Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First-principles study on electronic structure of GaS/Mg(OH)2 heterostructure

Liu Jun-Ling Bai Yu-Jie Xu Ning Zhang Qin-Fang

Citation:

First-principles study on electronic structure of GaS/Mg(OH)2 heterostructure

Liu Jun-Ling, Bai Yu-Jie, Xu Ning, Zhang Qin-Fang
PDF
HTML
Get Citation
  • Constructing Type-II heterostructure is an effective scheme to tailor the electronic structure and improve the application performance. Motivated by recently successful syntheses of Mg(OH)2 and GaS monolayers, we investigate the stability, electronic, and optical properties of GaS/Mg(OH)2 heterostructure by using the density functional theory method. The calculated results show that GaS/Mg(OH)2 heterostructure is easily constructed due to its small lattice mismatch, negative binding energy, and thermodynamic stability. Compared with monolayer materials, the GaS/Mg(OH)2 heterostructure has a band gap that effectively decreases to 2.021 eV and has Type-II band structure, facilitating the spatial separation of photo-generated carriers where electrons are localized in the GaS and holes reside in the Mg(OH)2 monolayers. The built-in electric field induced by the interlayer charge transfer points from GaS to Mg(OH)2 monolayer, which can further improve the separation and suppress the recombination of electron-hole pairs. Under the biaxial strain, the valance band maximum and conduction band minimum of GaS/Mg(OH)2 heterostructure shift in the downward direction to different extents, resulting in obvious change of band gap, with the change reaching about 0.5 eV. Furthermore, the band structure of GaS/Mg(OH)2 heterostructure can be transformed from indirect band gap semiconductor into direct band gap semiconductor under the tensile strain, while GaS/Mg(OH)2 heterostructure maintains Type-II band structure. Additionally, the band edge positions of GaS/Mg(OH)2 heterostructure can also be effectively adjusted to cross the redox potentials of water decomposition at pH = 0–7. The light absorption spectra show that GaS/Mg(OH)2 heterostructure has stronger light absorption capability than the constituent monolayers. Especially, the light absorption has an obvious redshift phenomenon at a tensile strain of 3%. These findings indicate that the GaS/Mg(OH)2 heterostructure has a wide range of applications in the field of optoelectronics due to the tunable electronic properties, and also provides some valuable insights for future research.
      Corresponding author: Bai Yu-Jie, byjycit2013@163.com ; Zhang Qin-Fang, qfangzhang@gmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12274361, 11704324) and the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20211361).
    [1]

    Guo Y T, Yi S S 2023 Materials 16 5798Google Scholar

    [2]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147Google Scholar

    [3]

    Xia J, Huang X, Liu L Z, Wang M, Wang L, Huang B, Zhu D D, Li J J, Gu C Z, Meng X M 2014 Nanoscale 6 8949Google Scholar

    [4]

    Pospischil A, Furchi M M, Mueller T 2014 Nat. Nanotechnol. 9 257Google Scholar

    [5]

    Lukatskaya M R, Mashtalir O, Ren C E, Dall’Agnese Y, Rozier P, Taberna P L, Naguib M, Simon P, Barsoum M W, Gogotsi Y 2013 Science 341 1502Google Scholar

    [6]

    Wang Y S, Yu X Q, Xu S Y, Bai J M, Xiao R J, Hu Y S, Li H, Yang X Q, Chen L Q, Huang X J 2013 Nat. Commun. 4 2365Google Scholar

    [7]

    Fu C F, Sun J Y, Luo Q Q, Li X X, Hu W, Yang J L 2018 Nano Lett. 18 6312Google Scholar

    [8]

    Zhao P, Ma Y D, Lü X S, Li M M, Huang B B, Dai Y 2018 Nano Energy 51 533Google Scholar

    [9]

    Guo H Y, Zhao Y, Lu N, Kan E J, Zeng X C, Wu X J, Yang J L 2012 J. Phys. Chem. C 116 11336Google Scholar

    [10]

    Wang H, Zhang J J, Hang X D, Zhang X D, Xie J F, Pan B C, Xie Y 2015 Angew. Chem. 127 1211Google Scholar

    [11]

    Tao S D, Xu B, Shi J, Zhong S Y, Lei X L, Liu G, Wu M S 2019 J. Phys. Chem. C 123 9059Google Scholar

    [12]

