, Wang L, Hu J G, Xie C, Liang F X, Luo L B 2013 ACS Appl. Mater. Interfaces 5 9362Google Scholar

    [40]

    李秀华, 张敏, 杨佳, 邢爽, 高悦, 李亚泽, 李思雨, 王崇杰 2022 物理学报 71 048501Google Scholar

    Li X H, Zhang M, Yang J, Xing S, Gao Y, Li Y Z, Li S Y, Wang C J 2022 Acta Phys. Sin. 71 048501Google Scholar

    [41]

    Yadav A, Agrawal J, Singh V 2021 IEEE Photonics Technol. Lett. 33 1065Google Scholar

    [42]

    玄鑫淼, 王加恒, 毛彦琦, 叶利娟, 张红, 李泓霖, 熊元强, 范嗣强, 孔春阳, 李万俊 2021 物理学报 70 238502Google Scholar

    Xuan X M, Wang J H, Mao Y Q, Ye L J, Zhang H, Li H L, Xiong Y Q, Fan S Q, Kong C Y, Li W J 2021 Acta Phys. Sin. 70 238502Google Scholar

    [43]

    Feng W, Wu J B, Li X L, Zheng W, Zhou X, Xiao K, Cao W W, Yang B, Idrobo J C, Basile L, Tian W Q, Tan P H, Hu P A 2015 J. Mater. Chem. C 3 7022Google Scholar

    [44]

    Sun M X, Yang P F, Xie D, Sun Y L, Xu J L, Ren T L, Zhang Y F 2019 Adv. Electron. Mater. 5 1800580Google Scholar

  • 图 1  (a) C14H31O3P改性Ti3C2Tx的过程示意图; Ti3AlC2 MAX, Ti3C2Tx, C14H31O3P-Ti3C2的XRD衍射图谱(b)及红外光谱(c)

    Figure 1.  (a) C14H31O3P modification Ti3C2Tx process schematic diagram; XRD diffraction diagram (b) and infrared spectrum (c) of Ti3AlC2 MAX, Ti3C2Tx, C14H31O3P-Ti3C2.

    图 2  Ti3C2Tx, C14H31O3P-Ti3C2的AFM表征(a), (b)和SEM表征(c), (d). C14H31O3P-Ti3C2的XPS谱 (e)宽扫描; (f) Ti 2p的高分辨率; (g) O 1s区的高分辨率; (h) P 2p区的高分辨率

    Figure 2.  AFM characteristic (a), (b) and SEM characteristics (c), (d) of Ti3C2Tx and C14H31O3P-Ti3C2. XPS spectra of C14H31O3P-Ti3C2 nanosheets: (e) Wide scan; (f) high-resolution of Ti 2p region; (g) high-resolution of O 1s region; (h) high-resolution of P 2p region.

    图 3  C14H31O3P-Ti3C2/Au肖特基结器件 (a) I-V 特性曲线; (b)在808—1342 nm波长下的开关比Ion/Ioff; (c)不同光功率密度下的光电流; (d)光响应度和比探测率; (e) I-t曲线; (f)响应时间和恢复时间

    Figure 3.  Schottky junction device of C14H31O3P-Ti3C2/Au: (a) I-V characteristic curve; (b) switching ratio Ion/Ioff at 808–1342 nm wavelength; (c) plots of photocurrent changes with different optical power densities; (d) light response and ratio detection rate; (e) I-t characteristic curve; (f) response time and recovery time.

    图 4  (a) C14H31O3P-Ti3C2/Au光电探测器示意图; (b) 肖特基结的能带示意图

    Figure 4.  (a) Schematic diagram of C14H31O3P-Ti3C2/Au photodetector; (b) schematic energy band diagram of the Schottky.

    表 1  不同光功率下的响应度、比探测率以及外量子效率

    Table 1.  Responsivity, specific detection rate, and external quantum efficiency at different light power.

