Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Computational screening of photocathodes based on layered MXene coated Cs3Sb heterostructures

Bai Liang Zhao Qi-Xu Shen Jian-Wei Yang Yan Yuan Qing-Hong Zhong Cheng Sun Hai-Tao Sun Zhen-Rong

Citation:

Computational screening of photocathodes based on layered MXene coated Cs3Sb heterostructures

Bai Liang, Zhao Qi-Xu, Shen Jian-Wei, Yang Yan, Yuan Qing-Hong, Zhong Cheng, Sun Hai-Tao, Sun Zhen-Rong
PDF
HTML
Get Citation
  • The alkali-based semiconductor cathodes, such as Cs3Sb that possesses high quantum efficiency, low electron emittance and short spectral response time, can be considered as ideal next-generation electron sources. However, the alkali-based emitters are found to be sensitive to the oxygen gases, which causes a series of problems such as structural instability, short lifetime, and reduced electron emitting efficiency. It is known that the employing of the ultra-thin layered two-dimensional (2D) materials to protect Cs3Sb basement can promote the development of novel cathodes with excellent performances. However, there is a lack of efficient 2D materials to maintain low work-function (W ) and high quantum efficiency. Recently, the MXene materials which contain layered transitional metal carbides, nitrides and carbonitrides, have attracted great attention particularly in the fields of catalysis and energy. Notably, their flexible types of dangling bonds can lead to tunable structural and electronic properties of MXene-based materials. Here in this work, the MXene-Cs3Sb heterostructures are modeled by using home-made script and systematically investigated by using first-principle calculations based on density functional theory. Further, the effects of transitional metal element (M), M/C ratio, stacking configuration and types of dangling bonds on the calculated W of heterostructures are studied. The result indicates that the type of dangling bond shows a more pronounced effect, and the MXene-Cs3Sb heterostructures with —OCH3/—OH possess lower W than other dangling bonds. The charge density difference and band alignment analysis are further used to illustrate the underlying reason for the change of W. And it is found that interlayer charge redistribution can result in different surface dipole directions, and thus emitting electrons with varying barriers. After computational screening based on the change of W, the M2C(OH)2 (M = V, Ti, Cr) and M2C(OCH3)2 (M = Ti, Cr, Nb) can be potentially considered as ideal coating materials, and especially for V2C(OH)2-Cs3Sb (W = 1.602 eV) and Ti2C(OCH3)2-Cs3Sb (W = 1.877 eV) with significantly reduced W. Finally, we believe that this work can not only give an in-depth insight into the electronic and optical properties of Cs3Sb-MXene heterostructures, but also provide the useful criteria for the computational screening of superior cathodes. Meanwhile, we further urgently expect the cooperative efforts from an experimental perspective to demonstrate the superior performances of those screened MXene-Cs3Sb photocathodes for practical applications.
      Corresponding author: Sun Hai-Tao, htsun@phy.ecnu.edu.cn ; Sun Zhen-Rong, zrsun@phy.ecnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12034008, 11727810, 51873160).
    [1]

    Gaffney K J, Chapman H N 2007 Science 316 1444Google Scholar

    [2]

    Bilderback D H, Brock J D, Dale D S, Finkelstein K D, Pfeifer M A, Gruner S M 2010 New J. Phys. 12 035011Google Scholar

    [3]

    Siwick B J, Dwyer J R, Jordan R E, Miller R J D 2003 Science 302 1382Google Scholar

    [4]

    Li R K, Musumeci P 2014 Phys. Rev. Appl. 2 024001Google Scholar

    [5]

    Dandey V P, Budell W C, Wei H, Bobe D, Maruthi K, Kopylov M, Eng E T, Kahn P A, Hinshaw J E, Kundu N, Nimigean C M, Fan C, Sukomon N, Darst S A, Saecker R M, Chen J, Malone B, Potter C S, Carragher B 2020 Nat. Methods 17 897Google Scholar

    [6]

    Fan X, Cao D, Kong L, Zhang X 2020 Nat. Commun. 11 3618Google Scholar

    [7]

    Michelato P 1997 Nucl. Instrum. Meth. A 393 455Google Scholar

    [8]

    Musumeci P, Giner Navarro J, Rosenzweig J B, Cultrera L, Bazarov I, Maxson J, Karkare S, Padmore H 2018 Nucl. Instrum. Meth. A 907 209Google Scholar

    [9]

    Bhide G K, Ghosh C 1977 Physics of Thin Films (Vol. 59) (Amsterdam: Elsevier) pp123−142

    [10]

    Cultrera L, Bazarov I, Bartnik A, Dunham B, Karkare S, Merluzzi R, Nichols M 2011 Appl. Phys. Lett. 99 152110Google Scholar

    [11]

    Murtaza G, Ullah M, Ullah N, Rani M, Muzammil M, Khenata R, Ramay S M, Khan U 2016 Bull. Mater. Sci. 39 1581Google Scholar

    [12]

    Dowell D H, Bazarov I, Dunham B, Harkay K, Hernandez-Garcia C, Legg R, Padmore H, Rao T, Smedley J, Wan W 2010 Nucl. Instrum. Meth. A 622 685Google Scholar

    [13]

    Wang G, Pandey R, Moody N A, Batista E R 2017 J. Phys. Chem. C 121 8399Google Scholar

    [14]

    Decker R W 1969 Advances in Electronics and Electron Physics (Vol. 28) (Amsterdam: Elsevier) pp357–365

    [15]

    Sommer A H 1973 Appl. Optics 12 90Google Scholar

    [16]

