Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Modulation of MoSH/WSi2N4 Schottky-junction barrier by external electric field and biaxial strain

Liang Qian Qian Guo-Lin Luo Xiang-Yan Liang Yong-Chao Xie Quan

Liang Qian, Qian Guo-Lin, Luo Xiang-Yan, Liang Yong-Chao, Xie Quan. Modulation of MoSH/WSi2N4 Schottky-junction barrier by external electric field and biaxial strain. Acta Phys. Sin., 2022, 71(21): 217301. doi: 10.7498/aps.71.20220882
Citation: Liang Qian, Qian Guo-Lin, Luo Xiang-Yan, Liang Yong-Chao, Xie Quan. Modulation of MoSH/WSi2N4 Schottky-junction barrier by external electric field and biaxial strain. Acta Phys. Sin., 2022, 71(21): 217301. doi: 10.7498/aps.71.20220882

Modulation of MoSH/WSi2N4 Schottky-junction barrier by external electric field and biaxial strain

Liang Qian, Qian Guo-Lin, Luo Xiang-Yan, Liang Yong-Chao, Xie Quan
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • In view of the newly synthesized two-dimensional (2D) semiconductor material WSi2N4 (WSN) and the 2D metal material MoSH (MSH), a metal-semiconductor MSH/WSN Schottky-junction is constructed in this work. In practical applications of metal-semiconductor contact, the presence of the Schottky barrier degrades the device performance severely. Therefore, it is crucial to obtain a smaller Schottky barrier height or even an Ohmic contact. Here, the first-principles calculations are used to investigate the variation of the Schottky barrier in MSH/WSN Schottky-junction under an external electric field and a biaxial strain. The results show that both external electric field and biaxial strain can effectively modulate the Schottky barrier of the MSH/WSN Schottky-junction. The dynamic switching between the p-type Schottky contact and the n-type Schottky contact can be achieved under the action of positive external electric field in the MSH/WSN Schottky-junction. Under the action of negative external electric field, the MSH/WSN Schottky-junction can be modulated to realize the transition from the Schottky contact to the Ohmic contact. The large biaxial strain can also induce the MSH/WSN Schottky-junction to realize the transition between the p-type Schottky contact and the n-type Schottky contact. This work may provide theoretical guidance for the WSN semiconductor based Schottky functional devices and field-effect transistors.
      PACS:
      73.30.+y(Surface double layers, Schottky barriers, and work functions)
      79.60.Jv(Interfaces; heterostructures; nanostructures)
      Corresponding author: Xie Quan, qxie@gzu.edu.cn
    • Funds: Project supported by the Industry and Education Combination Innovation Platform of Intelligent Manufacturing and Graduate Joint Training Base at Guizhou University, China (Grant No. 2020-520000-83-01-324061), the National Natural Science Foundation of China (Grant No. 61264004), and the High-level Creative Talent Training Program in Guizhou Province of China (Grant No. [2015]4015).

    2004年, 石墨烯成功从块体石墨中被剥离出来[1], 它展现出优异的电子、光学、力学和机械特性以及超高的延展性[2-4], 同时, 它在室温下具有超高载流子迁移率[5](约为25000 cm2·V–1·s–1). 但是, 石墨烯零带隙的特性限制了其在电子器件方面的应用, 人们开始把目光转向别的二维材料: 过渡金属硫化物(transition metal dichalcogenides, TMDCs)[6-9]、六方氮化硼 (h-BN)[10-12]、黑磷 (BP)[13,14]等, 这些新兴的二维材料在纳米电子学、光电子学、谷电子学、自旋电子学和储能技术等方面有着极其诱人的潜力[15-18]. 随后, 范德瓦耳斯异质结的出现更是带来了相对于其他单层二维材料更诱人的前景. 范德瓦耳斯异质结保留了每层二维材料的固有电子特性, 具有独特的电子和器件性能, 在纳米电子和光电子器件制造等领域中逐渐取代了石墨烯和其他单层二维材料.