    Zhong H X, Xiong W Q, Lü P F, Yu J, Yuan S J 2021 Phys. Rev. B 103 085124Google Scholar

    [13]

    Niu X H, Li Y H, Shu H B, Yao X J, Wan J L 2017 J. Phys. Chem. C 121 3648Google Scholar

    [14]

    Li H, Tsai C, Koh A L, Cai L, Contryman A W, Fragapane A H, Zhao J H, Han H S, Manoharan H C, Abild-Pedersen F, Nørskov J K, Zheng X L 2016 Nat. Mater. 15 48Google Scholar

    [15]

    Qian G L, Xie Q, Liang Q, Luo X Y, Wang Y X 2023 Phys. Rev. B 107 155306Google Scholar

    [16]

    Zhang M Z, Tang C M, Cheng W, Fu L 2021 J. Alloy. Compd. 855 157432Google Scholar

    [17]

    Wang X L, Quhe R, Cui W, Zhi Y S, Huang Y Q, An Y H, Dai X Q, Tang Y A, Chen W G, Wu Z P, Tang W H 2018 Carbon 129 738Google Scholar

    [18]

    Sen R, Jatkar K, Johari P 2020 Phys. Rev. B 101 235425Google Scholar

    [19]

    Huang W J, Gan L, Li H Q, Ma Y, Zhai T Y 2016 Cryst. Eng. Comm 18 3968Google Scholar

    [20]

    Hu P A, Wang L F, Yoon M, Zhang J, Feng W, Wang X N, Wen Z Z, Idrobo J C, Miyamoto Y, Geohegan D B, Xiao K 2013 Nano Lett. 13 1649Google Scholar

    [21]

    Jie W J, Chen X, Li D, Xie L, Hui Y Y, Lau S P, Cui X D, Hao J H 2015 Angew. Chem. Int. Ed. 54 1185Google Scholar

    [22]

    Wang Z X, Xu K, Li Y C, Zhan X Y, Safdar M, Wang Q, Wang F M, He J 2014 ACS Nano 8 4859Google Scholar

    [23]

    Mudd G W, Svatek S A, Ren T, Patane A, Makarovsky O, Eaves L, HBeton P, Kovalyuk Z D, Lashkarev G V, Kudrynskyi Z R, Dmitriev A I 2013 Adv. Mater. 25 5714Google Scholar

    [24]

    Late D J, Liu B, Luo J, Yan A, Matte H S S R, Grayson M, Rao C N R, Dravid V P 2012 Adv. Funct. Mater. 24 3549Google Scholar

    [25]

    Kouser S, Thannikoth A, Gupta U, Waghmare U V, Rao C N R 2015 Small 11 4723Google Scholar

    [26]

    Wang B, Kuang A L, Luo X K, Wang G Z, Yuan H K, Chen H 2018 Appl. Surf. Sci. 439 374Google Scholar

    [27]

    Lin Z L, Lin T T, Lin T J, Tang X, Chen G J, Xiao J Y, Wang H Y, Wang W L, Li G Q 2023 Appl. Phys. Lett. 122 131101Google Scholar

    [28]

    Shin G H, Lee G B, An E S, Park C, Jin H J, Lee K J, Oh D S, Kim J S, Choi Y K, Choi S Y 2020 ACS Appl. Mater. Interfaces 12 5106Google Scholar

    [29]

    Yin H J, Tang Z Y 2016 Chem. Soc. Rev. 45 4873Google Scholar

    [30]

    Suslu A, Wu K, Sahin H, Chen B, Yang S, Cai H, Aoki T, Horzum S, Kang J, Peeters F M, Tongay S 2016 Sci. Rep. 6 20525Google Scholar

    [31]

    Wang J B, Zhang N, Wang Y H, Zhao H S, Chen H M, Zeng H T, Zhao L J, Yang Q, Feng B Y 2024 Int. J. Hydrogen Energ. 53 247Google Scholar

    [32]

    Xiong W Q, Xia C X, Du J, Wang T X, Zhao X, Peng Y T, Wei Z M, Li J B 2017 Phys. Rev. B 95 245408Google Scholar

    [33]

    Wang F, Cui A Y, Sun H M, Zhou B, Xu L P, Jiang K, Shang L Y, Hu Z G, Chu J H 2019 J. Alloy. Compd. 785 156Google Scholar

    [34]