    ${P/({\rm{m} }{\rm{W} }{\cdot}{\rm{c} }{\rm{m} } }^{-2})$$ R/( $10–1${\rm{A} }{\cdot}{ {\rm{W} } }^{-1}$)$ {D}^{*}/( $107$ {\rm{J}}{\rm{o}}{\rm{n}}{\rm{e}}{\rm{s}}) $$ {\rm{E}}{\rm{Q}}{\rm{E}}/{\text{%}} $
    9.22.84.332.75
    25.22.03.123.62
    44.91.82.620.44
    111.51.01.311.80
    178.30.861.410.00
    DownLoad: CSV
  • [1]

    Tantum S L, Yu Y L, Collins L M 2008 IEEE Geosci. Remote Sens. Lett. 5 103Google Scholar

    [2]

    Xu H H, Liu J, Zhang J, Zhou G D, Luo N Q, Zhao N 2017 Adv. Mater. 29 1700975Google Scholar

    [3]

    Millan M S, Escofet J 2004 Opt. Lett. 29 1440Google Scholar

    [4]

    Jonsson P, Casselgren J, Thornberg B 2015 IEEE Sens. J. 15 1641Google Scholar

    [5]

    Homan K A, Souza M, Truby R, Luke G P, Green C, Vreeland E, Emelianov S 2012 ACS Nano 6 641Google Scholar

    [6]

    Zeng L H, Lin S H, Li Z J, Zhang Z X, Zhang T F, Xie C, Mak C H, Chai Y, Lau S P, Luo L B, Tsang Y H 2018 Adv. Funct. Mater. 28 1705970Google Scholar

    [7]

    Zhuo R R, Zeng L H, Yuan H Y, Wu D, Wang Y G, Shi Z F, Xu T T, Tian Y T, Li X J, Tsang Y H 2019 Nano Res. 12 183Google Scholar

    [8]

    Wang F, Wang Z X, Yin L, Cheng R Q, Wang J J, Wen Y, Shifa T A, Wang F M, Zhang Y, Zhan X Y, He J 2018 Chem. Soc. Rev. 47 6296Google Scholar

    [9]

    Liu J L, Li X, Wang H, Yuan G, Suvorova A, Gain S, Ren Y L, Lei W 2020 ACS Appl. Mater. Interfaces 12 31810Google Scholar

    [10]

    Chao J F, Xing S M, Liu Z D, Zhang X T, Zhao Y L, Zhao L H, Fan Q F 2018 Mater. Res. Bull. 98 194Google Scholar

    [11]

    Marques-Hueso J, Jones T D A, Watson D E, Ryspayeva A, Esfahani M N, Shuttleworth M P, Harris R A, Kay R W, Desmulliez M P Y 2018 Adv. Funct. Mater. 28 1704451Google Scholar

    [12]

    孙颖慧, 穆丛艳, 蒋文贵, 周亮, 王荣明 2022 物理学报 71 066801Google Scholar

    Sun Y H, Mu C Y, Jiang W G, Zhou L, Wang R M 2022 Acta Phys. Sin. 71 066801Google Scholar

    [13]

    Jiang X T, Kuklin A V, Baev A, Ge Y Q, Agren H, Zhang H, Prasad P N 2020 Phys. Rep. Rev. Sec. Phys. Lett. 848 1Google Scholar

    [14]

    Xu H, Ren A B, Wu J, Wang Z M 2020 Adv. Funct. Mater. 30 2000907Google Scholar

    [15]

    Li R Y, Zhang L B, Shi L, Wang P 2017 ACS Nano 11 3752Google Scholar

    [16]

    Fu H C, Ramalingam V, Kim H, Lin C H, Fang X S, Alshareef H N, He J H 2019 Adv. Energy Mater. 9 1900180Google Scholar

    [17]

    Li Y B, Shao H, Lin Z F, Lu J, Liu L Y, Duployer B, Persson P O A, Eklund P, Hultman L, Li M, Chen K, Zha X H, Du S Y, Rozier P, Chai Z F, Raymundo-Pinero E, Taberna P L, Simon P, Huang Q 2020 Nat. Mater. 19 894Google Scholar

    [18]

    Hantanasirisakul K, Zhao M Q, Urbankowski P, Halim J, Anasori B, Kota S, Ren C E, Barsoum M W, Gogotsi Y 2016 Adv. Electron. Mater. 2 1600050Google Scholar