    Akram M, Bashir S, Jalil S A, ElKabbash M, Aumayr F, Ajami A, Husinsky W, Mahmood K, Rafique M S, Guo C 2019 Opt. Mater. Express 9 3183Google Scholar

    [17]

    Peng X, Wang Z, Liu Y, Manos D M, Poelker M, Stutzman M, Tang B, Zhang S, Zou J 2019 Phys. Rev. Appl. 12 064002Google Scholar

    [18]

    Buzulutskov A, Breskin A, Chechik R, Prager M, Shefer E 1997 Nucl. Instrum. Meth. A 387 176Google Scholar

    [19]

    Wang G, Yang P, Moody N A, Batista E R 2018 NPJ 2 D Mater. Appl. 2 17Google Scholar

    [20]

    Buzulutskov A, Shefer E, Breskin A, Chechik R, Prager M 1997 Nucl. Instrum. Meth. A 400 173Google Scholar

    [21]

    Kimoto T, Arai Y, Ren X 2013 Appl. Surf. Sci. 284 657Google Scholar

    [22]

    Kimoto T, Arai Y, Nagayama K 2017 Appl. Surf. Sci. 393 474Google Scholar

    [23]

    Liu F, Moody N A, Jensen K L, Pavlenko V, Narvaez Villarrubia C W, Mohite A D, Gupta G 2017 Appl. Phys. Lett. 110 041607Google Scholar

    [24]

    Yamaguchi H, Liu F, DeFazio J, Narvaez Villarrubia C W, Finkenstadt D, Shabaev A, Jensen K L, Pavlenko V, Mehl M 2017 NPJ 2D Mater. Appl. 1 12

    [25]

    Yamaguchi H, Liu F, DeFazio J, Gaowei M, Narvaez Villarrubia C W, Xie J, Sinsheimer J, Strom D, Pavlenko V, Jensen K L, Smedley J, Mohite A D, Moody N A 2018 Adv. Mater. Interfaces 5 1800249Google Scholar

    [26]

    Yamaguchi H, Liu F, DeFazio J, Gaowei M, Guo L, Alexander A, Yoon S I, Hyun C, Critchley M, Sinsheimer J, Pavlenko V, Strom D, Jensen K L, Finkenstadt D, Shin H S, Yamamoto M, Smedley J, Moody N A 2019 Phys. Status Solidi A. 216 1900501Google Scholar

    [27]

    Guo L, Yamaguchi H, Yamamoto M, Matsui F, Wang G, Liu F, Yang P, Batista E R, Moody N A, Takashima Y, Katoh M 2020 Appl. Phys. Lett. 116 251903Google Scholar

    [28]

    Liu F, Sidhik S, Hoffbauer M A, Lewis S, Neukirch A J, Pavlenko V, Tsai H, Nie W, Even J, Tretiak S, Ajayan PM, Kanatzidis M G, Crochet J J, Moody N A, Blancon J C, Mohite A D 2021 Nat. Commun. 12 673Google Scholar

    [29]

    Hans K 2017 Ph. D. Dissertation (Beilin: Mathematical Science Faculty, Institute of Physics, Humboldt University, HZB bERlinPro)

    [30]

    Haastrup S, Strange M, Pandey M, Deilmann T, Schmidt P S, Hinsche N F, Gjerding M N, Torelli D, Larsen P M, Riis-Jensen AC, Gath J, Jacobsen K W, Jørgen Mortensen J, Olsen T, Thygesen K S 2018 2D Mater. 5 042002

    [31]

    Wang G, Yang P, Batista E R 2020 Phys. Rev. Mater. 4 024001Google Scholar

    [32]

    Mounet N, Gibertini M, Schwaller P, Campi D, Merkys A, Marrazzo A, Sohier T, Castelli I E, Cepellotti A, Pizzi G, Marzari N 2018 Nat. Nanotech. 13 246Google Scholar

    [33]

    Bai L, Zhao Q, Shen J, Yang Y, Qi D, Qi Y, Yuan Q, Zhong C, Sun Z, Sun H 2020 J. Phys. Chem. C 124 26396Google Scholar

    [34]

    Champagne A, Charlier J C 2020 J. Phys. Mater. 3 032006Google Scholar

    [35]

    Verger L, Natu V, Carey M, Barsoum M W 2019 Trends Chem. 1 656Google Scholar

    [36]

    Shukla V 2020 Mater. Adv. 1 3104Google Scholar

    [37]

    Jiang X, Kuklin A V, Baev A, Ge Y, Ågren H, Zhang H, Prasad P N 2020 Phys. Rep. 848 1Google Scholar

    [38]

    Sinha A, Dhanjai, Zhao H, Huang Y, Lu X, Chen J, Jain R 2018 TrAC- Trends Anal. Chem. 105 424Google Scholar

    [39]

    陈义毫, 徐威, 王钰琪, 万相, 李岳峰, 梁定康, 陆立群, 刘鑫伟, 连晓娟, 胡二涛, 郭宇锋, 许剑光, 童袆, 肖建 2019 物理学报 68 098501Google Scholar

    Chen Y H, Xu W, Wang Y Q, Wan X, Li Y F, Liang D K, Lu L Q, Liu X W, Lian X J, Hu E T, Guo Y F, Xu J G, Tong Y, Xiao J 2019 Acta Phys. Sin. 68 098501Google Scholar

    [40]

    徐依全, 王聪 2020 物理学报 69 184216Google Scholar

    Xu Y Q, Wang C 2020 Acta Phys. Sin. 69 184216Google Scholar

    [41]

    Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, Heon M, Hultman L, Gogotsi Y, Barsoum M W 2011 Adv. Mater. 23 4248Google Scholar

    [42]

    Khazaei M, Ranjbar A, Esfarjani K, Bogdanovski D, Dronskowski R, Yunoki S 2018 Phys. Chem. Chem. Phys. 20 8579Google Scholar

    [43]

    Verger L, Xu C, Natu V, Cheng H M, Ren W, Barsoum M W 2019 Curr. Opin. Solid St. M 23 149Google Scholar

    [44]

    Lee E, Kim D J 2020 J. Electrochem. Soc. 167 037515Google Scholar

    [45]

    Champagne A, Chaix-Pluchery O, Ouisse T, Pinek D, Gélard I, Jouffret L, Barbier M, Wilhelm F, Tao Q, Lu J, Rosen J, Barsoum M W, Charlier J C 2019 Phys. Rev. Mater. 3 053609Google Scholar

    [46]

    Champagne A, Ricci F, Barbier M, Ouisse T, Magnin D, Ryelandt S, Pardoen T, Hautier G, Barsoum M W, Charlier J C 2020 Phys. Rev. Mater. 4 013604Google Scholar

    [47]

    Wang J, Ye T N, Gong Y, Wu J, Miao N, Tada T, Hosono H 2019 Nat. Commun. 10 2284Google Scholar

    [48]

    Miao N, Wang J, Gong Y, Wu J, Niu H, Wang S, Li K, Oganov A R, Tada T, Hosono H 2020 Chem. Mater. 32 6947Google Scholar

    [49]

    Naguib M, Mashtalir O, Carle J, Presser V, Lu J, Hultman L, Gogotsi Y, Barsoum M W 2012 ACS Nano 6 1322Google Scholar

    [50]

    Anasori B, Xie Y, Beidaghi M, Lu J, Hosler B C, Hultman L, Kent P R C, Gogotsi Y, Barsoum M W 2015 ACS Nano 9 9507Google Scholar

    [51]

    Yang J, Naguib M, Ghidiu M, Pan L M, Gu J, Nanda J, Halim J, Gogotsi Y, Barsoum M W 2016 J. Am. Ceram. Soc. 99 660Google Scholar

    [52]

    Urbankowski P, AnasoriB, Makaryan T, Er D, Kota S, Walsh P L, Zhao M, Shenoy V B, Barsoum M W, Gogotsi Y 2016 Nanoscale 8 11385Google Scholar

    [53]

    Soundiraraju B, George B K 2017 ACS Nano 11 8892Google Scholar

    [54]

    Zhou J, Gao S, Guo Z, Sun Z 2017 Ceram. Int. 43 11450Google Scholar

    [55]

    Pang S Y, WongY T, Yuan S, Liu Y, Tsang M-K, Yang Z, Huang H, Wong W T, Hao J 2019 J. Am. Chem. Soc. 141 9610Google Scholar

    [56]

    Li T, Yao L, Liu Q, Gu J, Luo R, Li J, Yan X, Wang W, Liu P, Chen B, Zhang W, Abbas W, Naz R, Zhang D 2018 Angew. Chem. Int. Ed. 57 6115Google Scholar

    [57]

    Li M, Lu J, Luo K, Li Y, Chang K, Chen K, Zhou J, Rosen J, Hultman L, Eklund P, Persson P O Å, Du S, Chai Z, Huang Z, Huang Q 2019 J. Am. Chem. Soc. 141 4730Google Scholar

    [58]

    Kamysbayev V, Filatov A S, Hu H, Rui X, Lagunas F, Wang D, Klie R F, Talapin D V 2020 Science 369 979Google Scholar

    [59]

    杨建辉, 张绍政, 计嘉琳, 韦世豪 2015 物理化学学报 31 369Google Scholar

    Yang J H, Zhang S Z, Ji J L, Wei S H 2015 Acta Phys-Chim. Sin. 31 369Google Scholar

    [60]

    张绍政, 刘佳, 谢艳, 陆银稷, 李林, 吕亮, 杨建辉, 韦世豪 2017 物理化学学报 33 2022Google Scholar

    Zhang S Z, Liu J, Xie Y, Lu Y J, Li L, Lv L, Yang J H, Wei S H 2017 Acta Phys-Chim. Sin. 33 2022Google Scholar

    [61]

    Khazaei M, Arai M, Sasaki T, Ranjbar A, Liang Y, Yunoki S 2015 Phys. Rev. B 92 075411Google Scholar

    [62]

    Khazaei M, Arai M, Sasaki T, Chung C Y, Venkataramanan N S, Estili M, Sakka Y, Kawazoe Y 2013 Adv. Funct. Mater. 23 2185Google Scholar

    [63]

    Zhang L, Tang C, Zhang C, Du A 2020 Nanoscale 12 21291Google Scholar

    [64]

    Hohenberg P, Kohn W 1964 Phys. Rev. 136 B864Google Scholar

    [65]

    Kohn W, Sham L J 1965 Phys. Rev. 140 A1133Google Scholar

    [66]

    Hafner J 2008 J. Comput. Chem. 29 2044Google Scholar

    [67]

    Blöchl P E 1994 Phys. Rev. B:Condens. Matter Mater. Phys 50 17953Google Scholar

    [68]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758Google Scholar

    [69]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [70]

    Ernzerhof M, Scuseria G E 1999 J. Chem. Phys. 110 5029Google Scholar

    [71]

    Grimme S, Antony J, Ehrlich S, Krieg H 2010 J. Chem. Phys. 132 154104Google Scholar

    [72]

    Bengtsson L 1999 Phys. Rev. B: Condens. Matter Mater. Phys. 59 12301Google Scholar

    [73]

    Jain A, Ong S P, Hautier G, Chen W, Richards W D, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G, Persson K A 2013 APL Mater. 1 011002Google Scholar

    [74]

    Xin Y, Yu Y X 2017 Mater. Design 130 512Google Scholar

  • 图 1  Zr2C(NH)2结构的3种构型 (a) M-top构型; (b) X-top构型; (c) Mixed构型

    Figure 1.  Three types of Zr2C(NH)2 structure: (a) M-top style; (b) X-top style; (c) Mixed style.