    2020年, Hong等[19]通过化学气相沉积(chemical vapor deposition, CVD)成功合成了自然界不存在的新型层状二维材料MoSi2N4(MSN)及其衍生物WSN, 七原子层结构带来了相比于其他二维材料更优异的性能, 许多基于MSN的研究就此展开. 他们还采用第一性原理计算预测了一个全新的MA2Z4家族, 其中M代表了过渡金属元素(Mo, W, V, Nb, Ta, Ti, Zr, Hf, 或Cr), A代表了Si或Ge元素, Z代表了N, P或As元素, 它们均在动力学上稳定. Wu等[20]通过在MSN和WSN双层上施加外加电场和双轴应变, 发现压缩应变能实现该双层结构从间接带隙到直接带隙的转变, 而外加电场可实现该双层结构从半导体性到金属性的转变, 表明MSN/WSN双层结构有望成为下一代纳米电子和光电子新材料. 最近, Qian等[21]和Zang等[22]通过在MSN和WSN中引入N空位缺陷, 发现MSN和WSN表现出高效的析氢反应(hydrogen evolution reaction, HER)催化活性, 相对于本征MSN和WSN有了质的提升, 表明含有N空位缺陷的MSN和WSN可作为HER催化剂.

    近年来, 有着Janus (即古罗马神话中的“双面神”, 暗指两个相对面上具有不对称性质)结构的二维材料引起了人们的兴趣. 这种Janus结构的材料打破了原本结构所具有的对称性, 带来了新颖独特的性质. 许多Janus二维材料也被制备出来, 例如可以在化学沉积生长MoS2或WS2多层过程中注入Se来合成MoSSe或WSSe[23]. MoSSe结构正好处于MoS2和MoSe2之间, 由于其对称性的打破, 使得MoSSe表现出不同于MoS2和MoSe2的性质. 2021年, Janus MoSH (MSH)通过H2等离子体处理的方式被成功合成[24]. 简单来说, MSH仅仅是将MoS2最外面的一层S原子替换为H原子, 但两者不同的是, MoS2是一种带隙值约为1.80 eV的二维半导体材料, 而MSH却是一种无带隙的二维金属性材料. 同时, Janus MSH被证明在动力学上是稳定的且具有高的载流子浓度, 意味着MSH在金属-半导体接触方面具有巨大的潜力[24]. 近来, Liu等[25]发现, Janus材料由于其对称性打破产生的固有内建电场, 产生了一个不对称势, 进而增强了从Janus材料到石墨烯层光生载流子分离和转移的速率, 表明Janus异质结材料相较于传统异质结材料在高能量转换效率的光伏电池应用等方面具有更大的潜力. 在金属-半导体接触时, Janus材料的两个面具有不同的功函数, 不同界面接触行为有着不同的肖特基势垒和电流传输等特性, 其肖特基势垒的可调谐性对未来肖特基器件的制造有着重要的影响.

    鉴于MSH和WSN的很多工作尚未展开, 本文使用第一性原理计算研究了外电场和双轴应变对MSH/WSN肖特基结势垒的调控作用, 探究n型与p型肖特基的接触之间的转换或者肖特基与欧姆接触之间的转换, 为实验提供理论指导. 首先, 构建了两种接触模型: MSH的S面与WSN接触的MHS/WSN模型和MSH的H面与WSN接触的MSH/WSN模型. 然后, 分别研究了肖特基结的两个单层和两种肖特基结模型的电子能带特性, 发现肖特基结的能带仅仅是两个单层能带的简单叠加. 紧接着, 研究了它们的电荷转移特性, 还计算了它们的束缚能, MHS/WSN与MSH/WSN肖特基结的束缚能分别是–1.635 eV, –1.648 eV. 本文选取相对更稳定的H面接触的MSH/WSN模型来通过外电场和双轴应变进行肖特基势垒调控. 结果表明, 外电场和双轴应变均可有效调控肖特基结势垒高度, 合适的外加电场或双轴应变可实现肖特基的p型与n型接触之间的转换, 甚至是肖特基结向欧姆接触的转换. 本工作揭示了基于WSN的MSH/WSN肖特基结在肖特基功能器件制造方面有着巨大的潜力.