    Kresse G, Furthmüller J 1996 Comp. Mat. Sci. 6 15Google Scholar

    [35]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [36]

    Grimme S 2006 J. Comput. Chem. 27 1787Google Scholar

    [37]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [38]

    Heyd J, Scuseria G E, Ernzerhof M 2003 J. Chem. Phys. 118 8207Google Scholar

    [39]

    Zhuang H L, Hennig R G 2013 Chem. Mater. 25 3232Google Scholar

    [40]

    Jung C S, Shojaei F, Park K, Oh J Y, Im H S, Jang D M, Park J, Kang H S 2015 ACS Nano 9 9585Google Scholar

    [41]

    Wang B J, Li X H, Cai X L, Yu W Y, Zhang L W, Zhao R Q, Ke S H 2018 J. Phys. Chem. C 122 7075Google Scholar

    [42]

    Luo Y, Wang S K, Ren K, Chou J P, Yu J, Sun Z M, Sun M L 2019 Phys. Chem. Chem. Phys. 21 1791Google Scholar

    [43]

    Ren K, Yu J, Tang W C 2019 J. Appl. Phys. 126 065701Google Scholar

    [44]

    Kumar R, Das D, Singh A K 2018 J. Catal. 359 143Google Scholar

    [45]

    Tang W, Sanville E, Henkelman G 2009 J. Phys. : Condens. Matter. 21 084204Google Scholar

    [46]

    Bai K F, Cui Z, Li E L, Ding Y C, Zheng J S, Liu C, Zheng Y P 2020 Vacuum 180 109562Google Scholar

    [47]

    Lou J B, Ren K, Huang Z M, Huo W Y, Zhu Z Y, Yu J 2021 RSC Adv. 11 29576Google Scholar

    [48]

    Gajdoš M, Hummer K, Kresse G, Furthmüller J, Bechstedt F 2006 Phys. Rev. B 73 045112Google Scholar

  • 图 1  (a) GaS和(b) Mg(OH)2几何结构; (c), (e)和(d), (f)是GaS和Mg(OH)2单层的PDOS和能带结构

    Figure 1.  Geometric structures of (a) GaS and (b) Mg(OH)2 monolayers; (c), (e) and (d), (f) are the PDOS and band structures of GaS and Mg(OH)2 monolayers, respectively.

    图 2  GaMg-HS异质结构三种不同构型的俯视图和侧视图 (a) H1; (b) H2; (c) H3

    Figure 2.  Top and side views for three different conformations of GaMg-HS: (a) H1; (b) H2; (c) H3.

    图 3  (a) GaMg-HS的声子谱; (b), (c) 模拟结束后GaMg-HS的俯视图和侧视图; (d), (e) 总能和温度随模拟时间的变化关系

    Figure 3.  (a) Phonon spectra for GaMg-HS; (b), (c) top and side views of the snapshot of GaMg-HS at the end of simulations; (d), (e) variations of total energy and temperature against the time for simulations.

    图 4  (a) GaMg-HS的投影能带结构, 红色和蓝色能带由GaS和Mg(OH)2单层贡献; (b), (c) GaMg-HS的总态密度和投影态密度(费米能级用虚线表示)

    Figure 4.  (a) Projected band structure for GaMg-HS, the bands plotted in red and blue indicate the bands are dominated by GaS and Mg(OH)2 monolayers, respectively; (b), (c) the total and projected density of states for GaMg-HS (Fermi level is indicated by a dashed line).

    图 5  (a) GaMg-HS界面电荷分离机制示意图; (b) GaMg-HS的差分电荷密度图, 黄色和青色区域分别代表电子积累和消耗; (c) GaMg-HS的导带最小处(CBM)和价带最大处(VBM)的电荷密度(等值为0.003 e/Å3)

    Figure 5.  (a) Schematic diagram of interfacial charge separation mechanism of GaMg-HS; (b) the charge-density difference for GaMg-HS, the yellow and cyan areas represent electron accumulation and depletion, respectively; (c) the charge density of GaMg-HS for the VBM and the CBM (the isovalue is 0.003 e/Å3).

    图 6  (a) GaMg-HS的带隙和应变能与平面内双轴应变的关系; (b)不同平面内双轴应变下GaMg-HS的带边位置与水的氧化还原电位的关系

    Figure 6.  (a) Band gaps and strain energies as a function of in-plane biaxial strain for GaMg-HS; (b) band edge alignment of the GaMg-HS under different in-plane biaxial strains with respect to the water redox potentials, respectively.

