Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Regulation and control of Schottky barrier in graphene/MoSe2 heteojuinction by asymmetric oxygen doping

Hao Guo-Qiang Zhang Rui Zhang Wen-Jing Chen Na Ye Xiao-Jun Li Hong-Bo

Citation:

Regulation and control of Schottky barrier in graphene/MoSe2 heteojuinction by asymmetric oxygen doping

Hao Guo-Qiang, Zhang Rui, Zhang Wen-Jing, Chen Na, Ye Xiao-Jun, Li Hong-Bo
PDF
HTML
Get Citation
  • Although graphene-based heterostructures exhibit excellent intrinsic properties for device scaling, fabricating low Schottky barrier is still a great challenge to the electrical transport behaviors of nanoelectronic devices. Exploring excellent materials for electronic devices are a research hotspot at present. Graphene not only exhibits excellent physical strength and specific surface area, but also presents high carrier mobility and thermal conductivity. Therefore, graphene has been developed in many fields such as energy, catalysis, etc. However, graphene is a special material with zero band gap, and its electrons and holes are easy to compound, which seriously hinders its development in the applications of electronic and optoelectronic devices. Two-dimensional transition metal dichalcogenides (TMDs) have the advantages of controllable band gap properties, which makes them have a good development in logic circuits and photodetectors. As one of TMDS, MoSe2 possesses the advantages of narrower band gap, better electron hole separation and stronger oxidation resistance in the environment. Therefore, the design of graphene and MoSe2 heterostructures is an ideal choice for a new generation of nanoelectronic devices. Here, we investigate systematically the effects of asymmetric O doping on the electronic properties and Schottky barrier of graphene/MoSe2(1–x)O2x heterostructure for the first time by first-principles calculations incorporating semiempirical dispersion-correction scheme. The results indicate that graphene and MoSe2 monolayer can form a stable van der Waals heterostructure with preserving their own intrinsic properties. In addition, an n-type schottky contact with a barrier height of 0.558 eV is obtained. Further, it is found that the type and the height of the Schottky barrier can be controlled by changing the concentration and sites of the O dopant at interface. By increasing the concentration of the O dopant inside the interface, the transition from an n-type Schottky contact to an Ohmic contact can be realized, and a low n-type Schottky barrier is gained with increasing the concentration of the O dopant outside the interface for highly efficient charge transfer. The barrier height of heterostructure decreases from 0.558 eV to 0.112 eV when the O dopant is doped on the outer interface. Finally, as a complement to previous results, it is confirmed that the redistribution of interfacial charges leads the Fermi level to shift, and thus determining the type and the height of Schottky barrier. This study may provide theoretical guidance for designing and manufacturing the MoSe2-based nano field effect transistors.
      Corresponding author: Zhang Rui, zhangrui-nadia@outlook.com ; Li Hong-Bo, lihongbo@ecust.edu.cn
    • Funds: Project supported by the Shanghai Committee of Science and Technology, China (Grant No. 17DZ1201405)
    [1]

    Geim A K 2009 Science 324 1530Google Scholar

    [2]

    Novoselov K S, Jiang Z, Zhang Y, et al. 2007 Science 315 1379Google Scholar

    [3]

    Tonndorf P, Schmidt R, Böttger P, et al. 2013 Opt. express 21 4908Google Scholar

    [4]

    Rathi S, Lee I, Lim D, Wang J, Ochiai Y, Aoki N, Watanabe K, Taniguchi T, Lee G H, Yu Y J, Kim P, Kim G H 2015 Nano Lett. 15 5017Google Scholar

    [5]

    Ross J S, Wu S, Yu H, Ghimire N J, Jones A M, Aivazian G, Yan J, Mandrus D G, Xiao D, Yao W, Xu X 2013 Nat. Commun. 4 1474Google Scholar

    [6]

    Tongay S, Zhou J, Ataca C, Lo K, Matthews T S, Li J, Grossman J C, Wu J 2012 Nano Lett. 12 5576Google Scholar