    本文的所有第一性原理计算使用了基于密度泛函理论下的VASP(Vienna ab initio simulation package)软件包[26,27]. 采用了广义梯度近似(generalized gradient approximation, GGA)下的Perdew-Burke-Ernzerhof (PBE)泛函[28]来描述相互作用电子间的交换关联能. 投影缀加平面波(projector augmented wave, PAW)[29]方法被用来描述离子实和价电子之间的相互作用. 经过收敛性测试后, 选择500 eV的截断能和9 × 9 × 1的K点网格. 能量和力的收敛标准分别被设定为1 × 10–6 eV和0.01 eV/ Å. 为了得到更精确的结果, 采用DFT-D3方法修正层与层之间的范德瓦耳斯力. 为了避免周期性对相邻映像的影响, 增加了20 Å的真空层.

    图1(a)图1(c)分别展示了MSH和WSN的侧视图和俯视图. 从图1(a)可以看出, MSH与MoS2有着相同的结构, 只是把其中一层S原子替换成了H原子. 从WSN的侧视图和俯视图可看出, WSN有着独特的N-Si-N-W-N-Si-N七原子层特性, W原子处于由Si原子与N原子组成的六元环的中心. 优化后的MSH和WSN的晶格参数分别为3.01 Å 和2.91 Å, 计算结果与前人结果相符[24,30]. 构成异质结后晶格失配率为3.32%, 满足晶格失配率小于5%的要求. 从图1(b) MSH的能带图可以看出, 费米能级与能带交叠, MSH显示出金属性. 而图1(d)WSN的能带图中费米能级位于导带和价带中间, WSN显示出半导体性. WSN的价带顶和导带底分别位于布里渊区里不同的点: Γ点和K点, 因此 WSN属于间接带隙半导体, 带隙值为2.09 eV, 其值与前人计算结果2.076 eV[19], 2.06 eV[31]接近, 也说明了我们实验模型的可靠性, 数值的差异是由于计算精度的不同与赝势的选取不同而造成.

    图 1 (a) MSH与(c) WSN的侧视图与俯视图; (b) MSH与(d) WSN的能带结构. 费米能级被设置为0点\r\nFig. 1. Top and side views of (a) MSH and (c) WSN; band structures of (b) MSH and (d) WSN. The Fermi level is set to zero.
    图 1  (a) MSH与(c) WSN的侧视图与俯视图; (b) MSH与(d) WSN的能带结构. 费米能级被设置为0点
    Fig. 1.  Top and side views of (a) MSH and (c) WSN; band structures of (b) MSH and (d) WSN. The Fermi level is set to zero.

    然后, 构建了由二维金属MSH与二维半导体WSN组成的肖特基结模型, 由于MSH由两个不同的面组成, 分别构建了两种不同的接触模型: S面与WSN更靠近的MoHS(MHS)/WSN肖特基结模型和H面与WSN更靠近的MSH/WSN肖特基结模型. MHS/WSN与MSH/WSN肖特基结的侧视图见图2(a)图2(c), 其中白色小球代表H原子, 黄色小球代表S原子. MHS/WSN与MSH/WSN肖特基结的俯视图见图2(b)图2(d), H原子和S原子位于WSN中N原子正上方. 结构优化后, 测得MHS/WSN与MSH/WSN肖特基结最优层间距分别为3.48 Å与3.75 Å, 表明MSH层与WSN层之间存在微弱的范德瓦耳斯相互作用. 为了探究MHS/WSN与MSH/WSN肖特基结的稳定性, 分别计算了两种异质结构的束缚能(binding energy, Eb), Eb的大小由以下公式确定: Eb = EvdW EMSH(MHS) EWSN. 其中EvdW代表组成肖特基结之后的能量, EMSHEWSN分别代表着MSH(MHS)和WSN单层的能量. 经过计算, MHS/WSN与MSH/WSN两种肖特基结的束缚能Eb的大小分别是–1.635 eV, –1.648 eV, 均为负值, 说明两种肖特基结都是稳定的. 束缚能Eb的值越小其构成的肖特基结越稳定. MSH/WSN肖特基结的束缚能小于MHS/WSN肖特基结的束缚能, 因此选用更稳定MSH/WSN肖特基结来研究外电场和双轴应变对异质结肖特基势垒的影响.

