Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Electrical contact properties of 2D metal-semiconductor heterojunctions composed of different phases of NbS2 and GeS2

Li Jing-Hui Cao Sheng-Guo Han Jia-Ning Li Zhan-Hai Zhang Zhen-Hua

Citation:

Electrical contact properties of 2D metal-semiconductor heterojunctions composed of different phases of NbS2 and GeS2

Li Jing-Hui, Cao Sheng-Guo, Han Jia-Ning, Li Zhan-Hai, Zhang Zhen-Hua
PDF
HTML
Get Citation
  • Metal-semiconductor heterojunction (MSJ) is the basis for developing novel devices. Here, we consider different two-dimensional van der Waals MSJs consisting of different-phase metals H- and T-NbS2 and semiconductor GeS2, and conduct an in-depth study of their structural stabilities, electronic and electrical contact properties, with an emphasis on exploring the dependence of the electrical contact properties of the MSJs on the different phases of metals. Calculation results of their binding energy, phonon spectra, AIMD simulations, and mechanical properties show that both heterojunctions are highly stable, which implies that it is possible to prepare them experimentally and feasible to use them for designing electronic devices. The intrinsic H-NbS2/GeS2 and T-NbS2/GeS2 heterojunctions form p-type Schottky contacts and quasi-n-type Ohmic contacts, respectively. It is also found that their Schottky barrier heights (SBHs) and electrical contact types can be effectively modulated by an applied electric field and biaxial strain. For example, for the H-NbS2/GeS2 heterojunction, Ohmic contact can be achieved regardless of applying a positive/negative electric field or planar biaxial compression, while for the T-NbS2/GeS2 heterojunction, Ohmic contact can be achieved only at a very low negative electric field. The planar biaxial stretching can achieve quasi-Ohmic contact. In other words, when the semiconductor GeS2 monolayer is used as the channel material of the field effect transistor and contacts different metal NbS2 monolayers to form the MSJ, the interfacial Schottky barriers are distinctly different, and each of them has its own advantages in different situations (intrinsic or physically regulated). Therefore, this study is of great significance for understanding the physical mechanism of the electrical contact behaviors for H(T)-NbS2/GeS2 heterojunction, especially for providing the theoretical reference for selecting suitable metal electrodes for the development of high-performance electronic devices.
      Corresponding author: Cao Sheng-Guo, caoshengguo@stu.csust.edu.cn ; Zhang Zhen-Hua, zhzhang@csust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61771076).
    [1]

    Novoselov K S, Mishchenko A, Carvalho A, Castro Neto A 2016 Science 353 aac9439Google Scholar

    [2]

    Han J N, Cao S G, Li Z H, Zhang Z H 2022 J. Phys. D: Appl. Phys. 56 045002Google Scholar

    [3]

    Xu Y H, Han J N, Li Z H, Zhang Z H 2023 J. Phys. D: Appl. Phys. 56 365504Google Scholar

    [4]

    Pierucci D, Henck H, Avila J, Balan A, Naylor C H, Patriarche G, Dappe Y J, Silly M G, Sirotti F, Johnson A C 2016 Nano Lett. 16 4054Google Scholar

    [5]

    Chen J Z, Ma G B, Gong B X, Deng C Y, Zhang M, Guo K X, Cui R R, Wu Y K, Lü M L, Wang X 2023 Nanomaterials 13 429Google Scholar

    [6]

    Wang J G, Ma F C, Sun M T 2017 RSC Adv. 7 16801Google Scholar

    [7]

    Cai Y Q, Zhang G, Zhang Y W 2015 J. Phys. Chem. C 119 13929Google Scholar

    [8]

    Yu L L, Lee Y H, Ling X., Santos E J, Shin Y C, Lin Y X, Dubey M, Kaxiras E, Kong J, Wang H, Palacios T 2014 Nano Lett. 14 3055Google Scholar

    [9]

    Sinha S, Zhu T S, France-Lanord A, Sheng Y W, Grossman J C, Porfyrakis K, Warner J H 2020 Nat. Commun. 11 823Google Scholar

    [10]

    Mohanta M K, Rawat A, Jena N, Dimple, Ahammed R, Sarkar A D 2020 ACS Appl. Mater. Interfaces. 12 3114Google Scholar

    [11]