    [19]

    Zhang C F J, Pinilla S, McEyoy N, Cullen C P, Anasori B, Long E, Park S H, Seral-Ascaso A, Shmeliov A, Krishnan D, Morant C, Liu X H, Duesberg G S, Gogotsi Y, Nicolosi V 2017 Chem. Mater. 29 4848Google Scholar

    [20]

    Song W D, Chen J X, Li Z L, Fang X S 2021 Adv. Mater. 33 2101059Google Scholar

    [21]

    Zhang X W, Shao J H, Yan C X, Wang X M, Wang Y F, Lu Z H, Qin R J, Huang X W, Tian J L, Zeng L H 2021 Mater. Des. 207 109850Google Scholar

    [22]

    Hu C Q, Li L, Shen G Z 2021 Chin. J. Chem. 39 2141Google Scholar

    [23]

    Khazaei M, Arai M, Sasaki T, Chung C Y, Venkataramanan N S, Estili M, Sakka Y, Kawazoe Y 2013 Adv. Funct. Mater. 23 2185Google Scholar

    [24]

    Zhang X, Zhang Z H, Zhou Z 2018 J. Energy Chem. 27 73Google Scholar

    [25]

    Yan L, Zhu J J, Wang B T, He J J, Song H Z, Chu W B, Tretiak S, Zhou L J 2022 Nano Lett. 22 5592Google Scholar

    [26]

    Zha X H, Huang Q, He J, He H M, Zhai J Y, Francisco J S, Du S Y 2016 Sci. Rep. 6 27971Google Scholar

    [27]

    Feng Q, Deng F K, Li K C, Dou M Y, Zou S, Huang F C A 2021 Colloid Surf. A-Physicochem. Eng. Asp. 625 126903Google Scholar

    [28]

    Mutin P H, Guerrero G, Vioux A 2005 J. Mater. Chem. 15 3761Google Scholar

    [29]

    Yang S, Zhang P P, Wang F X, Ricciardulli A G, Lohe M R, Blom P W M, Feng X L 2018 Angew. Chem. Int. Edit. 57 15491Google Scholar

    [30]

    Lin Z Y, Sun D F, Huang Q, Yang J, Barsoum M W, Yan X B 2015 J. Mater. Chem. A 3 14096Google Scholar

    [31]

    Anasori B, Lukatskaya M R, Gogotsi Y 2017 Nat. Rev. Mater. 2 16098Google Scholar

    [32]

    Ye H J, Shao W Z, Zhen L 2013 Colloid Surf. A-Physicochem. Eng. Asp. 427 19Google Scholar

    [33]

    Ye Y T, Yi W C, Liu W, Zhou Y, Bai H, Li J F, Xi G C 2020 Sci. China Mater. 63 794Google Scholar

    [34]

    Jimmy J, Kandasubramanian B 2020 Eur. Polym. J. 122 109367Google Scholar

    [35]

    Xu H, Chen R, Ali M, Lee H, Ko M J 2020 Adv. Funct. Mater. 30 2002739Google Scholar

    [36]

    Shuck C E, Han M K, Maleski K, Hantanasirisakul K, Kim S J, Choi J, Reil W E B, Gogotsi Y 2019 ACS Appl. Nano Mater. 2 3368Google Scholar

    [37]

    Lipatov A, Alhabeb M, Lukatskaya M R, Boson A, Gogotsi Y, Sinitskii A 2016 Adv. Electron. Mater. 2 1600255Google Scholar

    [38]

    Cho K, Pak J, Kim J K, Kang K, Kim T Y, Shin J, Choi B Y, Chung S, Lee T 2018 Adv. Mater. 30 1705540Google Scholar

    [39]

    Zeng L H, Wang M Z, Hu H, Nie B, Yu Y Q, Wu C Y, Wang L, Hu J G, Xie C, Liang F X, Luo L B 2013 ACS Appl. Mater. Interfaces 5 9362Google Scholar

    [40]

    李秀华, 张敏, 杨佳, 邢爽, 高悦, 李亚泽, 李思雨, 王崇杰 2022 物理学报 71 048501Google Scholar

    Li X H, Zhang M, Yang J, Xing S, Gao Y, Li Y Z, Li S Y, Wang C J 2022 Acta Phys. Sin. 71 048501Google Scholar