    图 2  M2CT2结构的3种构型(M-top构型, X-top构型, Mixed构型)相比于无悬挂键的M2C结构的相对能量差(ΔE/eV), 其中颜色越蓝, 表示相对能量越低, 对应的构型则越稳定

    Figure 2.  Relative energy difference (ΔE/eV) for the M-top, X-top and mixed configurations of M2CT2 structures with respect to those of M2C structures. The blue color represents the lowest energy and stable configuration.

    图 3  M2C/M2C-Cs3Sb结构的功函数(W, eV)随M原子序数变化图

    Figure 3.  Work-function (W, eV) of M2C and M2C-Cs3Sb structure vary with metal elements.

    图 4  Mixed型异质结示意图 (a)和(b) Model-1型和Model-2型Sc2CO2-Cs3Sb异质结; (c), (d)和(e), (f)则分别对应Ta2CS2-Cs3Sb和Zr2C(OH)2-Cs3Sb异质结. 红球, O原子; 灰球, C原子; 深紫色球, Cs原子; 浅紫色球, Sb原子; 绿球, Zr原子; 蓝球, Ta原子; 黄球, S原子; 白球, Sc/H原子; (a)中的A, B分别表示Cs3Sb基底中的Cs, Sb原子

    Figure 4.  Mixed style of heterostructures, subgraph (a) and (b) refer to the Model-1 and Model-2 style of Sc2CO2-Cs3Sb structure, subgraph (c) and (d) to Ta2CS2-Cs3Sb, subgraph (e) and (f) to Zr2C(OH)2-Cs3Sb. The red, gray, dark purple, light purple, green, blue, yellow and white balls represent O, C, Cs, Sb, Zr, Ta, S and Sc/H atoms respectively. A and B in panel (a) refer to the Cs and Sb atoms respectively, in the Cs3Sb basement.

    图 5  (a) M2CT2-Cs3Sb结构的功函数(W, eV)随过渡金属M和悬挂键T以及(b) M2CT2结构的亲和势(EA, eV)变化图

    Figure 5.  (a) Changes of work-function (W, eV) of M2CT2-Cs3Sb structure as a function of elements M and dangling bonds T (b) changes of work-function (W, eV) of M2CT2-Cs3Sb structure as a function of electron affinity (EA, eV) of M2CT2.

    图 6  V2CT2-Cs3Sb (T = —F/—OH)异质结的差分电荷密度图(a), (c)和能级矫正示意图(b), (d)

    Figure 6.  Charge density difference (a), (c) and band alignment (b), (d) of V2CT2-Cs3Sb (T = —F/—OH) structures

    表 1  Sc2CO2-Cs3Sb/Ta2CS2-Cs3Sb/Zr2C(OH)2-Cs3Sb的Model-1和Model-2型异质结的功函数和层间结合能

    Table 1.  Work-function and binding energy of Sc2CO2-Cs3Sb, Zr2C(OH)2-Cs3Sb and Ta2CS2-Cs3Sb in Model-1 and Model-2

    M2CT2 M2CT2-Cs3Sb in Model-1 M2CT2-Cs3Sb in Model-2
    W0/eVW1/eVW1/eVEb1/(meV·Å–2)W2/eVW2/eVEb2/(meV·Å–2)
    Sc2CO25.484 3.547–1.937–4.161 2.096–3.388–5.705
    Ta2CS25.3834.490–0.893–6.1225.076–0.307–5.364
    Zr2C(OH)21.7012.0640.363–1.7012.0780.377–1.778
    DownLoad: CSV

    表 2  带—OH和—OCH3悬挂键的M2CT2和M2CT2-Cs3Sb结构的功函数和层间结合能

    Table 2.  Work-function and binding energy of M2CT2 and M2CT2-Cs3Sb structures with dangling bonds of —OH and —OCH3

    —OH M2C(OH)2-Cs3Sb —OCH3 M2C(OCH3)2-Cs3Sb
    W0/eVW1/eVW1/eVEb1/(meV·Å–2)W0/eVW2/eVW2/eVEb2/(meV·Å–2)
    Sc2CT21.5491.9690.05–2.036 2.8692.0250.106–2.101
    Ti2CT21.6421.897–0.022–2.2351.5711.877–0.042–1.678
    V2CT21.7431.602–0.317–2.0651.881.9650.046–1.658
    Cr2CT21.4411.813–0.106–1.8482.0881.896–0.023–2.418
    Y2CT21.3482.0960.177–3.7142.4042.1180.199–1.696
    Zr2CT21.7002.0470.128–1.7831.2672.0030.084–1.300
    Nb2CT22.0122.1260.207–2.9411.0901.904–0.015–1.265
    Mo2CT22.1531.9740.055–1.9341.6101.9610.042–2.602
    Hf2CT22.0182.3760.457–3.4411.5821.9640.045–1.219
    Ta2CT22.5112.4920.573–2.4971.3751.9520.033–1.359
    W2CT22.9622.5990.680–0.6002.7321.9460.027–1.456
    DownLoad: CSV