    Ahammed R, Rawat A, Jena N, Dimple, Mohanta M K, Sarkar A D 2020 Appl. Surf. Sci. 499 143894Google Scholar

    [12]

    Hong X P, Kim J, Shi S F, Zhang Y, Jin C H, Sun Y H, Tongay S, Wu J Q, Zhang Y F, Wang F 2014 Nat. Nanotechnol. 9 682Google Scholar

    [13]

    Rivera P, Seyler K L, Yu H Y, Schaibley J R, Yan J Q, Mandrus D G, Yao W, Xu D 2016 Science 351 688Google Scholar

    [14]

    Paul Inbaraj C R, Mathew R J, Ulaganathan R K, Sankar R, Kataria M, Lin H Y, Cheng H Y, Lin K H, Lin H L, Liao Y M, Chou F C, Chen Y T, Lee C H, Chen Y F 2020 ACS Appl. Mater. 12 26213Google Scholar

    [15]

    Kataria M, Yadav K, Cai S Y, Liao Y M, Lin H I, Shen T L, Chen Y H, Chen Y T, Wang W H, Chen Y F 2018 ACS Nano 12 9596Google Scholar

    [16]

    Liu Y, Guo J, Zhu E B, Liao L, Lee S J, Ding M N, Shakir I, Gambin V, Huang Y, Duan X F 2018 Nature 557 696Google Scholar

    [17]

    Kim C, Moon I, Lee D, Choi M S, Ahmed F, Nam S, Cho Y, Shin H J, Park S, Yoo W 2017 ACS Nano 11 1588Google Scholar

    [18]

    Chen X, Wang D K, Wang T, Yang Z Y, Zou X M, Wang P, Luo W J, Li Q, Liao L, Hu W D 2019 ACS Appl. Mater. 11 33188Google Scholar

    [19]

    Zheng S, Lu H C, Liu H, Liu D M, Robertson J 2019 Nanoscale 11 4811Google Scholar

    [20]

    Allain A, Kang J, Banerjee K, Kis A 2015 Nat. Mater. 14 1195Google Scholar

    [21]

    Zhang W X, Yin Y, He C 2020 Phys. Chem. Chem. Phys. 22 26231Google Scholar

    [22]

    Wang X L, Feng W, Shen C, Sun Z H, Qi H B, Yang M, Liu Y H, Wu Y C, Wu X Q 2021 Front. Mater. 8 709757Google Scholar

    [23]

    Nandi P, Rawat A, Ahammed R, Jena N, De Sarkar A 2021 Nanoscale 13 5460Google Scholar

    [24]

    Chen H, Keiser C, Du S X, Gao H J, Sutter P, Sutter E 2017 Phys. Chem. Chem. Phys. 19 32473Google Scholar

    [25]

    Gao R L, Yong Y L, Yuan X B, Hu S, Hou Q H, Kuang Y M 2022 ACS Omega 7 46440Google Scholar

    [26]

    Ruan X Y, Xiong R, Cui Z, Wen C L, Ma J J, Wang B T, Sa B S 2022 Materials 15 4016Google Scholar

    [27]

    Mao Y L, Zhang G H 2020 Physica B Condens. Matter 581 411673Google Scholar

    [28]

    Zhang Z P, Yang P F, Hong M, Jiang S L, Zhao G C, Shi J P, Xie Q, Zhang Y F 2019 Nanotechnology 30 182002Google Scholar

    [29]

    Shin H G, Yoon H S, Kim J S, Kim M, Lim J Y, Yu S, Park J H, Yi Y, Kim T, Jun S C, Im S 2018 Nano Lett. 18 1937Google Scholar

    [30]

    Kim Y, Kwon K C, Kang S, Kim C, Kim T H, Hong S P, Park S Y, Suh J M, Choi M J, Han S 2019 ACS Sens. 4 2395Google Scholar

    [31]

    Zhou J H, Shen Y H, Lü F, Zhang W Y, Lin F X, Zhang W S, Wang K, Luo H, Wang Q, Yang H 2022 Adv. Funct. Mater. 32 2204495Google Scholar

    [32]

    Brandbyge M, Mozos J L, Ordejón P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401Google Scholar

    [33]

    Li Z H, Han J N, Cao S G, Zhang Z H, Deng X Q 2023 Phys. Rev. B 108 184413Google Scholar