    [7]

    Larentis S, Fallahazad B, Tutuc E 2012 Appl. Phys. Lett. 101 223104Google Scholar

    [8]

    Liu Y, Guo J, Zhu E, Liao L, Lee S J, Ding M, Shakir I, Gambin V, Huang Y, Duan X 2018 Nature 557 696Google Scholar

    [9]

    Bardeen J 1947 Phys. Rev. 71 717Google Scholar

    [10]

    Miedema A R, Chatel P F, Boer F R 1980 Physica 100 1Google Scholar

    [11]

    Çakır D, Sevik C, Peeters F 2014 J. Mater. Chem. C 2 9842Google Scholar

    [12]

    Hong X, Kim J, Shi S F, Zhang Y, Jin C, Sun Y, Tongay S, Wu J, Zhang Y, Wang F 2014 Nat. Nanotechnol. 9 682Google Scholar

    [13]

    Vu T V, Hieu N V, Phuc H V, Hieu N N, Bui H D, Idrees M, Amin B, Nguyen C V 2020 Appl. Surf. Sci. 507 145036Google Scholar

    [14]

    郭丽娟, 胡吉松, 马新国, 项炬 2019 物理学报 68 097101Google Scholar

    Guo L J, Hu J S, Ma X G, Xiang J 2019 Acta Phys. Sin. 68 097101Google Scholar

    [15]

    Sata Y, Moriya R, Morikawa S, Yabuki N, Masubuchi S, Machida T 2015 Appl. Phys. Lett. 107 023109Google Scholar

    [16]

    Sun Z, Chu H, Li Y, Zhao S, Li G, Li D 2019 Mater. Design 183 108129Google Scholar

    [17]

    Hu J, Duan W, He H, Lv H, Huang C, Ma X 2019 J. Mater. Chem. C 7 7798Google Scholar

    [18]

    Weng J, Gao S P 2018 Phys. Chem. Chem. Phys. 20 26453Google Scholar

    [19]

    Perdew J, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [20]

    Tkatchenko A, Scheffler M 2009 Phys. Rev. Lett. 102 073005Google Scholar

    [21]

    Chan K, Neaton J, Cohen M 2008 Phys. Rev. B 77 235430Google Scholar

    [22]

    Saha P, Ghosh B, Mazumder A, Mukherjee G D 2020 Mater. Res. Express 7 025902Google Scholar

    [23]

    Zhang R, Hao G, Ye X, Gao S, Li H 2020 Phys. Chem. Chem. Phys. 22 23699Google Scholar

    [24]

    Hieu N N, Phuc H V, Ilyasov V V, Chien N D, Poklonski N A, Van Hieu N, Nguyen C V 2017 J. Appl. Phys. 122 104301Google Scholar

    [25]

    Hu J, Ji G, Ma X, He H, Huang C 2018 Appl. Surf. Sci. 440 35Google Scholar

    [26]

    Zhang R, Hao G, Li H, Ye X, Gao S, Yuan X, Liu C 2020 J. Phys. Chem. Solids 143 109466Google Scholar

    [27]

    Peng Q, Wang Z, Sa B, Wu B, Sun Z 2016 Sci. Rep-UK 6 31994Google Scholar

    [28]

    Ugeda M, Bradley A, Shi S F, Da Jornada F, Zhang Y, Qiu D, Mo S K, Hussain Z, Shen Z X, Wang F, Louie S, Crommie M 2014 Nat. Mater. 13 1091Google Scholar

    [29]

    危阳, 马新国, 祝林, 贺华, 黄楚云 2017 物理学报 66 087101Google Scholar

    Wei Y, Ma X G, Zhu L, He H, Huang C Y 2017 Acta Phys. Sin. 66 087101Google Scholar

    [30]

    Bjorkman T, Gulans A, Krasheninnikov A V, Nieminen R M 2012 Phys. Rev. Lett. 108 235502Google Scholar

    [31]