    图 2 (a) MHS/WSN与(c) MSH/WSN肖特基结的侧视图; (b) MHS/WSN与(d) MSH/WSN肖特基结的俯视图\r\nFig. 2. Side views of (a) MHS/WSN and (c) MSH/WSN Schottky-junctions. Top views of (b) MHS/WSN and (d) MSH/WSN Schottky-junctions.
    图 2  (a) MHS/WSN与(c) MSH/WSN肖特基结的侧视图; (b) MHS/WSN与(d) MSH/WSN肖特基结的俯视图
    Fig. 2.  Side views of (a) MHS/WSN and (c) MSH/WSN Schottky-junctions. Top views of (b) MHS/WSN and (d) MSH/WSN Schottky-junctions.

    首先, 在图3(a)图3(d)绘制了MHS/WSN与MSH/WSN肖特基结的投影能带图, 其中绿色和黄色线条分别代表MSH和WSN对肖特基结的贡献. 两张能带图只有细微的差别, 在能带的走势上几乎一致. 单层MSH和WSN原本的特性被很好地保留下来, 肖特基结的能带只是两个单层MSH和WSN的简单叠加, 两个肖特基结中WSN依旧保持了间接带隙半导体的特性. 根据Schottky-Mott规则, 半导体n型和p型肖特基势垒高度由以下公式来计算: ΦBn = ECBMEF; ΦBp = EFECBM. 如果ΦBn的值大于ΦBp的值且都大于0, 说明在界面处形成了p型肖特基接触; 如果ΦBn的值小于ΦBp的值且都大于0, 说明在界面处形成了n型肖特基接触; 如果半导体的ΦBn或者ΦBp的值小于0或者费米能级与半导体的导带或者价带有交叠, 说明在金属与半导体界面处形成欧姆接触. 计算所得的MHS/WSN与MSH/WSN肖特基结的ΦBn值分别为1.38 eV与1.54 eV, ΦBp值分别为0.60 eV与0.37 eV, 因此, 两种肖特基结在界面处均形成了p型肖特基接触.

    图 3 (a) MHS/WSN与(d) MSH/WSN肖特基结的投影能带结构; (b) MHS/WSN与(e) MSH/WSN肖特基结的两个界面之间沿Z平面的平面平均差分电荷密度; (c) MHS/WSN与(f) MSH/WSN肖特基结的有效静电势. 其中绿色和黄色线条分别代表了MSH和WSN对肖特基结的贡献, 费米能级被设置为0点\r\nFig. 3. Projected band structures of (a) MHS/WSN and (d) MSH/WSN Schottky-junctions. Plane-averaged differential charge densities between two interfaces along Z-plane of (b) MHS/WSN and (e) MSH/WSN Schottky-junctions. The effective electrostatic potential of (c) MHS/WSN and (f) MSH/WSN Schottky-junctions. The green and yellow lines represent the contributions of MSH and WSN, respectively. The Fermi level is set to zero.
    图 3  (a) MHS/WSN与(d) MSH/WSN肖特基结的投影能带结构; (b) MHS/WSN与(e) MSH/WSN肖特基结的两个界面之间沿Z平面的平面平均差分电荷密度; (c) MHS/WSN与(f) MSH/WSN肖特基结的有效静电势. 其中绿色和黄色线条分别代表了MSH和WSN对肖特基结的贡献, 费米能级被设置为0点
    Fig. 3.  Projected band structures of (a) MHS/WSN and (d) MSH/WSN Schottky-junctions. Plane-averaged differential charge densities between two interfaces along Z-plane of (b) MHS/WSN and (e) MSH/WSN Schottky-junctions. The effective electrostatic potential of (c) MHS/WSN and (f) MSH/WSN Schottky-junctions. The green and yellow lines represent the contributions of MSH and WSN, respectively. The Fermi level is set to zero.