    [34]

    何鑫, 李鑫焱, 李景辉, 张振华 2022 物理学报 71 218503Google Scholar

    He X, Li X Y, Li J H, Zhang Z H 2022 Acta Phys. Sin. 71 218503Google Scholar

    [35]

    Li X Y, Li Z H, Han J N, Cao S G, Zhang Z H 2024 Phys. Chem. Chem. Phys. 26 4218Google Scholar

    [36]

    Yi Y, Han J N, Li Z H, Cao S G, Zhang Z H 2024 Phys. Chem. Chem. Phys. 26 5045Google Scholar

    [37]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [38]

    Troullier N, Martins J L 1991 Phys. Rev. B 43 1993Google Scholar

    [39]

    Soler J M, Artacho E, Gale J D, García A, Junquera J, Ordejón P, Sánchez-Portal D 2002 J. Phys. Condens Matter 14 2745Google Scholar

    [40]

    Grimme S 2006 J. Comput. Chem. 27 1787Google Scholar

    [41]

    Ding X, Zhang S, Zhao M, Xiang Y, Zhang K H, Zu X, Li S, Qiao L 2019 Phys. Rev. Appl. 12 064061Google Scholar

    [42]

    Jelver L, Larsen P M, Stradi D, Stokbro K, Jacobsen K W 2017 Phys. Rev. B 96 085306Google Scholar

    [43]

    Xia J L, Gu Y X, Mai J, Hu T Y, Wang Q K, Xie C, Wu Y K, Wang X 2023 Heliyon 9 e20619Google Scholar

    [44]

    Vu T V, Hieu N V, Phuc H V, Hieu N N, Bui H D, Idrees M, Amin B, Nguyen C V 2020 Appl. Surf. Sci. 507 145036Google Scholar

    [45]

    Nguyen S T, Huong T T T, Ca N X, Nguyen C Q 2024 Nanoscale Adv. 6 1565Google Scholar

    [46]

    Wang Q H, Li H, Si L N, Dou Z L, Yan H J, Yang Y, Liu F B 2023 Mater. Today Commun. 35 10572Google Scholar

    [47]

    Wang F F, Yuan J, Zhang Z F, Ding X L, Gu C J, Yan S B, Sun J H, Jiang T, Wu Y F, Zhou J 2023 Phys. Rev. B 108 075416Google Scholar

    [48]

    Mohanta M K, Kishore A, Sarkar A D 2020 Nanotechnology 31 495208Google Scholar

    [49]

    Cadelano E, Palla P L, Giordano S, Colombo L 2010 Phys. Rev. B 82 235414Google Scholar

    [50]

    Li Y Q, Wang X Y, Zhu S Y, Tang D S, He Q W, Wang X C 2022 J. Mater. Chem. C 10 12132Google Scholar

    [51]

    Gupta A, Sakthivel T, Seal S 2015 Prog. Mater Sci. 73 44Google Scholar

    [52]

    Booth T J, Blake P, Nair R R, Jiang D, Hill E W, Bangert U, Bleloch A, Gass M, Novoselov K S, Katsnelson M I 2008 Nano Lett. 8 2442Google Scholar

    [53]

    Zhang W X, Shi C H, He C, Bai M 2020 J. Solid State Chem. 289 121511Google Scholar

    [54]

    Zheng J S, Li E L, Ma D M, Cui Z, Peng T, Wang X L 2019 Phys. Status Solidi B 256 1900161Google Scholar

    [55]

    Li Z H, Han J N, Cao S G, Zhang Z H 2023 Appl. Surf. Sci. 614 156095Google Scholar

    [56]

    Nguyen C V, Idrees M, Phuc H V, Hieu N N, Binh N T, Amin B, Vu T V 2020 Phys. Rev. B 101 235419Google Scholar

  • 图 1  单层原子结构正视图与侧视图 (a) H-NbS2; (c) T-NbS2; (e) GeS2. 单层能带结构 (b) H-NbS2; (d) T-NbS2; (f) GeS2

    Figure 1.  Top and side views of single-layer atomic structures: (a) H-NbS2; (c) T-NbS2; (e) GeS2. Single-layer energy band structures: (b) H-NbS2; (d) T-NbS2; (f) GeS2.