    Liu B, Wu L, Zhao Y, Wang L, Cai M 2016 RSC Adv. 6 60271Google Scholar

    [32]

    Ebnonnasir A, Narayanan B, Kodambaka S, Ciobanu C V 2014 Appl. Phys. Lett. 105 031603Google Scholar

    [33]

    Xu P, Tang Q, Zhou Z 2013 Nanotechnology 24 305401Google Scholar

    [34]

    Du A, Sanvito S, Li Z, Wang D, Jiao Y, Liao T, Sun Q, Ng Y H, Zhu Z, Amal R 2012 J. Am. Chem. Soc. 134 4393Google Scholar

    [35]

    Zhao Y, Lee H J, Choi W, Fei W, Lee C J 2017 RSC Adv. 7 27969Google Scholar

    [36]

    Zhang R, Hao G, Ye X, Zhang W, Li H 2021 J. Appl. Phys. 129 174302Google Scholar

  • 图 1  (a) 石墨烯4 × 4超胞和二硒化钼3 × 3超胞组成的异质结俯视图; (b) 石墨烯5 × 5超胞和二硒化钼4 × 4超胞组成的异质结俯视图; (c) PBE和LDA两种方法下层间距与石墨烯/二硒化钼异质结结合能的关系. 两个箭头表示两种方法下最低能量时的层间距

    Figure 1.  (a) Top views of heterostructure composed of 4 × 4 lateral periodicity of graphene and 3 × 3 lateral periodicity of MoSe2 monolayer; (b) top views of heterostructure composed of 5 × 5 lateral periodicity of graphene and 4 × 4 lateral periodicity of MoSe2 monolayer; (c) dependence of Ecoh in graphene/MoSe2 heterostructure on the interlayer distance under LDA and PBE methods. The two arrows indicate the d with the lowest Ecoh for LDA and PBE methods.

    图 2  能带结构图 (a) 石墨烯; (b) 单层二硒化钼; (c) 石墨烯/二硒化钼异质结. (d) 石墨烯/二硒化钼异质结的总态密度和分态密度; (e) 异质结中二硒化钼的分态密度; (f) 异质结中石墨烯的分态密度. 费米能级设置为零, 用红色虚线表示

    Figure 2.  Band structures of (a) graphene; (b) MoSe2 monolayer; (c) graphene/MoSe2 heterostructure; (d) total density of states (DOS) and partial density of states (PDOS) of graphene/MoSe2 heterostructure; (e) PDOS of MoSe2 in the heterostructure; (f) PDOS of graphene in the heterostructure. The Fermi level is set to zero, denoted as a red dashed line.

    图 3  静电势 (a) 石墨烯; (b) 单层二硒化钼; (c) 石墨烯/二硒化钼异质结(红色和紫色虚线分别代表费米能级和真空能级); (d) 石墨烯和单层二硒化钼接触前和接触后的带边位置图

    Figure 3.  Electrostatic potentials of (a) graphene; (b) MoSe2 monolayer; (c) graphene/MoSe2 heterostructure(red and purple dashed lines represent the Fermi level and vacuum level, respectively); (d) energy level lineup diagrams for graphene and MoSe2 monolayer before and after contact.

    图 4  石墨烯/二硒化钼异质结的三维电荷密度差分 (a) 俯视图; (b) 侧视图; (c) 石墨烯/二硒化钼异质结的平面平均电荷密度差分

    Figure 4.  Three-dimensional charge density difference diagram of graphene/MoSe2 heterostructure: (a) Top view and (b) side view; (c) plane-averaged charge density difference of graphene/MoSe2 heterostructure.