    [41]

    Yadav A, Agrawal J, Singh V 2021 IEEE Photonics Technol. Lett. 33 1065Google Scholar

    [42]

    玄鑫淼, 王加恒, 毛彦琦, 叶利娟, 张红, 李泓霖, 熊元强, 范嗣强, 孔春阳, 李万俊 2021 物理学报 70 238502Google Scholar

    Xuan X M, Wang J H, Mao Y Q, Ye L J, Zhang H, Li H L, Xiong Y Q, Fan S Q, Kong C Y, Li W J 2021 Acta Phys. Sin. 70 238502Google Scholar

    [43]

    Feng W, Wu J B, Li X L, Zheng W, Zhou X, Xiao K, Cao W W, Yang B, Idrobo J C, Basile L, Tian W Q, Tan P H, Hu P A 2015 J. Mater. Chem. C 3 7022Google Scholar

    [44]

    Sun M X, Yang P F, Xie D, Sun Y L, Xu J L, Ren T L, Zhang Y F 2019 Adv. Electron. Mater. 5 1800580Google Scholar

  • [1] Wu Yu-Yang, Li Wei, Ren Qing-Ying, Li Jin-Ze, Xu Wei, Xu Jie. First-principles study on adsorption of gas molecules by metal Sc modified Ti2CO2. Acta Physica Sinica, 2024, 73(7): 073101. doi: 10.7498/aps.73.20231432
    [2] Xiao Yi-Yao, He Jia-Hao, Chen Nan-Kun, Wang Chao, Song Ning-Ning. Enhanced microwave absorption performance of large-sized monolayer two-dimensional Ti3C2Tx based on loaded Fe3O4 nanoparticles. Acta Physica Sinica, 2023, 72(21): 217501. doi: 10.7498/aps.72.20231200
    [3] Guo Yue, Sun Yi-Ming, Song Wei-Dong. Narrowband near-ultraviolet photodetector fabricated from porous GaN/CuZnS heterojunction. Acta Physica Sinica, 2022, 71(21): 218501. doi: 10.7498/aps.71.20220990
    [4] Han Dan, Liu Zhi-Hua, Liu Lu-Lu, Han Xiao-Mei, Liu Dong-Ming, Zhuo Kai, Sang Sheng-Bo. Preparation and gas sensing properties of a novel two-dimensional material Ti3C2Tx MXene. Acta Physica Sinica, 2022, 71(1): 010701. doi: 10.7498/aps.71.20211048
    [5] Zhao Yi-Mo, Huang Zhi-Wei, Peng Ren-Miao, Xu Peng-Peng, Wu Qiang, Mao Yi-Chen, Yu Chun-Yu, Huang Wei, Wang Jian-Yuan, Chen Song-Yan, Li Cheng. Indium tin oxid/germanium Schottky photodetectors modulated by ultra-thin dielectric intercalation. Acta Physica Sinica, 2021, 70(17): 178506. doi: 10.7498/aps.70.20210138
    [6] Bai Liang, Zhao Qi-Xu, Shen Jian-Wei, Yang Yan, Yuan Qing-Hong, Zhong Cheng, Sun Hai-Tao, Sun Zhen-Rong. Computational screening of photocathodes based on layered MXene coated Cs3Sb heterostructures. Acta Physica Sinica, 2021, 70(21): 218504. doi: 10.7498/aps.70.20210956
    [7] Liu Chao, Yang Yue-Yang, Nan Ce-Wen, Lin Yuan-Hua. Thermoelectric properties and prospects of MAX phases and derived MXene phases. Acta Physica Sinica, 2021, 70(20): 206501. doi: 10.7498/aps.70.20211050
    [8] Zhang Fu-Jian, Chen Yue, Gao Xiang, Liu Zhen, Zhang Zhong-Qiang. Uni-directional self-driving of water droplets on monolayer graphene-covered wedge-shaped copper substrate. Acta Physica Sinica, 2021, 70(20): 200202. doi: 10.7498/aps.70.20210905
    [9] Fabrication and Gas Sensing Properties of Two-Dimensional Ti3C2Tx Mxene. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211048