    图 2  (a) H-NbS2/GeS2 (上图) 和T-NbS2/GeS2 (下图) 的6种堆垛方式A1—A6, 图中两个橙色阴影区域为最稳堆垛结构; (b) 6种堆垛方式的H-NbS2/GeS2 (左图) 和T-NbS2/GeS2 (右图) 的优化层间距及对应的结合能

    Figure 2.  (a) Six stacking modes A1-A6 for H-NbS2/GeS2 (top panel) and T-NbS2/GeS2 (bottom panel), with the two orange shaded regions in the figure showing the most stable stacking structures; (b) optimized interlayer spacing and corresponding binding energy of H-NbS2/GeS2 (left panel) and T-NbS2/GeS2 (right panel) for the six stacking modes.

    图 3  (a) H-A1和(b) T-A1的声子谱. (c) H-A1和(d) T-A1 300 K的AIMD模拟. H-A1和T-A1的 (e) 杨氏模量Y和 (f) 泊松比v随面内角$\theta $的变化

    Figure 3.  Phonon spectra of (a) H-A1 and (b) T-A1. AIMD simulations at 300 K of (c) H-A1 and (d) T-A1. Variation of (e) Young’s modulus Y and (f) Poisson’s ratio v with the in-plane angle for H-A1 and T-A1.

    图 4  异质结投影能带结构 (a) H-A1, (b) T-A1. 沿z轴方向的电荷密度差及三维电荷密度差 (c) H-A1, (d) T-A1; 插图中红色和蓝色分别代表电子积累和消耗, 等值面设为0.0005 e/Å3

    Figure 4.  Projected band structures of heterojunctions: (a) H-A1; (b) T-A1. Charge density difference along the z-axis direction and three-dimensional charge density difference: (c) H-A1; (d) T-A1, where the red and blue in the inset represent electron accumulation and depletion, respectively, and the isosurfaces are set to 0.0005 e/Å3.

    图 5  外电场调制效应, 肖特基势垒高度与电场的关系 (a) H-A1; (b) T-A1. 异质结中GeS2单层的带隙与电场的关系 (c) H-A1; (d) T-A1. 不同电场下异质结沿z轴方向的电荷密度差 (e) H-A1; (f) T-A1. (g) T-A1的投影能带结构随外电场变化情况, 其中蓝色表示T-NbS2层的贡献, 黑色表示GeS2层的贡献, 上下两个方框分别表示ΦnΦp

    Figure 5.  External electric field modulation effect, Schottky barrier height versus electric field: (a) H-A1; (b) T-A1. Band gap of GeS2 monolayer in heterojunction versus electric field: (c) H-A1; (d) T-A1. Difference in charge density of heterojunction along z-axis with different electric fields: (e) H-A1; (f) T-A1. (g) Variation of the projected energy-band structure with the external electric field for T-A1, where the blue denotes the contribution of T-NbS2 layer, and the black denotes the contribution of GeS2 layer, and top and bottom boxes indicate Φn and Φp, respectively.

    图 6  双轴应变调控效应, 肖特基势垒高度与双轴应变的关系 (a) H-A1; (b) T-A1. 异质结中GeS2单层的带隙与双轴应变的关系(c) H-A1; (d) T-A1. 不同双轴应变下异质结沿z轴方向的电荷密度差 (e) H-A1; (f) T-A1. (g) H-A1在不同双轴应变下的投影能带结构, 其中红色表示H-NbS2层的贡献, 黑色表示GeS2层的贡献, 上下两个方框分别表示ΦnΦp

    Figure 6.  Biaxial strain modulation effect, Schottky barrier height versus biaxial strain: (a) H-A1; (b) T-A1. Band gap of GeS2 monolayer in heterojunction versus biaxial strain: (c) H-A1; (d) T-A1. Difference in charge density of heterojunction along z-axis for different biaxial strains: (e) H-A1; (f) T-A1. (g) Projected band structures of H-A1 under different biaxial strains, where the red denotes the contribution of the H-NbS2 layer, and the black denotes the contribution of the GeS2 layer, and the upper and lower boxes denote Φn and Φp, respectively.