    表 3  V2CT2的亲和势、V2CT2-Cs3Sb结构的功函数和结合能

    Table 3.  Electron affinity of V2CT2, work-function and binding energy of V2CT2-Cs3Sb

    V2CT2 V2CT2-Cs3Sb
    EA/eVW/eVW/eVEb/(meV·Å–2)
    V2C4.6374.5252.606–5.846
    V2CF25.5425.3733.454–7.515
    V2CO26.7876.4414.522–12.23
    V2C(OH)21.7431.602–0.317–2.065
    V2CS24.4764.6382.719–5.140
    V2CCl25.5515.0853.166–7.342
    V2C(OCH3)21.881.9650.046–1.659
    V2C(NH)22.6292.5780.659–3.062
    DownLoad: CSV
  • [1]

    Gaffney K J, Chapman H N 2007 Science 316 1444Google Scholar

    [2]

    Bilderback D H, Brock J D, Dale D S, Finkelstein K D, Pfeifer M A, Gruner S M 2010 New J. Phys. 12 035011Google Scholar

    [3]

    Siwick B J, Dwyer J R, Jordan R E, Miller R J D 2003 Science 302 1382Google Scholar

    [4]

    Li R K, Musumeci P 2014 Phys. Rev. Appl. 2 024001Google Scholar

    [5]

    Dandey V P, Budell W C, Wei H, Bobe D, Maruthi K, Kopylov M, Eng E T, Kahn P A, Hinshaw J E, Kundu N, Nimigean C M, Fan C, Sukomon N, Darst S A, Saecker R M, Chen J, Malone B, Potter C S, Carragher B 2020 Nat. Methods 17 897Google Scholar

    [6]

    Fan X, Cao D, Kong L, Zhang X 2020 Nat. Commun. 11 3618Google Scholar

    [7]

    Michelato P 1997 Nucl. Instrum. Meth. A 393 455Google Scholar

    [8]

    Musumeci P, Giner Navarro J, Rosenzweig J B, Cultrera L, Bazarov I, Maxson J, Karkare S, Padmore H 2018 Nucl. Instrum. Meth. A 907 209Google Scholar

    [9]

    Bhide G K, Ghosh C 1977 Physics of Thin Films (Vol. 59) (Amsterdam: Elsevier) pp123−142

    [10]

    Cultrera L, Bazarov I, Bartnik A, Dunham B, Karkare S, Merluzzi R, Nichols M 2011 Appl. Phys. Lett. 99 152110Google Scholar

    [11]

    Murtaza G, Ullah M, Ullah N, Rani M, Muzammil M, Khenata R, Ramay S M, Khan U 2016 Bull. Mater. Sci. 39 1581Google Scholar

    [12]

    Dowell D H, Bazarov I, Dunham B, Harkay K, Hernandez-Garcia C, Legg R, Padmore H, Rao T, Smedley J, Wan W 2010 Nucl. Instrum. Meth. A 622 685Google Scholar

    [13]

    Wang G, Pandey R, Moody N A, Batista E R 2017 J. Phys. Chem. C 121 8399Google Scholar

    [14]

    Decker R W 1969 Advances in Electronics and Electron Physics (Vol. 28) (Amsterdam: Elsevier) pp357–365

    [15]

    Sommer A H 1973 Appl. Optics 12 90Google Scholar

    [16]

    Akram M, Bashir S, Jalil S A, ElKabbash M, Aumayr F, Ajami A, Husinsky W, Mahmood K, Rafique M S, Guo C 2019 Opt. Mater. Express 9 3183Google Scholar

    [17]

    Peng X, Wang Z, Liu Y, Manos D M, Poelker M, Stutzman M, Tang B, Zhang S, Zou J 2019 Phys. Rev. Appl. 12 064002Google Scholar

    [18]

    Buzulutskov A, Breskin A, Chechik R, Prager M, Shefer E 1997 Nucl. Instrum. Meth. A 387 176Google Scholar

    [19]

    Wang G, Yang P, Moody N A, Batista E R 2018 NPJ 2 D Mater. Appl. 2 17Google Scholar

    [20]

    Buzulutskov A, Shefer E, Breskin A, Chechik R, Prager M 1997 Nucl. Instrum. Meth. A 400 173Google Scholar

    [21]

    Kimoto T, Arai Y, Ren X 2013 Appl. Surf. Sci. 284 657Google Scholar

    [22]

    Kimoto T, Arai Y, Nagayama K 2017 Appl. Surf. Sci. 393 474Google Scholar

    [23]

    Liu F, Moody N A, Jensen K L, Pavlenko V, Narvaez Villarrubia C W, Mohite A D, Gupta G 2017 Appl. Phys. Lett. 110 041607Google Scholar

    [24]

    Yamaguchi H, Liu F, DeFazio J, Narvaez Villarrubia C W, Finkenstadt D, Shabaev A, Jensen K L, Pavlenko V, Mehl M 2017 NPJ 2D Mater. Appl. 1 12

    [25]

    Yamaguchi H, Liu F, DeFazio J, Gaowei M, Narvaez Villarrubia C W, Xie J, Sinsheimer J, Strom D, Pavlenko V, Jensen K L, Smedley J, Mohite A D, Moody N A 2018 Adv. Mater. Interfaces 5 1800249Google Scholar