    图 5  不同掺杂浓度的Gr/MoSe2(1–x)O2x异质结侧视图 (a)−(g) 对应界面内氧掺杂浓度分别为11%, 22%, 33%, 44%, 56%, 67%和78%; (h)−(n) 对应界面外氧掺杂浓度分别为11%, 22%, 33%, 44%, 56%, 67%和78%. 浅蓝色, 黄色, 灰色和红色的球分别表示钼, 硒, 碳和氧原子

    Figure 5.  Side views of the Gr/WSe2(1–x)O2x heterostructures with different concentrations of the oxygen dopant: (a)−(g) show the O doping on the inner interface are 11%, 22%, 33%, 44%, 56%, 67% and 78%, respectively. (h)−(n) represent the oxygen doping on the outer interface are 11%, 22%, 33%, 44%, 56%, 67% and 78%, respectively. The light blue, yellow, grey and red balls represent Mo, Se, C and O atoms, respectively.

    图 6  不同氧掺杂浓度下Gr/MoSe2(1–x)O2x异质结的能带结构图 (a)−(g) 对应界面内氧掺杂浓度分别为11%, 22%, 33%, 44%, 56%, 67%和78%; (h)−(n) 对应界面外O掺杂浓度分别为11%, 22%, 33%, 44%, 56%, 67%和78%. 费米能级用红色虚线标记, 并设置为零

    Figure 6.  The band structures of the Gr/MoSe2(1–x)O2x heterostructure under asymmetric oxygen doping: (a)−(g) Show the oxygen doping on the inner interface are 11%, 22%, 33%, 44%, 56%, 67% and 78%, respectively; (h)−(n) represent the oxygen doping on the outer interface are 11%, 22%, 33%, 44%, 56%, 67% and 78%, respectively. The Fermi level is marked with a dashed red line and set to zero.

    图 7  不同氧掺杂浓度下 (a) Gr/MoSe2(1–x)O2x异质结的肖特基势垒高度; (b) Gr/MoSe2(1–x)O2x异质结的功函数; (c) Gr/MoSe2(1–x)O2x异质结沿着Z方向氧掺杂在内表面和外表面的平面平均电荷密度差分图

    Figure 7.  Dependence of (a) the SBH and (b) work function in Gr/MoSe2(1–x)O2x heterostructure on the oxygen doping concentration; (c) calculated planar electron density differences of the Gr/MoSe2(1–x)O2x heterostructure along the Z direction in different oxygen doping concentrations inside and outside the interface.

    表 1  不同氧原子掺杂浓度的Gr/MoSe2(1–x)O2x异质结失配率

    Table 1.  Mismatch ratio of Gr/MoS2(1–x)O2x heterosstructure with different oxygen doping concentration

    氧原子掺杂浓度/%晶格常数/Å (a = b)失配率/%
    MoSe2(1–x)O2xGraphene
    09.8469.8380.08
    119.7219.8381.19
    229.6819.8381.60
    339.5529.8382.91
    449.4789.8383.65
    569.4249.8384.21
    679.3599.8384.87
    789.4049.8384.41
    899.3429.8385.04
    1009.2679.8385.80
    DownLoad: CSV
  • [1]

    Geim A K 2009 Science 324 1530Google Scholar

    [2]

    Novoselov K S, Jiang Z, Zhang Y, et al. 2007 Science 315 1379Google Scholar

    [3]

    Tonndorf P, Schmidt R, Böttger P, et al. 2013 Opt. express 21 4908Google Scholar

    [4]

    Rathi S, Lee I, Lim D, Wang J, Ochiai Y, Aoki N, Watanabe K, Taniguchi T, Lee G H, Yu Y J, Kim P, Kim G H 2015 Nano Lett. 15 5017Google Scholar

    [5]

    Ross J S, Wu S, Yu H, Ghimire N J, Jones A M, Aivazian G, Yan J, Mandrus D G, Xiao D, Yao W, Xu X 2013 Nat. Commun. 4 1474Google Scholar

    [6]

    Tongay S, Zhou J, Ataca C, Lo K, Matthews T S, Li J, Grossman J C, Wu J 2012 Nano Lett. 12 5576Google Scholar

    [7]

    Larentis S, Fallahazad B, Tutuc E 2012 Appl. Phys. Lett. 101 223104Google Scholar

    [8]