  • [1]

    Novoselov K S, Mishchenko A, Carvalho A, Castro Neto A 2016 Science 353 aac9439Google Scholar

    [2]

    Han J N, Cao S G, Li Z H, Zhang Z H 2022 J. Phys. D: Appl. Phys. 56 045002Google Scholar

    [3]

    Xu Y H, Han J N, Li Z H, Zhang Z H 2023 J. Phys. D: Appl. Phys. 56 365504Google Scholar

    [4]

    Pierucci D, Henck H, Avila J, Balan A, Naylor C H, Patriarche G, Dappe Y J, Silly M G, Sirotti F, Johnson A C 2016 Nano Lett. 16 4054Google Scholar

    [5]

    Chen J Z, Ma G B, Gong B X, Deng C Y, Zhang M, Guo K X, Cui R R, Wu Y K, Lü M L, Wang X 2023 Nanomaterials 13 429Google Scholar

    [6]

    Wang J G, Ma F C, Sun M T 2017 RSC Adv. 7 16801Google Scholar

    [7]

    Cai Y Q, Zhang G, Zhang Y W 2015 J. Phys. Chem. C 119 13929Google Scholar

    [8]

    Yu L L, Lee Y H, Ling X., Santos E J, Shin Y C, Lin Y X, Dubey M, Kaxiras E, Kong J, Wang H, Palacios T 2014 Nano Lett. 14 3055Google Scholar

    [9]

    Sinha S, Zhu T S, France-Lanord A, Sheng Y W, Grossman J C, Porfyrakis K, Warner J H 2020 Nat. Commun. 11 823Google Scholar

    [10]

    Mohanta M K, Rawat A, Jena N, Dimple, Ahammed R, Sarkar A D 2020 ACS Appl. Mater. Interfaces. 12 3114Google Scholar

    [11]

    Ahammed R, Rawat A, Jena N, Dimple, Mohanta M K, Sarkar A D 2020 Appl. Surf. Sci. 499 143894Google Scholar

    [12]

    Hong X P, Kim J, Shi S F, Zhang Y, Jin C H, Sun Y H, Tongay S, Wu J Q, Zhang Y F, Wang F 2014 Nat. Nanotechnol. 9 682Google Scholar

    [13]

    Rivera P, Seyler K L, Yu H Y, Schaibley J R, Yan J Q, Mandrus D G, Yao W, Xu D 2016 Science 351 688Google Scholar

    [14]

    Paul Inbaraj C R, Mathew R J, Ulaganathan R K, Sankar R, Kataria M, Lin H Y, Cheng H Y, Lin K H, Lin H L, Liao Y M, Chou F C, Chen Y T, Lee C H, Chen Y F 2020 ACS Appl. Mater. 12 26213Google Scholar

    [15]

    Kataria M, Yadav K, Cai S Y, Liao Y M, Lin H I, Shen T L, Chen Y H, Chen Y T, Wang W H, Chen Y F 2018 ACS Nano 12 9596Google Scholar

    [16]

    Liu Y, Guo J, Zhu E B, Liao L, Lee S J, Ding M N, Shakir I, Gambin V, Huang Y, Duan X F 2018 Nature 557 696Google Scholar

    [17]

    Kim C, Moon I, Lee D, Choi M S, Ahmed F, Nam S, Cho Y, Shin H J, Park S, Yoo W 2017 ACS Nano 11 1588Google Scholar

    [18]

    Chen X, Wang D K, Wang T, Yang Z Y, Zou X M, Wang P, Luo W J, Li Q, Liao L, Hu W D 2019 ACS Appl. Mater. 11 33188Google Scholar

    [19]

    Zheng S, Lu H C, Liu H, Liu D M, Robertson J 2019 Nanoscale 11 4811Google Scholar

    [20]

    Allain A, Kang J, Banerjee K, Kis A 2015 Nat. Mater. 14 1195Google Scholar

    [21]

    Zhang W X, Yin Y, He C 2020 Phys. Chem. Chem. Phys. 22 26231Google Scholar

    [22]

    Wang X L, Feng W, Shen C, Sun Z H, Qi H B, Yang M, Liu Y H, Wu Y C, Wu X Q 2021 Front. Mater. 8 709757Google Scholar

    [23]

    Nandi P, Rawat A, Ahammed R, Jena N, De Sarkar A 2021 Nanoscale 13 5460Google Scholar

    [24]