    [26]

    Yamaguchi H, Liu F, DeFazio J, Gaowei M, Guo L, Alexander A, Yoon S I, Hyun C, Critchley M, Sinsheimer J, Pavlenko V, Strom D, Jensen K L, Finkenstadt D, Shin H S, Yamamoto M, Smedley J, Moody N A 2019 Phys. Status Solidi A. 216 1900501Google Scholar

    [27]

    Guo L, Yamaguchi H, Yamamoto M, Matsui F, Wang G, Liu F, Yang P, Batista E R, Moody N A, Takashima Y, Katoh M 2020 Appl. Phys. Lett. 116 251903Google Scholar

    [28]

    Liu F, Sidhik S, Hoffbauer M A, Lewis S, Neukirch A J, Pavlenko V, Tsai H, Nie W, Even J, Tretiak S, Ajayan PM, Kanatzidis M G, Crochet J J, Moody N A, Blancon J C, Mohite A D 2021 Nat. Commun. 12 673Google Scholar

    [29]

    Hans K 2017 Ph. D. Dissertation (Beilin: Mathematical Science Faculty, Institute of Physics, Humboldt University, HZB bERlinPro)

    [30]

    Haastrup S, Strange M, Pandey M, Deilmann T, Schmidt P S, Hinsche N F, Gjerding M N, Torelli D, Larsen P M, Riis-Jensen AC, Gath J, Jacobsen K W, Jørgen Mortensen J, Olsen T, Thygesen K S 2018 2D Mater. 5 042002

    [31]

    Wang G, Yang P, Batista E R 2020 Phys. Rev. Mater. 4 024001Google Scholar

    [32]

    Mounet N, Gibertini M, Schwaller P, Campi D, Merkys A, Marrazzo A, Sohier T, Castelli I E, Cepellotti A, Pizzi G, Marzari N 2018 Nat. Nanotech. 13 246Google Scholar

    [33]

    Bai L, Zhao Q, Shen J, Yang Y, Qi D, Qi Y, Yuan Q, Zhong C, Sun Z, Sun H 2020 J. Phys. Chem. C 124 26396Google Scholar

    [34]

    Champagne A, Charlier J C 2020 J. Phys. Mater. 3 032006Google Scholar

    [35]

    Verger L, Natu V, Carey M, Barsoum M W 2019 Trends Chem. 1 656Google Scholar

    [36]

    Shukla V 2020 Mater. Adv. 1 3104Google Scholar

    [37]

    Jiang X, Kuklin A V, Baev A, Ge Y, Ågren H, Zhang H, Prasad P N 2020 Phys. Rep. 848 1Google Scholar

    [38]

    Sinha A, Dhanjai, Zhao H, Huang Y, Lu X, Chen J, Jain R 2018 TrAC- Trends Anal. Chem. 105 424Google Scholar

    [39]

    陈义毫, 徐威, 王钰琪, 万相, 李岳峰, 梁定康, 陆立群, 刘鑫伟, 连晓娟, 胡二涛, 郭宇锋, 许剑光, 童袆, 肖建 2019 物理学报 68 098501Google Scholar

    Chen Y H, Xu W, Wang Y Q, Wan X, Li Y F, Liang D K, Lu L Q, Liu X W, Lian X J, Hu E T, Guo Y F, Xu J G, Tong Y, Xiao J 2019 Acta Phys. Sin. 68 098501Google Scholar

    [40]

    徐依全, 王聪 2020 物理学报 69 184216Google Scholar

    Xu Y Q, Wang C 2020 Acta Phys. Sin. 69 184216Google Scholar

    [41]

    Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, Heon M, Hultman L, Gogotsi Y, Barsoum M W 2011 Adv. Mater. 23 4248Google Scholar

    [42]

    Khazaei M, Ranjbar A, Esfarjani K, Bogdanovski D, Dronskowski R, Yunoki S 2018 Phys. Chem. Chem. Phys. 20 8579Google Scholar

    [43]

    Verger L, Xu C, Natu V, Cheng H M, Ren W, Barsoum M W 2019 Curr. Opin. Solid St. M 23 149Google Scholar

    [44]

    Lee E, Kim D J 2020 J. Electrochem. Soc. 167 037515Google Scholar

    [45]

    Champagne A, Chaix-Pluchery O, Ouisse T, Pinek D, Gélard I, Jouffret L, Barbier M, Wilhelm F, Tao Q, Lu J, Rosen J, Barsoum M W, Charlier J C 2019 Phys. Rev. Mater. 3 053609Google Scholar

    [46]

    Champagne A, Ricci F, Barbier M, Ouisse T, Magnin D, Ryelandt S, Pardoen T, Hautier G, Barsoum M W, Charlier J C 2020 Phys. Rev. Mater. 4 013604Google Scholar

    [47]

    Wang J, Ye T N, Gong Y, Wu J, Miao N, Tada T, Hosono H 2019 Nat. Commun. 10 2284Google Scholar

    [48]

    Miao N, Wang J, Gong Y, Wu J, Niu H, Wang S, Li K, Oganov A R, Tada T, Hosono H 2020 Chem. Mater. 32 6947Google Scholar

    [49]

    Naguib M, Mashtalir O, Carle J, Presser V, Lu J, Hultman L, Gogotsi Y, Barsoum M W 2012 ACS Nano 6 1322Google Scholar

    [50]