    图3(b)图3(e)所示, 为了探究金属层MSH和半导体层WSN界面间的电荷转移, 绘制了平面平均差分电荷密度图. 平均差分电荷密度∆ρ由以下公式定义: ∆ρ = ρvdwρMSH(MHS)ρWSN. 其中ρvdw, ρMSH(MHS)ρWSN分别代表肖特基结、MSH(MHS), WSN单层沿Z平面的平面平均电荷密度. 结果发现, 由于MSH本身所特有的Janus结构特性, WSN分别与不同的面接触时电荷转移的程度会不同. 在图3(b)图3(e)中, 正值代表了电荷的积累, 负值代表了电荷的耗尽. 不管是对于MHS/WSN还是MSH/WSN肖特基结, 电荷均在WSN层耗尽, 在MSH层聚集, 不过MSH/WSN肖特基结电荷转移的程度要稍微大于MHS/WSN肖特基结. 电荷的积累和扩散行为是电荷重新分布的结果, 会形成一个微弱的内建电场, 内建电场的方向由WSN层指向MSH层. 图3(c)图3(f)展示了MHS/WSN与MSH/WSN肖特基结的有效静电势. 可以观察到二维金属材料MSH和二维半导体材料WSN之间存在着电势差, 这也印证了由于电荷转移在MSH与WSN层之间存在着一个微弱的内建电场. 此外, 由于MSH是Janus材料, 在S面和H面存在着电势差, 而WSN显示出完美的对称性.

    施加外加电场是一种能够有效地调控肖特基势垒的方法, 这里定义施加外加电场的正方向是从WSN层指向MSH层, 与内建电场的方向一致. 图4为不同外加电场下MSH/WSN肖特基结的投影能带结构, 外加电场的范围从–0.4 V/Å 到+0.4 V/Å. 结果发现, 在负外加电场作用下, WSN导带底和价带顶的位置都发生上移, 而在正外加电场作用下, WSN导带底和价带顶的位置都发生下移. 负外加电场作用下, 从–0.1到–0.3 V/Å, 导带底仍然位于K点, 价带顶位于Γ点, 与之前单层时候一致. 而在–0.4 V/Å外加电场作用下, 其导带底的位置由原来的K点转移到了M点. 在正外加电场作用下, 其导带底和价带顶的位置并未发生变化, 保持了原先单层间接带隙半导体的特性.

    图 4 不同外加电场下MSH/WSN肖特基结的投影能带结构(–0.4 — +0.4 V/Å), 费米能级被设置为0点\r\nFig. 4. Projected band structures of MSH/WSN Schottky-junctions under different external electric fields (ranging from –0.4 to 0.4 V/Å). The Fermi level is set to zero.
    图 4  不同外加电场下MSH/WSN肖特基结的投影能带结构(–0.4 — +0.4 V/Å), 费米能级被设置为0点
    Fig. 4.  Projected band structures of MSH/WSN Schottky-junctions under different external electric fields (ranging from –0.4 to 0.4 V/Å). The Fermi level is set to zero.

    图5(a)展示了其肖特基势垒随外加电场变化的折线图, 当施加正外加电场大于0.2 V/Å时, ΦBp的值逐渐超过了ΦBn的值, MSH/WSN肖特基结由原来的p型接触变为了n型肖特基接触. 当施加负外加电场大于–0.2 V/Å时, ΦBp的值从正变为负, 意味着MSH/WSN肖特基结变为了欧姆接触. 欧姆接触对于传统的基于金属-半导体接触的场效应晶体管的制造有着很深远的意义, 此项工作可以为基于WSN半导体的肖特基功能器件及场效应晶体管提供理论指导. 此外, ΦBn的值随着正外加电场的不断增大而减小, 随着负外加电场的不断增大而增大, ΦBp的变化趋势刚好与之相反. 虽然外加电场引起了ΦBpΦBn的变化, 但ΦBnΦBp的和几乎没有发生改变. 唯独在施加–0.4 V/Å时的外加电场作用下ΦBnΦBp的和有些许的下降(下降了大约0.15 eV), 这是由于电场引起了导带底位置发生改变而引起的.

    图 5 MSH/WSN肖特基结在不同(a)外电场(Eext)和(b)双轴应变(ε)下的肖特基势垒的变化\r\nFig. 5. Variation of the Schottky barrier heights under different (a) external electric fields (Eext) and (b) biaxial strain (ε) in MSH/WSN Schottky-junction.
    图 5  MSH/WSN肖特基结在不同(a)外电场(Eext)和(b)双轴应变(ε)下的肖特基势垒的变化
    Fig. 5.  Variation of the Schottky barrier heights under different (a) external electric fields (Eext) and (b) biaxial strain (ε) in MSH/WSN Schottky-junction.