    Chen H, Keiser C, Du S X, Gao H J, Sutter P, Sutter E 2017 Phys. Chem. Chem. Phys. 19 32473Google Scholar

    [25]

    Gao R L, Yong Y L, Yuan X B, Hu S, Hou Q H, Kuang Y M 2022 ACS Omega 7 46440Google Scholar

    [26]

    Ruan X Y, Xiong R, Cui Z, Wen C L, Ma J J, Wang B T, Sa B S 2022 Materials 15 4016Google Scholar

    [27]

    Mao Y L, Zhang G H 2020 Physica B Condens. Matter 581 411673Google Scholar

    [28]

    Zhang Z P, Yang P F, Hong M, Jiang S L, Zhao G C, Shi J P, Xie Q, Zhang Y F 2019 Nanotechnology 30 182002Google Scholar

    [29]

    Shin H G, Yoon H S, Kim J S, Kim M, Lim J Y, Yu S, Park J H, Yi Y, Kim T, Jun S C, Im S 2018 Nano Lett. 18 1937Google Scholar

    [30]

    Kim Y, Kwon K C, Kang S, Kim C, Kim T H, Hong S P, Park S Y, Suh J M, Choi M J, Han S 2019 ACS Sens. 4 2395Google Scholar

    [31]

    Zhou J H, Shen Y H, Lü F, Zhang W Y, Lin F X, Zhang W S, Wang K, Luo H, Wang Q, Yang H 2022 Adv. Funct. Mater. 32 2204495Google Scholar

    [32]

    Brandbyge M, Mozos J L, Ordejón P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401Google Scholar

    [33]

    Li Z H, Han J N, Cao S G, Zhang Z H, Deng X Q 2023 Phys. Rev. B 108 184413Google Scholar

    [34]

    何鑫, 李鑫焱, 李景辉, 张振华 2022 物理学报 71 218503Google Scholar

    He X, Li X Y, Li J H, Zhang Z H 2022 Acta Phys. Sin. 71 218503Google Scholar

    [35]

    Li X Y, Li Z H, Han J N, Cao S G, Zhang Z H 2024 Phys. Chem. Chem. Phys. 26 4218Google Scholar

    [36]

    Yi Y, Han J N, Li Z H, Cao S G, Zhang Z H 2024 Phys. Chem. Chem. Phys. 26 5045Google Scholar

    [37]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [38]

    Troullier N, Martins J L 1991 Phys. Rev. B 43 1993Google Scholar

    [39]

    Soler J M, Artacho E, Gale J D, García A, Junquera J, Ordejón P, Sánchez-Portal D 2002 J. Phys. Condens Matter 14 2745Google Scholar

    [40]

    Grimme S 2006 J. Comput. Chem. 27 1787Google Scholar

    [41]

    Ding X, Zhang S, Zhao M, Xiang Y, Zhang K H, Zu X, Li S, Qiao L 2019 Phys. Rev. Appl. 12 064061Google Scholar

    [42]

    Jelver L, Larsen P M, Stradi D, Stokbro K, Jacobsen K W 2017 Phys. Rev. B 96 085306Google Scholar

    [43]

    Xia J L, Gu Y X, Mai J, Hu T Y, Wang Q K, Xie C, Wu Y K, Wang X 2023 Heliyon 9 e20619Google Scholar

    [44]

    Vu T V, Hieu N V, Phuc H V, Hieu N N, Bui H D, Idrees M, Amin B, Nguyen C V 2020 Appl. Surf. Sci. 507 145036Google Scholar

    [45]

    Nguyen S T, Huong T T T, Ca N X, Nguyen C Q 2024 Nanoscale Adv. 6 1565Google Scholar

    [46]

    Wang Q H, Li H, Si L N, Dou Z L, Yan H J, Yang Y, Liu F B 2023 Mater. Today Commun. 35 10572Google Scholar

    [47]

    Wang F F, Yuan J, Zhang Z F, Ding X L, Gu C J, Yan S B, Sun J H, Jiang T, Wu Y F, Zhou J 2023 Phys. Rev. B 108 075416Google Scholar

    [48]

    Mohanta M K, Kishore A, Sarkar A D 2020 Nanotechnology 31 495208Google Scholar

    [49]