    Liu Y, Guo J, Zhu E, Liao L, Lee S J, Ding M, Shakir I, Gambin V, Huang Y, Duan X 2018 Nature 557 696Google Scholar

    [9]

    Bardeen J 1947 Phys. Rev. 71 717Google Scholar

    [10]

    Miedema A R, Chatel P F, Boer F R 1980 Physica 100 1Google Scholar

    [11]

    Çakır D, Sevik C, Peeters F 2014 J. Mater. Chem. C 2 9842Google Scholar

    [12]

    Hong X, Kim J, Shi S F, Zhang Y, Jin C, Sun Y, Tongay S, Wu J, Zhang Y, Wang F 2014 Nat. Nanotechnol. 9 682Google Scholar

    [13]

    Vu T V, Hieu N V, Phuc H V, Hieu N N, Bui H D, Idrees M, Amin B, Nguyen C V 2020 Appl. Surf. Sci. 507 145036Google Scholar

    [14]

    郭丽娟, 胡吉松, 马新国, 项炬 2019 物理学报 68 097101Google Scholar

    Guo L J, Hu J S, Ma X G, Xiang J 2019 Acta Phys. Sin. 68 097101Google Scholar

    [15]

    Sata Y, Moriya R, Morikawa S, Yabuki N, Masubuchi S, Machida T 2015 Appl. Phys. Lett. 107 023109Google Scholar

    [16]

    Sun Z, Chu H, Li Y, Zhao S, Li G, Li D 2019 Mater. Design 183 108129Google Scholar

    [17]

    Hu J, Duan W, He H, Lv H, Huang C, Ma X 2019 J. Mater. Chem. C 7 7798Google Scholar

    [18]

    Weng J, Gao S P 2018 Phys. Chem. Chem. Phys. 20 26453Google Scholar

    [19]

    Perdew J, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [20]

    Tkatchenko A, Scheffler M 2009 Phys. Rev. Lett. 102 073005Google Scholar

    [21]

    Chan K, Neaton J, Cohen M 2008 Phys. Rev. B 77 235430Google Scholar

    [22]

    Saha P, Ghosh B, Mazumder A, Mukherjee G D 2020 Mater. Res. Express 7 025902Google Scholar

    [23]

    Zhang R, Hao G, Ye X, Gao S, Li H 2020 Phys. Chem. Chem. Phys. 22 23699Google Scholar

    [24]

    Hieu N N, Phuc H V, Ilyasov V V, Chien N D, Poklonski N A, Van Hieu N, Nguyen C V 2017 J. Appl. Phys. 122 104301Google Scholar

    [25]

    Hu J, Ji G, Ma X, He H, Huang C 2018 Appl. Surf. Sci. 440 35Google Scholar

    [26]

    Zhang R, Hao G, Li H, Ye X, Gao S, Yuan X, Liu C 2020 J. Phys. Chem. Solids 143 109466Google Scholar

    [27]

    Peng Q, Wang Z, Sa B, Wu B, Sun Z 2016 Sci. Rep-UK 6 31994Google Scholar

    [28]

    Ugeda M, Bradley A, Shi S F, Da Jornada F, Zhang Y, Qiu D, Mo S K, Hussain Z, Shen Z X, Wang F, Louie S, Crommie M 2014 Nat. Mater. 13 1091Google Scholar

    [29]

    危阳, 马新国, 祝林, 贺华, 黄楚云 2017 物理学报 66 087101Google Scholar

    Wei Y, Ma X G, Zhu L, He H, Huang C Y 2017 Acta Phys. Sin. 66 087101Google Scholar

    [30]

    Bjorkman T, Gulans A, Krasheninnikov A V, Nieminen R M 2012 Phys. Rev. Lett. 108 235502Google Scholar

    [31]

    Liu B, Wu L, Zhao Y, Wang L, Cai M 2016 RSC Adv. 6 60271Google Scholar

    [32]

    Ebnonnasir A, Narayanan B, Kodambaka S, Ciobanu C V 2014 Appl. Phys. Lett. 105 031603Google Scholar