    图 7  GaMg-HS的能带结构随面内双轴拉伸应变的变化 (a) 0%; (b) 1%; (c) 2%; (d) 3%; (e) 4%; (f) 5%. Γ点处的导带分别标记为A(红色), B(蓝色), C(绿色)和D(橄榄色)

    Figure 7.  Band structures of GaMg-HS as a function of in-layer biaxial tensile strain: (a) 0%; (b) 1%; (c) 2%; (d) 3%; (e) 4%; (f) 5%. The conduction band lines at the Γ point are labeled as A (red), B (blue), C (green), and D (olive), respectively.

    图 8  GaMg-HS的导带投影随面内双轴拉伸应变的关系图 (a) 0%; (b) 1%; (c) 2%; (d) 3%; (e) 4%; (f) 5%. 每条带中的圆圈的大小表示来自不同原子轨道的贡献

    Figure 8.  Projected conduction band structures of GaMg-HS as a function of in-layer biaxial tensile strain: (a) 0%; (b) 1%; (c) 2%; (d) 3%; (e) 4%; (f) 5%. The size of the circles in each band denotes the contributions from different atomic orbitals.

    图 9  GaS和Mg(OH)2单层以及GaMg-HS的光吸收谱, 同时给出了拉伸应变为3%时的光吸收谱作为对比

    Figure 9.  Optical absorption spectra for GaS and Mg(OH)2 monolayers as well as the GaMg-HS, the optical absorbance spectrum at a tensile strain of 3% is also shown for comparison.

    表 1  GaS和Mg(OH)2单层及其异质结的晶格参数a、键长d、带隙和相对于真空能级的带边位置

    Table 1.  Lattice parameters a, bond lengths d, band gaps and the band edge positions with respect to vacuum for GaS and Mg(OH)2 monolayers, and heterostructure, respectively.

    Structure a dGa–S dGa–Ga dMg–O dO–H Eg/eV ECBM/eV EVBM/eV
    GaS 3.639 2.368 2.476 3.212 –3.603 –6.815
    Mg(OH)2 3.149 2.094 0.966 4.733 –0.825 –5.558
    GaS/Mg(OH)2 6.225 2.352 2.441 2.082 0.964 2.021 –3.497 –5.518
    DownLoad: CSV

    表 2  面内双轴拉伸应变(0%—5%)状态下的GaMg-HS相关键长

    Table 2.  Bond lengths of GaMg-HS under the different in-layer biaxial tensile strain: 0%–5%.

    Strain $ {d_{{\rm{S-Ga}}}} $/Å $ {d_{{\rm{Ga-Ga}}}} $/Å $ {h_{{\rm{S-Ga}}}} $/Å
    0% 2.351 2.441 1.116
    1% 2.361 2.443 1.099
    2% 2.371 2.444 1.080
    3% 2.382 2.446 1.062
    4% 2.392 2.447 1.040
    5% 2.403 2.450 1.025
    DownLoad: CSV
  • [1]

    Guo Y T, Yi S S 2023 Materials 16 5798Google Scholar

    [2]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147Google Scholar

    [3]

    Xia J, Huang X, Liu L Z, Wang M, Wang L, Huang B, Zhu D D, Li J J, Gu C Z, Meng X M 2014 Nanoscale 6 8949Google Scholar

    [4]

    Pospischil A, Furchi M M, Mueller T 2014 Nat. Nanotechnol. 9 257Google Scholar

    [5]

    Lukatskaya M R, Mashtalir O, Ren C E, Dall’Agnese Y, Rozier P, Taberna P L, Naguib M, Simon P, Barsoum M W, Gogotsi Y 2013 Science 341 1502Google Scholar

    [6]

    Wang Y S, Yu X Q, Xu S Y, Bai J M, Xiao R J, Hu Y S, Li H, Yang X Q, Chen L Q, Huang X J 2013 Nat. Commun. 4 2365Google Scholar

    [7]

    Fu C F, Sun J Y, Luo Q Q, Li X X, Hu W, Yang J L 2018 Nano Lett. 18 6312Google Scholar

    [8]

    Zhao P, Ma Y D, Lü X S, Li M M, Huang B B, Dai Y 2018 Nano Energy 51 533Google Scholar

    [9]