    除了外电场, 双轴应变是另一种有效调控肖特基势垒的方法. 双轴应变的应变系数ε定义为: ε = (aa0)/a0 × 100%, 其中aa0分别代表应变后和应变前的晶格系数. 如果应变系数ε的值大于1, 代表拉伸应变; 反之, 如果应变系数ε的值小于1, 代表压缩应变. 图6给出了在不同双轴应变(–8%—8%)下MSH/WSN肖特基结的投影能带结构. 当施加–2%的双轴应变时, 导带底的位置由原来的K点转移到了M点; 负双轴应变程度继续加大到–4%时, 价带顶的位置由原来的Γ点转移到了K点; 而当负双轴应变程度继续加大到–8%时, 导带底的位置转移到了不属于布里渊区里ΓK路径上某一点处. 当施加正双轴应变时, 导带底的位置向下移动, 价带顶的位置先向上移动后向下移动, 但导带底和价带顶的位置仍分别位于K点与Γ点. 而且, 不论是正双轴应变还是负双轴应变, 它们都保持了WSN原本间接带隙半导体的特性.

    图 6 不同双轴应变ε下MSH/WSN肖特基结的投影能带结构(–8%—+8%), 费米能级被设置为0点\r\nFig. 6. Projected band structures of MSH/WSN Schottky-junctions under different biaxial strain ε (ranging from –8% to 8%). The Fermi level is set to zero.
    图 6  不同双轴应变ε下MSH/WSN肖特基结的投影能带结构(–8%—+8%), 费米能级被设置为0点
    Fig. 6.  Projected band structures of MSH/WSN Schottky-junctions under different biaxial strain ε (ranging from –8% to 8%). The Fermi level is set to zero.

    图5(b)展示了MSH/WSN肖特基结势垒随着双轴应变变化的折线图. 在正双轴应变下, ΦBn的值随着应变强度的增大而减小, ΦBp的值先减小而后在到达4%的时候增大; 在负双轴应变下, ΦBn的值先增大后在达到–4%应变强度后减小, 而ΦBp的值呈现一直增大的趋势. 与外加电场不同的是, 由于双轴应变极大地改变了异质结的晶格参数, 导致其ΦBnΦBp的和发生较大改变. ΦBnΦBp的和在–4%到+8%应变强度范围内逐渐减小, 在–8%到–4%范围内逐渐增大. 当应变强度达到一个较大的值(±8%)的时候, MSH/WSN肖特基结可实现从p型到n型肖特基接触之间的转变. 外电场和双轴应变引起MSH/WSN肖特基结势垒的变化的原因可以归结为: 异质结的电子结构由重叠的电子轨道控制, 而施加的外电场和双轴应变可以极大地影响电子轨道的重叠行为. 价电子轨道在导带底和价带顶占据主导地位, 外电场和双轴应变通过影响价电子轨道的重叠行为影响导带底和价带顶价电子的电子态发生改变使得导带和价带发生移动.

    图7设计了一个基于二维MSH/WSN肖特基结的可调谐肖特基二极管, 其中向下的箭头代表正外加电场的方向, 向上的箭头代表负外加电场的方向. 由于MSH具有高的载流子浓度, 二维金属MSH它可以被用作电极以实现高效的载流子注入. 通过改变外部电场的强度和方向, 肖特基二极管可以被重新配置, 以实现欧姆接触与肖特基接触和p型与n型肖特基接触之间的动态切换. 基于MSH/WSN肖特基结的可调谐肖特基二极管为替代传统的肖特基二极管提供了可能性.

    图 7 基于MSH/WSN肖特基结的可调谐肖特基二极管的示意图\r\nFig. 7. Schematic diagram of a tunable Schottky diode based on MSH/WSN Schottky-junctions.
    图 7  基于MSH/WSN肖特基结的可调谐肖特基二极管的示意图
    Fig. 7.  Schematic diagram of a tunable Schottky diode based on MSH/WSN Schottky-junctions.