    [10] Tan Pu-Chuan, Zhao Chao-Chao, Fan Yu-Bo, Li Zhou. Research progress of self-powered flexible biomedical sensors. Acta Physica Sinica, 2020, 69(17): 178704. doi: 10.7498/aps.69.20201012
    [11] Hu Wei-Da, Li Qing, Chen Xiao-Shuang, Lu Wei. Recent progress on advanced infrared photodetectors. Acta Physica Sinica, 2019, 68(12): 120701. doi: 10.7498/aps.68.20190281
    [12] Zhang Hong, Zong Yi-Wu, Yang Ming-Cheng, Zhao Kun. The dynamics of self-propelled Janus microspheres near obstacles with different geometries. Acta Physica Sinica, 2019, 68(13): 134702. doi: 10.7498/aps.68.20190711
    [13] Chen Yi-Hao, Xu Wei, Wang Yu-Qi, Wan Xiang, Li Yue-Feng, Liang Ding-Kang, Lu Li-Qun, Liu Xin-Wei, Lian Xiao-Juan, Hu Er-Tao, Guo Yu-Feng, Xu Jian-Guang, Tong Yi, Xiao Jian. Fabrication of synaptic memristor based on two-dimensional material MXene and realization of both long-term and short-term plasticity. Acta Physica Sinica, 2019, 68(9): 098501. doi: 10.7498/aps.68.20182306
    [14] Liu Jie, Wang Lu, Sun Ling, Wang Wen-Qi, Wu Hai-Yan, Jiang Yang, Ma Zi-Guang, Wang Wen-Xin, Jia Hai-Qiang, Chen Hong. Anomalous light-to-electricity conversion of low dimensional semiconductor in p-n junction and interband transition quantum well infrared detector. Acta Physica Sinica, 2018, 67(12): 128101. doi: 10.7498/aps.67.20180588
    [15] Qi Jun-Jie, Xu Min-Xuan, Hu Xiao-Feng, Zhang Yue. Frabrication and properties of self-powered ultraviolet detectors based on one-demensional ZnO nanomaterials. Acta Physica Sinica, 2015, 64(17): 172901. doi: 10.7498/aps.64.172901
    [16] Cui Hai-Hang, Tan Xiao-Jun, Zhang Hong-Yan, Chen Li. Experiment and numerical study on the characteristics of self-propellant Janus microspheres near the wall. Acta Physica Sinica, 2015, 64(13): 134705. doi: 10.7498/aps.64.134705
    [17] Lou Li-Fei, Pan Qing-Biao, Wu Zhi-Hua. A flexible microstructure based on graphene for harvesting weak energy. Acta Physica Sinica, 2014, 63(15): 158501. doi: 10.7498/aps.63.158501
    [18] Wang Xin-Juan, Zhang Jin-Feng, Zhang Jin-Cheng, Hao Yue. Analysis of structure parameters and current conduction mechanisms of AlGaN/GaN Schottky contacts. Acta Physica Sinica, 2008, 57(5): 3171-3175. doi: 10.7498/aps.57.3171
    [19] Sun Zhi-Bin, Ma Hai-Qiang, Lei Ming, Yang Han-Dong, Wu Ling-An, Zhai Guang-Jie, Feng Ji. A single-photon detector in the near-infrared range. Acta Physica Sinica, 2007, 56(10): 5790-5795. doi: 10.7498/aps.56.5790
    [20] CHEN YAN-SONG. EXPERIMENTAL STUDY ON INFRARED PHOTORESPONSE OF FERROELECTRIC THIN FILM DETECTOR PbZrTiO3. Acta Physica Sinica, 1998, 47(8): 1378-1382. doi: 10.7498/aps.47.1378
Metrics
  • Abstract views:  2643
  • PDF Downloads:  150
  • Cited By: 0
Publishing process
  • Received Date:  28 March 2023
  • Accepted Date:  04 May 2023
  • Available Online:  05 May 2023
  • Published Online:  05 July 2023

/

返回文章
返回