    Cadelano E, Palla P L, Giordano S, Colombo L 2010 Phys. Rev. B 82 235414Google Scholar

    [50]

    Li Y Q, Wang X Y, Zhu S Y, Tang D S, He Q W, Wang X C 2022 J. Mater. Chem. C 10 12132Google Scholar

    [51]

    Gupta A, Sakthivel T, Seal S 2015 Prog. Mater Sci. 73 44Google Scholar

    [52]

    Booth T J, Blake P, Nair R R, Jiang D, Hill E W, Bangert U, Bleloch A, Gass M, Novoselov K S, Katsnelson M I 2008 Nano Lett. 8 2442Google Scholar

    [53]

    Zhang W X, Shi C H, He C, Bai M 2020 J. Solid State Chem. 289 121511Google Scholar

    [54]

    Zheng J S, Li E L, Ma D M, Cui Z, Peng T, Wang X L 2019 Phys. Status Solidi B 256 1900161Google Scholar

    [55]

    Li Z H, Han J N, Cao S G, Zhang Z H 2023 Appl. Surf. Sci. 614 156095Google Scholar

    [56]

    Nguyen C V, Idrees M, Phuc H V, Hieu N N, Binh N T, Amin B, Vu T V 2020 Phys. Rev. B 101 235419Google Scholar