    Anasori B, Xie Y, Beidaghi M, Lu J, Hosler B C, Hultman L, Kent P R C, Gogotsi Y, Barsoum M W 2015 ACS Nano 9 9507Google Scholar

    [51]

    Yang J, Naguib M, Ghidiu M, Pan L M, Gu J, Nanda J, Halim J, Gogotsi Y, Barsoum M W 2016 J. Am. Ceram. Soc. 99 660Google Scholar

    [52]

    Urbankowski P, AnasoriB, Makaryan T, Er D, Kota S, Walsh P L, Zhao M, Shenoy V B, Barsoum M W, Gogotsi Y 2016 Nanoscale 8 11385Google Scholar

    [53]

    Soundiraraju B, George B K 2017 ACS Nano 11 8892Google Scholar

    [54]

    Zhou J, Gao S, Guo Z, Sun Z 2017 Ceram. Int. 43 11450Google Scholar

    [55]

    Pang S Y, WongY T, Yuan S, Liu Y, Tsang M-K, Yang Z, Huang H, Wong W T, Hao J 2019 J. Am. Chem. Soc. 141 9610Google Scholar

    [56]

    Li T, Yao L, Liu Q, Gu J, Luo R, Li J, Yan X, Wang W, Liu P, Chen B, Zhang W, Abbas W, Naz R, Zhang D 2018 Angew. Chem. Int. Ed. 57 6115Google Scholar

    [57]

    Li M, Lu J, Luo K, Li Y, Chang K, Chen K, Zhou J, Rosen J, Hultman L, Eklund P, Persson P O Å, Du S, Chai Z, Huang Z, Huang Q 2019 J. Am. Chem. Soc. 141 4730Google Scholar

    [58]

    Kamysbayev V, Filatov A S, Hu H, Rui X, Lagunas F, Wang D, Klie R F, Talapin D V 2020 Science 369 979Google Scholar

    [59]

    杨建辉, 张绍政, 计嘉琳, 韦世豪 2015 物理化学学报 31 369Google Scholar

    Yang J H, Zhang S Z, Ji J L, Wei S H 2015 Acta Phys-Chim. Sin. 31 369Google Scholar

    [60]

    张绍政, 刘佳, 谢艳, 陆银稷, 李林, 吕亮, 杨建辉, 韦世豪 2017 物理化学学报 33 2022Google Scholar

    Zhang S Z, Liu J, Xie Y, Lu Y J, Li L, Lv L, Yang J H, Wei S H 2017 Acta Phys-Chim. Sin. 33 2022Google Scholar

    [61]

    Khazaei M, Arai M, Sasaki T, Ranjbar A, Liang Y, Yunoki S 2015 Phys. Rev. B 92 075411Google Scholar

    [62]

    Khazaei M, Arai M, Sasaki T, Chung C Y, Venkataramanan N S, Estili M, Sakka Y, Kawazoe Y 2013 Adv. Funct. Mater. 23 2185Google Scholar

    [63]

    Zhang L, Tang C, Zhang C, Du A 2020 Nanoscale 12 21291Google Scholar

    [64]

    Hohenberg P, Kohn W 1964 Phys. Rev. 136 B864Google Scholar

    [65]

    Kohn W, Sham L J 1965 Phys. Rev. 140 A1133Google Scholar

    [66]

    Hafner J 2008 J. Comput. Chem. 29 2044Google Scholar

    [67]

    Blöchl P E 1994 Phys. Rev. B:Condens. Matter Mater. Phys 50 17953Google Scholar

    [68]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758Google Scholar

    [69]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [70]

    Ernzerhof M, Scuseria G E 1999 J. Chem. Phys. 110 5029Google Scholar

    [71]

    Grimme S, Antony J, Ehrlich S, Krieg H 2010 J. Chem. Phys. 132 154104Google Scholar

    [72]

    Bengtsson L 1999 Phys. Rev. B: Condens. Matter Mater. Phys. 59 12301Google Scholar

    [73]

    Jain A, Ong S P, Hautier G, Chen W, Richards W D, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G, Persson K A 2013 APL Mater. 1 011002Google Scholar

    [74]