    [33]

    Xu P, Tang Q, Zhou Z 2013 Nanotechnology 24 305401Google Scholar

    [34]

    Du A, Sanvito S, Li Z, Wang D, Jiao Y, Liao T, Sun Q, Ng Y H, Zhu Z, Amal R 2012 J. Am. Chem. Soc. 134 4393Google Scholar

    [35]

    Zhao Y, Lee H J, Choi W, Fei W, Lee C J 2017 RSC Adv. 7 27969Google Scholar

    [36]

    Zhang R, Hao G, Ye X, Zhang W, Li H 2021 J. Appl. Phys. 129 174302Google Scholar

  • [1] Li Jing-Hui, Cao Sheng-Guo, Han Jia-Ning, Li Zhan-Hai, Zhang Zhen-Hua. Electrical contact properties of 2D metal-semiconductor heterojunctions composed of different phases of NbS2 and GeS2. Acta Physica Sinica, 2024, 73(13): 137102. doi: 10.7498/aps.73.20240530
    [2] Tang Jia-Xin, Li Zhan-Hai, Deng Xiao-Qing, Zhang Zhen-Hua. Electrical contact characteristics and regulatory effects of GaN/VSe2 van der Waals heterojunction. Acta Physica Sinica, 2023, 72(16): 167101. doi: 10.7498/aps.72.20230191
    [3] Dong Xiao. Density functional theory on reaction mechanism between p-doped LiNH2 clusters and LiH and a new hydrogen storage and desorption mechanism. Acta Physica Sinica, 2023, 72(15): 153101. doi: 10.7498/aps.72.20230374
    [4] Deng Xu-Liang, Ji Xian-Fei, Wang De-Jun, Huang Ling-Qin. First principle study on modulating of Schottky barrier at metal/4H-SiC interface by graphene intercalation. Acta Physica Sinica, 2022, 71(5): 058102. doi: 10.7498/aps.71.20211796
    [5] Ding Hua-Jun, Xue Zhong-Ying, Wei Xing, Zhang Bo. Effects of ultra-thin aluminium interlayer on Schottky barrier parameters of NiGe/n-type Ge Schottky barrier diode. Acta Physica Sinica, 2022, 71(20): 207302. doi: 10.7498/aps.71.20220320
    [6] Zhang Fang, Jia Li-Qun, Sun Xian-Ting, Dai Xian-Qi, Huang Qi-Xiang, Li Wei. Tuning Schottky barrier in graphene/InSe van der Waals heterostructures by electric field. Acta Physica Sinica, 2020, 69(15): 157302. doi: 10.7498/aps.69.20191987
    [7] Ma Hao-Hao, Zhang Xian-Bin, Wei Xu-Yan, Cao Jia-Meng. Theoretical study on Schottky regulation of WSe2/graphene heterostructure doped with nonmetallic elements. Acta Physica Sinica, 2020, 69(11): 117101. doi: 10.7498/aps.69.20200080
    [8] Guo Li-Juan, Hu Ji-Song, Ma Xin-Guo, Xiang Ju. Interfacial interaction and Schottky contact of two-dimensional WS2/graphene heterostructure. Acta Physica Sinica, 2019, 68(9): 097101. doi: 10.7498/aps.68.20190020
    [9] Xu Feng1\2, Yu Guo-Hao, Deng Xu-Guang, Li Jun-Shuai, Zhang Li, Song Liang, Fan Ya-Ming, Zhang Bao-Shun. Current transport mechanism of Schottky contact of Pt/Au/n-InGaN. Acta Physica Sinica, 2018, 67(21): 217802. doi: 10.7498/aps.67.20181191
    [10] Li Dan, Liang Jun-Wu, Liu Hua-Wei, Zhang Xue-Hong, Wan Qiang, Zhang Qing-Lin, Pan An-Lian. Asymmetric waveguide and the dual-wavelength stimulated emission for CdS/CdS0.48Se0.52 axial nanowire heterostructures. Acta Physica Sinica, 2017, 66(6): 064204. doi: 10.7498/aps.66.064204