    Guo H Y, Zhao Y, Lu N, Kan E J, Zeng X C, Wu X J, Yang J L 2012 J. Phys. Chem. C 116 11336Google Scholar

    [10]

    Wang H, Zhang J J, Hang X D, Zhang X D, Xie J F, Pan B C, Xie Y 2015 Angew. Chem. 127 1211Google Scholar

    [11]

    Tao S D, Xu B, Shi J, Zhong S Y, Lei X L, Liu G, Wu M S 2019 J. Phys. Chem. C 123 9059Google Scholar

    [12]

    Zhong H X, Xiong W Q, Lü P F, Yu J, Yuan S J 2021 Phys. Rev. B 103 085124Google Scholar

    [13]

    Niu X H, Li Y H, Shu H B, Yao X J, Wan J L 2017 J. Phys. Chem. C 121 3648Google Scholar

    [14]

    Li H, Tsai C, Koh A L, Cai L, Contryman A W, Fragapane A H, Zhao J H, Han H S, Manoharan H C, Abild-Pedersen F, Nørskov J K, Zheng X L 2016 Nat. Mater. 15 48Google Scholar

    [15]

    Qian G L, Xie Q, Liang Q, Luo X Y, Wang Y X 2023 Phys. Rev. B 107 155306Google Scholar

    [16]

    Zhang M Z, Tang C M, Cheng W, Fu L 2021 J. Alloy. Compd. 855 157432Google Scholar

    [17]

    Wang X L, Quhe R, Cui W, Zhi Y S, Huang Y Q, An Y H, Dai X Q, Tang Y A, Chen W G, Wu Z P, Tang W H 2018 Carbon 129 738Google Scholar

    [18]

    Sen R, Jatkar K, Johari P 2020 Phys. Rev. B 101 235425Google Scholar

    [19]

    Huang W J, Gan L, Li H Q, Ma Y, Zhai T Y 2016 Cryst. Eng. Comm 18 3968Google Scholar

    [20]

    Hu P A, Wang L F, Yoon M, Zhang J, Feng W, Wang X N, Wen Z Z, Idrobo J C, Miyamoto Y, Geohegan D B, Xiao K 2013 Nano Lett. 13 1649Google Scholar

    [21]

    Jie W J, Chen X, Li D, Xie L, Hui Y Y, Lau S P, Cui X D, Hao J H 2015 Angew. Chem. Int. Ed. 54 1185Google Scholar

    [22]

    Wang Z X, Xu K, Li Y C, Zhan X Y, Safdar M, Wang Q, Wang F M, He J 2014 ACS Nano 8 4859Google Scholar

    [23]

    Mudd G W, Svatek S A, Ren T, Patane A, Makarovsky O, Eaves L, HBeton P, Kovalyuk Z D, Lashkarev G V, Kudrynskyi Z R, Dmitriev A I 2013 Adv. Mater. 25 5714Google Scholar

    [24]

    Late D J, Liu B, Luo J, Yan A, Matte H S S R, Grayson M, Rao C N R, Dravid V P 2012 Adv. Funct. Mater. 24 3549Google Scholar

    [25]

    Kouser S, Thannikoth A, Gupta U, Waghmare U V, Rao C N R 2015 Small 11 4723Google Scholar

    [26]

    Wang B, Kuang A L, Luo X K, Wang G Z, Yuan H K, Chen H 2018 Appl. Surf. Sci. 439 374Google Scholar

    [27]

    Lin Z L, Lin T T, Lin T J, Tang X, Chen G J, Xiao J Y, Wang H Y, Wang W L, Li G Q 2023 Appl. Phys. Lett. 122 131101Google Scholar

    [28]

    Shin G H, Lee G B, An E S, Park C, Jin H J, Lee K J, Oh D S, Kim J S, Choi Y K, Choi S Y 2020 ACS Appl. Mater. Interfaces 12 5106Google Scholar

    [29]

    Yin H J, Tang Z Y 2016 Chem. Soc. Rev. 45 4873Google Scholar

    [30]

    Suslu A, Wu K, Sahin H, Chen B, Yang S, Cai H, Aoki T, Horzum S, Kang J, Peeters F M, Tongay S 2016 Sci. Rep. 6 20525Google Scholar

    [31]

    Wang J B, Zhang N, Wang Y H, Zhao H S, Chen H M, Zeng H T, Zhao L J, Yang Q, Feng B Y 2024 Int. J. Hydrogen Energ. 53 247Google Scholar