    Xin Y, Yu Y X 2017 Mater. Design 130 512Google Scholar

  • [1] Liu Jun-Ling, Bai Yu-Jie, Xu Ning, Zhang Qin-Fang. First-principles study on electronic structure of GaS/Mg(OH)2 heterostructure. Acta Physica Sinica, 2024, 73(13): 137103. doi: 10.7498/aps.73.20231979
    [2] Jiang Zhou, Jiang Xue, Zhao Ji-Jun. Electronic properties of two-dimensional kagome lattice based on transition metal phthalocyanine heterojunctions. Acta Physica Sinica, 2023, 72(24): 247502. doi: 10.7498/aps.72.20230921
    [3] Zhu Yu-Jie, Jiang Tao, Ye Xiao-Juan, Liu Chun-Sheng. Theoretical prediction of novel two-dimensional auxetic material SiGeS and its electronic and optical properties. Acta Physica Sinica, 2022, 71(15): 153101. doi: 10.7498/aps.71.20220407
    [4] Deng Lin-Mei, Si Jun-Shan, Wu Xu-Cai, Zhang Wei-Bing. Study of transition metal dichalcogenides/chromium trihalides van der Waals heterostructure by band unfolding method. Acta Physica Sinica, 2022, 71(14): 147101. doi: 10.7498/aps.71.20220326
    [5] Jiang Nan, Li Ao-Lin, Qu Shui-Xian, Gou Si, Ouyang Fang-Ping. First principles study of magnetic transition of strain induced monolayer NbSi2N4. Acta Physica Sinica, 2022, 71(20): 206303. doi: 10.7498/aps.71.20220939
    [6] Fang Xiao-Nan, Du Yan-Ling, Wu Chen-Yu, Liu Jing. First principle study of tuning metal-insulator transition and magnetic properties of (SrVO3)5/(SrTiO3)1 (111) heterostructures. Acta Physica Sinica, 2022, 71(18): 187301. doi: 10.7498/aps.71.20220627
    [7] Sun Ying-Hui, Mu Cong-Yan, Jiang Wen-Gui, Zhou Liang, Wang Rong-Ming. Interface modulation and physical properties of heterostructure of metal nanoparticles and two-dimensional materials. Acta Physica Sinica, 2022, 71(6): 066801. doi: 10.7498/aps.71.20211902
    [8] Liu Zi-Yuan, Pan Jin-Bo, Zhang Yu-Yang, Du Shi-Xuan. First principles calculation of two-dimensional materials at an atomic scale. Acta Physica Sinica, 2021, 70(2): 027301. doi: 10.7498/aps.70.20201636
    [9] Lei Ting, Lü Wei-Ming, Lü Wen-Xing, Cui Bo-Yao, Hu Rui, Shi Wen-Hua, Zeng Zhong-Ming. Photogating effect in two-dimensional photodetectors. Acta Physica Sinica, 2021, 70(2): 027801. doi: 10.7498/aps.70.20201325
    [10] Zeng Zhou-Xiao-Song, Wang Xiao, Pan An-Lian. Second harmonic generation of two-dimensional layered materials: characterization, signal modulation and enhancement. Acta Physica Sinica, 2020, 69(18): 184210. doi: 10.7498/aps.69.20200452
    [11] Wang Hui, Xu Meng, Zheng Ren-Kui. Research progress and device applications of multifunctional materials based on two-dimensional film/ferroelectrics heterostructures. Acta Physica Sinica, 2020, 69(1): 017301. doi: 10.7498/aps.69.20191486
    [12] Long Hui, Hu Jian-Wei, Wu Fu-Gen, Dong Hua-Feng. Ultrafast pulse lasers based on two-dimensional nanomaterial heterostructures as saturable absorber. Acta Physica Sinica, 2020, 69(18): 188102. doi: 10.7498/aps.69.20201235
    [13] Ma Hao-Hao, Zhang Xian-Bin, Wei Xu-Yan, Cao Jia-Meng. Theoretical study on Schottky regulation of WSe2/graphene heterostructure doped with nonmetallic elements. Acta Physica Sinica, 2020, 69(11): 117101. doi: 10.7498/aps.69.20200080
    [14] Hou Bin-Peng, Gan Zuo-Liang, Lei Xue-Ling, Zhong Shu-Ying, Xu Bo, Ouyang Chu-Ying. First-principles study of reduction mechanism of oxygen molecule using nitrogen doped graphene as cathode material for lithium air batteries. Acta Physica Sinica, 2019, 68(12): 128801. doi: 10.7498/aps.68.20190181
    [15] Huang Bing-Quan, Zhou Tie-Ge, Wu Dao-Xiong, Zhang Zhao-Fu, Li Bai-Kui. Properties of vacancies and N-doping in monolayer g-ZnO: First-principles calculation and molecular orbital theory analysis. Acta Physica Sinica, 2019, 68(24): 246301. doi: 10.7498/aps.68.20191258
    [16] Chen Guo-Xiang, Fan Xiao-Bo, Li Si-Qi, Zhang Jian-Min. First-principles study of magnetic properties of alkali metals and alkaline earth metals doped two-dimensional GaN materials. Acta Physica Sinica, 2019, 68(23): 237303. doi: 10.7498/aps.68.20191246
    [17] Guo Li-Juan, Hu Ji-Song, Ma Xin-Guo, Xiang Ju. Interfacial interaction and Schottky contact of two-dimensional WS2/graphene heterostructure. Acta Physica Sinica, 2019, 68(9): 097101. doi: 10.7498/aps.68.20190020
    [18] Li Xiao-Ying, Huang Can, Zhu Yan, Li Jin-Bin, Fan Ji-Yu, Pan Yan-Fei, Shi Da-Ning, Ma Chun-Lan. Dzyaloshinsky-Moriya interaction in -(Zn, Cr)S(111) surface: First principle calculations. Acta Physica Sinica, 2018, 67(13): 137101. doi: 10.7498/aps.67.20180342
    [19] Zhao Li-Kai, Zhao Er-Jun, Wu Zhi-Jian. First-principles calculations of structural thermodynamic and mechanical properties of 5d transitional metal diborides. Acta Physica Sinica, 2013, 62(4): 046201. doi: 10.7498/aps.62.046201
    [20] Zhang Hui, Zhang Guo-Ying, Xiao Ming-Zhu, Lu Guang-Xia, Zhu Sheng-Long, Zhang Ke. First-principles study on influence of alloying element substitution on dehydrogenation ability of Li4BN3H10 hydrogen storage materials. Acta Physica Sinica, 2011, 60(4): 047109. doi: 10.7498/aps.60.047109
  • supplement 218504-20210956---补充材料.pdf supplement
Metrics
  • Abstract views:  6365
  • PDF Downloads:  123
  • Cited By: 0
Publishing process
  • Received Date:  20 May 2021
  • Accepted Date:  15 June 2021
  • Available Online:  15 August 2021
  • Published Online:  05 November 2021

/

返回文章
返回