    [11] Wu Kong-Ping, Sun Chang-Xu, Ma Wen-Fei, Wang Jie, Wei Wei, Cai Jun, Chen Chang-Zhao, Ren Bin, Sang Li-Wen, Liao Mei-Yong. Interface electronic structure and the Schottky barrier at Al-diamond interface: hybrid density functional theory HSE06 investigation. Acta Physica Sinica, 2017, 66(8): 088102. doi: 10.7498/aps.66.088102
    [12] Tao Peng-Cheng, Huang Yan, Zhou Xiao-Hao, Chen Xiao-Shuang, Lu Wei. First principles investigation of the tuning in metal-MoS2 interface induced by doping. Acta Physica Sinica, 2017, 66(11): 118201. doi: 10.7498/aps.66.118201
    [13] Yang Zhen-Qing, Bai Xiao-Hui, Shao Chang-Jin. Density functional theory studies of (TiO2)12 quantum ring and its electronic properties when doped with transition metal compounds. Acta Physica Sinica, 2015, 64(7): 077102. doi: 10.7498/aps.64.077102
    [14] Liu Fu-Ti, Cheng Yan, Chen Xiang-Rong, Cheng Xiao-Hong, Zeng Zhi-Qiang. Theoretical calculation of electron transport properties of the Au-Si60-Au molecular junctions. Acta Physica Sinica, 2014, 63(17): 177304. doi: 10.7498/aps.63.177304
    [15] Shi Da-Wei, Wu Mei-Ling, Yang Chang-Ping, Ren Chun-Ling, Xiao Hai-Bo, Wang Kai-Ying. AC properties of Pr0.7Ca0.3MnO3 ceramics. Acta Physica Sinica, 2013, 62(2): 026201. doi: 10.7498/aps.62.026201
    [16] Zhao Shou-Ren, Huang Zhi-Peng, Sun Lei, Sun Peng-Chao, Zhang Chuan-Jun, Wu Yun-Hua, Cao Hong, Wang Shan-Li, Chu Jun-Hao. A detailed study of the effect of Schottky barrier on the dark current density-voltage characteristics of CdS/CdTe solar cells. Acta Physica Sinica, 2013, 62(16): 168801. doi: 10.7498/aps.62.168801
    [17] Xie Xiao-Dong, Hao Yu-Ying, Zhang Ri-Guang, Wang Bao-Jun. Lithium-doped tris (8-hydroxyquinoline) aluminum studied by density functional theory. Acta Physica Sinica, 2012, 61(12): 127201. doi: 10.7498/aps.61.127201
    [18] Xiu Ming-Xia, Ren Jun-Feng, Wang Yu-Mei, Yuan Xiao-Bo, Hu Gui-Chao. Effect of Schottky barrier on spin injection in ferromagnetic/organic semiconductor structure. Acta Physica Sinica, 2010, 59(12): 8856-8861. doi: 10.7498/aps.59.8856
    [19] Wu Kai-Shun, Long Xing-Teng, Dong Jian-Wen, Chen Di-Hu, Wang He-Zhou. Phase properties of photonic crystal heterostructure and its applications. Acta Physica Sinica, 2008, 57(10): 6381-6385. doi: 10.7498/aps.57.6381
    [20] LI HONG-WEI, WANG TAI-HONG. THE INFLUENCE OF InAs QUANTUM DOTS ON THE TRANSPORT PROPERTIES OF SCHOTTKY DIODE. Acta Physica Sinica, 2001, 50(12): 2501-2505. doi: 10.7498/aps.50.2501
Metrics
  • Abstract views:  7653
  • PDF Downloads:  199
  • Cited By: 0
Publishing process
  • Received Date:  01 February 2021
  • Accepted Date:  07 May 2021
  • Available Online:  15 September 2021
  • Published Online:  05 January 2022

/

返回文章
返回