    [32]

    Xiong W Q, Xia C X, Du J, Wang T X, Zhao X, Peng Y T, Wei Z M, Li J B 2017 Phys. Rev. B 95 245408Google Scholar

    [33]

    Wang F, Cui A Y, Sun H M, Zhou B, Xu L P, Jiang K, Shang L Y, Hu Z G, Chu J H 2019 J. Alloy. Compd. 785 156Google Scholar

    [34]

    Kresse G, Furthmüller J 1996 Comp. Mat. Sci. 6 15Google Scholar

    [35]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [36]

    Grimme S 2006 J. Comput. Chem. 27 1787Google Scholar

    [37]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [38]

    Heyd J, Scuseria G E, Ernzerhof M 2003 J. Chem. Phys. 118 8207Google Scholar

    [39]

    Zhuang H L, Hennig R G 2013 Chem. Mater. 25 3232Google Scholar

    [40]

    Jung C S, Shojaei F, Park K, Oh J Y, Im H S, Jang D M, Park J, Kang H S 2015 ACS Nano 9 9585Google Scholar

    [41]

    Wang B J, Li X H, Cai X L, Yu W Y, Zhang L W, Zhao R Q, Ke S H 2018 J. Phys. Chem. C 122 7075Google Scholar

    [42]

    Luo Y, Wang S K, Ren K, Chou J P, Yu J, Sun Z M, Sun M L 2019 Phys. Chem. Chem. Phys. 21 1791Google Scholar

    [43]

    Ren K, Yu J, Tang W C 2019 J. Appl. Phys. 126 065701Google Scholar

    [44]

    Kumar R, Das D, Singh A K 2018 J. Catal. 359 143Google Scholar

    [45]

    Tang W, Sanville E, Henkelman G 2009 J. Phys. : Condens. Matter. 21 084204Google Scholar

    [46]

    Bai K F, Cui Z, Li E L, Ding Y C, Zheng J S, Liu C, Zheng Y P 2020 Vacuum 180 109562Google Scholar

    [47]

    Lou J B, Ren K, Huang Z M, Huo W Y, Zhu Z Y, Yu J 2021 RSC Adv. 11 29576Google Scholar

    [48]

    Gajdoš M, Hummer K, Kresse G, Furthmüller J, Bechstedt F 2006 Phys. Rev. B 73 045112Google Scholar