  • [1] Huang Min, Li Zhan-Hai, Cheng Fang. Tunable electronic structures and interface contact in graphene/C3N van der Waals heterostructures. Acta Physica Sinica, 2023, 72(14): 147302. doi: 10.7498/aps.72.20230318
    [2] Tang Jia-Xin, Li Zhan-Hai, Deng Xiao-Qing, Zhang Zhen-Hua. Electrical contact characteristics and regulatory effects of GaN/VSe2 van der Waals heterojunction. Acta Physica Sinica, 2023, 72(16): 167101. doi: 10.7498/aps.72.20230191
    [3] Ding Hua-Jun, Xue Zhong-Ying, Wei Xing, Zhang Bo. Effects of ultra-thin aluminium interlayer on Schottky barrier parameters of NiGe/n-type Ge Schottky barrier diode. Acta Physica Sinica, 2022, 71(20): 207302. doi: 10.7498/aps.71.20220320
    [4] Liang Qian, Qian Guo-Lin, Luo Xiang-Yan, Liang Yong-Chao, Xie Quan. Modulation of MoSH/WSi2N4 Schottky-junction barrier by external electric field and biaxial strain. Acta Physica Sinica, 2022, 71(21): 217301. doi: 10.7498/aps.71.20220882
    [5] Hao Guo-Qiang, Zhang Rui, Zhang Wen-Jing, Chen Na, Ye Xiao-Jun, Li Hong-Bo. Regulation and control of Schottky barrier in graphene/MoSe2 heteojuinction by asymmetric oxygen doping. Acta Physica Sinica, 2022, 71(1): 017104. doi: 10.7498/aps.71.20210238
    [6] Deng Xu-Liang, Ji Xian-Fei, Wang De-Jun, Huang Ling-Qin. First principle study on modulating of Schottky barrier at metal/4H-SiC interface by graphene intercalation. Acta Physica Sinica, 2022, 71(5): 058102. doi: 10.7498/aps.71.20211796
    [7] Huang Ling-Qin, Zhu Jing, Ma Yue, Liang Ting, Lei Cheng, Li Yong-Wei, Gu Xiao-Gang. Research status and progress of metal contacts of SiC power devices. Acta Physica Sinica, 2021, 70(20): 207302. doi: 10.7498/aps.70.20210675
    [8] Zhang Fang, Jia Li-Qun, Sun Xian-Ting, Dai Xian-Qi, Huang Qi-Xiang, Li Wei. Tuning Schottky barrier in graphene/InSe van der Waals heterostructures by electric field. Acta Physica Sinica, 2020, 69(15): 157302. doi: 10.7498/aps.69.20191987
    [9] Wang Chen, Xu Yi-Hong, Li Cheng, Lin Hai-Jun, Zhao Ming-Jie. Improved performance of Al/n+Ge Ohmic contact andGe n+/p diode by two-step annealing method. Acta Physica Sinica, 2019, 68(17): 178501. doi: 10.7498/aps.68.20190699
    [10] Guo Li-Juan, Hu Ji-Song, Ma Xin-Guo, Xiang Ju. Interfacial interaction and Schottky contact of two-dimensional WS2/graphene heterostructure. Acta Physica Sinica, 2019, 68(9): 097101. doi: 10.7498/aps.68.20190020
    [11] Xu Feng1\2, Yu Guo-Hao, Deng Xu-Guang, Li Jun-Shuai, Zhang Li, Song Liang, Fan Ya-Ming, Zhang Bao-Shun. Current transport mechanism of Schottky contact of Pt/Au/n-InGaN. Acta Physica Sinica, 2018, 67(21): 217802. doi: 10.7498/aps.67.20181191
    [12] Wu Kong-Ping, Sun Chang-Xu, Ma Wen-Fei, Wang Jie, Wei Wei, Cai Jun, Chen Chang-Zhao, Ren Bin, Sang Li-Wen, Liao Mei-Yong. Interface electronic structure and the Schottky barrier at Al-diamond interface: hybrid density functional theory HSE06 investigation. Acta Physica Sinica, 2017, 66(8): 088102. doi: 10.7498/aps.66.088102
    [13] Zhao Shou-Ren, Huang Zhi-Peng, Sun Lei, Sun Peng-Chao, Zhang Chuan-Jun, Wu Yun-Hua, Cao Hong, Wang Shan-Li, Chu Jun-Hao. A detailed study of the effect of Schottky barrier on the dark current density-voltage characteristics of CdS/CdTe solar cells. Acta Physica Sinica, 2013, 62(16): 168801. doi: 10.7498/aps.62.168801
    [14] Wang Xiao-Yong, Chong Ming, Zhao De-Gang, Su Yan-Mei. Two-dimensional hole gas in p-GaN/p-AlxGa1-xN heterojunctions and its influence on Ohmic contact. Acta Physica Sinica, 2012, 61(21): 217302. doi: 10.7498/aps.61.217302
    [15] Pan Shu-Wan, Qi Dong-Feng, Chen Song-Yan, Li Cheng, Huang Wei, Lai Hong-Kai. Se ultrathin film growth on Si(100) substrate and its application in Ti/n-Si(100) ohmic contact. Acta Physica Sinica, 2011, 60(9): 098108. doi: 10.7498/aps.60.098108
    [16] Wang Guang-Xu, Jiang Feng-Yi, Feng Fei-Fei, Liu Jun-Lin, Qiu Chong. N-polar n-type ohmic contact of GaN-based LED on Si substrate. Acta Physica Sinica, 2010, 59(8): 5706-5709. doi: 10.7498/aps.59.5706
    [17] Xiu Ming-Xia, Ren Jun-Feng, Wang Yu-Mei, Yuan Xiao-Bo, Hu Gui-Chao. Effect of Schottky barrier on spin injection in ferromagnetic/organic semiconductor structure. Acta Physica Sinica, 2010, 59(12): 8856-8861. doi: 10.7498/aps.59.8856
    [18] Huang Wei, Chen Zhi-Zhan, Chen Yi, Shi Er-Wei, Zhang Jing-Yu, Liu Qing-Feng, Liu Qian. Effect of Ni thickness on the contact properties of Ni/6H-SiC analyzed by combinatorial method. Acta Physica Sinica, 2010, 59(5): 3466-3472. doi: 10.7498/aps.59.3466
    [19] Wang Chong, Feng Qian, Hao Yue, Wan Hui. Effect of pre-metallization processing and annealing on Ni/Au Schottky contacts in AlGaN/GaN heterostructures. Acta Physica Sinica, 2006, 55(11): 6085-6089. doi: 10.7498/aps.55.6085
    [20] LI HONG-WEI, WANG TAI-HONG. THE INFLUENCE OF InAs QUANTUM DOTS ON THE TRANSPORT PROPERTIES OF SCHOTTKY DIODE. Acta Physica Sinica, 2001, 50(12): 2501-2505. doi: 10.7498/aps.50.2501
Metrics
  • Abstract views:  1818
  • PDF Downloads:  64
  • Cited By: 0
Publishing process
  • Received Date:  16 April 2024
  • Accepted Date:  23 May 2024
  • Available Online:  24 May 2024
  • Published Online:  05 July 2024

/

返回文章
返回