  • [1] Jiang Nan, Li Ao-Lin, Qu Shui-Xian, Gou Si, Ouyang Fang-Ping. First principles study of magnetic transition of strain induced monolayer NbSi2N4. Acta Physica Sinica, 2022, 71(20): 206303. doi: 10.7498/aps.71.20220939
    [2] Wang Na, Xu Hui-Fang, Yang Qiu-Yun, Zhang Mao-Lian, Lin Zi-Jing. First-principles study of strain-tunable charge carrier transport properties and optical properties of CrI3 monolayer. Acta Physica Sinica, 2022, 71(20): 207102. doi: 10.7498/aps.71.20221019
    [3] Hou Lu, Tong Xin, Ouyang Gang. First-principles study of atomic bond nature of one-dimensional carbyne chain under different strains. Acta Physica Sinica, 2020, 69(24): 246802. doi: 10.7498/aps.69.20201231
    [4] Wang Xin, Li Hua, Dong Zheng-Chao, Zhong Chong-Gui. Magnetism and electronic properties of LiFeAs superconducting thin filma under two-dimensional strains effect. Acta Physica Sinica, 2019, 68(2): 027401. doi: 10.7498/aps.68.20180957
    [5] Yan Song-Ling, Tang Li-Ming, Zhao Yu-Qing. First-principles study of the electronic properties and magnetism of LaMnO3/SrTiO3 heterointerface with the different component thickness ratios. Acta Physica Sinica, 2016, 65(7): 077301. doi: 10.7498/aps.65.077301
    [6] Xu Jing, Liang Jia-Qing, Li Hong-Ping, Li Chang-Sheng, Liu Xiao-Juan, Meng Jian. First-principles study on the electronic structure of Ti-doped NbSe2. Acta Physica Sinica, 2015, 64(20): 207101. doi: 10.7498/aps.64.207101
    [7] Luo Zui-Fen, Cen Wei-Fu, Fan Meng-Hui, Tang Jia-Jun, Zhao Yu-Jun. First-principles study of electronic and optical properties of BiTiO3. Acta Physica Sinica, 2015, 64(14): 147102. doi: 10.7498/aps.64.147102
    [8] Cheng He-Ping, Dan Jia-Kun, Huang Zhi-Meng, Peng Hui, Chen Guang-Hua. First-principles study on the electronic structure and optical properties of RDX. Acta Physica Sinica, 2013, 62(16): 163102. doi: 10.7498/aps.62.163102
    [9] Zhou Ping, Wang Xin-Qiang, Zhou Mu, Xia Chuan-Hui, Shi Ling-Na, Hu Cheng-Hua. First-principles study of pressure induced phase transition, electronic structure and elastic properties of CdS. Acta Physica Sinica, 2013, 62(8): 087104. doi: 10.7498/aps.62.087104
    [10] Wu Mu-Sheng, Xu Bo, Liu Gang, Ouyang Chu-Ying. First-principles study on the electronic structures of Cr- and W-doped single-layer MoS2. Acta Physica Sinica, 2013, 62(3): 037103. doi: 10.7498/aps.62.037103
    [11] Xie Jian-Feng, Cao Jue-Xian. Modulation of the band structure of layered BN film with stain. Acta Physica Sinica, 2013, 62(1): 017302. doi: 10.7498/aps.62.017302
    [12] Huang You-Lin, Hou Yu-Hua, Zhao Yu-Jun, Liu Zhong-Wu, Zeng De-Chang, Ma Sheng-Can. Influences of strain on electronic structure and magnetic properties of CoFe2O4 from first-principles study. Acta Physica Sinica, 2013, 62(16): 167502. doi: 10.7498/aps.62.167502
    [13] Song Qing-Gong, Liu Li-Wei, Zhao Hui, Yan Hui-Yu, Du Quan-Guo. First-principles study on the electronic structure and optical properties of YFeO3. Acta Physica Sinica, 2012, 61(10): 107102. doi: 10.7498/aps.61.107102
    [14] Wu Mu-Sheng, Xu Bo, Liu Gang, Ouyang Chu-Ying. The effect of strain on band structure of single-layer MoS2: an ab initio study. Acta Physica Sinica, 2012, 61(22): 227102. doi: 10.7498/aps.61.227102
    [15] Wang Yu-Mei, Pei Hui-Xia, Ding Jun, Wen Li-Wei. First-principles study of magnetism and electronic structureof Sb-containing half-Heusler alloys. Acta Physica Sinica, 2011, 60(4): 047110. doi: 10.7498/aps.60.047110
    [16] Liu Jian-Jun. First-principles calculation of electronic structure of (Zn,Al)O and analysis of its conductivity. Acta Physica Sinica, 2011, 60(3): 037102. doi: 10.7498/aps.60.037102
    [17] Zhang Hai-Bo, Wang Zhi-Guo, Zu Xiao-Tao, Yang Ding-Yu, Zhu Xing-Hua. First principles study of electronic properties of carbon/silicon carbide nanotube heterojunction. Acta Physica Sinica, 2010, 59(11): 7961-7965. doi: 10.7498/aps.59.7961
    [18] Song Jiu-Xu, Yang Yin-Tang, Liu Hong-Xia, Zhang Zhi-Yong. First-principles study of the electonic structure of nitrogen-doped silicon carbide nanotubes. Acta Physica Sinica, 2009, 58(7): 4883-4887. doi: 10.7498/aps.58.4883
    [19] Ni Jian-Gang, Liu Nuo, Yang Guo-Lai, Zhang Xi. First-principle study on electronic structure of BaTiO3 (001) surfaces. Acta Physica Sinica, 2008, 57(7): 4434-4440. doi: 10.7498/aps.57.4434
    [20] Pan Zhi-Jun, Zhang Lan-Ting, Wu Jian-Sheng. First-principles study of electronic structure for CoSi. Acta Physica Sinica, 2005, 54(1): 328-332. doi: 10.7498/aps.54.328
Metrics
  • Abstract views:  1974
  • PDF Downloads:  69
  • Cited By: 0
Publishing process
  • Received Date:  18 December 2023
  • Accepted Date:  26 April 2024
  • Available Online:  17 May 2024
  • Published Online:  05 July 2024

/

返回文章
返回