    本文采用第一性原理计算了外加电场和双轴应变对MSH/WSN金属-半导体接触肖特基结势垒的调控作用. 由二维金属材料和二维半导体材料WSN构成肖特基结后, H面接触模型MSH/WSN比S面接触模型MHS/WSN 更稳定. 两种肖特基结的能带均很大程度地保留了单层MSH和WSN的能带特性, 仅是两个单层材料能带的简单叠加. 计算结果表明, 外加电场和双轴应变均能有效调控MSH/WSN肖特基结势垒. 当正外加电场大于0.2 V/Å时, MSH/WSN肖特基结可以实现p型与n型肖特基接触之间的转换; 当负外加电场大于–0.2 V/Å时, MSH/WSN肖特基结转化为欧姆接触. 当双轴应变达到±8%时, 可以使MSH/WSN肖特基结实现p型与n型肖特基接触之间的转换. 本文为基于MSH/WSN肖特基结的光电子器件提供了理论参考, 同时揭示了WSN材料在实际应用中的巨大潜能.

    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D E, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183Google Scholar

    [3]

    Neto A C, Guinea F, Peres N M, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109Google Scholar

    [4]

    Akinwande D, Brennan C J, Bunch J S, Egberts P, Felts J R, Gao H, Huang R, Kim J S, Li T, Li Y 2017 Extreme Mech. Lett. 13 42Google Scholar

    [5]

    Mayorov A S, Gorbachev R V, Morozov S V, Britnell L, Jalil R, Ponomarenko L A, Blake P, Novoselov K S, Watanabe K, Taniguchi T 2011 Nano Lett. 11 2396Google Scholar

    [6]

    Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, Kis A 2017 Nat. Rev. Mater. 2 17033

    [7]

    Choi W, Choudhary N, Han G H, Park J, Akinwande D, Lee Y H 2017 Mater. Today 20 116Google Scholar

    [8]

    Chhowalla M, Shin H S, Eda G, Li L J, Loh K P, Zhang H 2013 Nat. Chem. 5 263Google Scholar

    [9]

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699Google Scholar

    [10]

    Liu L, Feng Y, Shen Z 2003 Phys. Rev. B 68 104102Google Scholar

    [11]

    Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L 2010 Nat. Nanotechnol. 5 722Google Scholar

    [12]

    Kim G, Jang A R, Jeong H Y, Lee Z, Kang D J, Shin H S 2013 Nano Lett. 13 1834Google Scholar

    [13]

    Watanabe K, Taniguchi T, Kanda H 2004 Nat. Mater. 3 404Google Scholar

    [14]

    Shi Y, Hamsen C, Jia X, Kim K K, Reina A, Hofmann M, Hsu A L, Zhang K, Li H, Juang Z Y 2010 Nano Lett. 10 4134Google Scholar

    [15]

    Bie Y Q, Grosso G, Heuck M, Furchi M M, Cao Y, Zheng J, Bunandar D, Navarro-Moratalla E, Zhou L, Efetov D K 2017 Nat. Nanotechnol. 12 1124Google Scholar

    [16]

    Xia F, Wang H, Xiao D, Dubey M, Ramasubramaniam A 2014 Nat. Photonics 8 899Google Scholar

    [17]

    Pomerantseva E, Gogotsi Y 2017 Nat. Energy 2 17089

    [18]

    Zhao W, Ghorannevis Z, Chu L, Toh M, Kloc C, Tan P H, Eda G 2013 ACS Nano 7 791Google Scholar

    [19]

    Hong Y L, Liu Z, Wang L, Zhou T, Ma W, Xu C, Feng S, Chen L, Chen M L, Sun D M 2020 Science 369 670Google Scholar

    [20]

    Wu Q, Cao L, Ang Y S, Ang L K 2021 Appl. Phys. Lett. 118 113102Google Scholar

    [21]

    Qian W, Chen Z, Zhang J, Yin L 2022 J. Mater. Sci. Technol. 99 215Google Scholar

    [22]

    Zang Y, Wu Q, Du W, Dai Y, Huang B, Ma Y 2021 Phys. Rev. Mater. 5 045801Google Scholar

    [23]

    Lin Y C, Liu C, Yu Y, Zarkadoula E, Yoon M, Puretzky A A, Liang L, Kong X, Gu Y, Strasser A 2020 ACS Nano 14 3896Google Scholar

    [24]

    Wan X, Chen E, Yao J, Gao M, Miao X, Wang S, Gu Y, Xiao S, Zhan R, Chen K 2021 ACS Nano 15 20319Google Scholar

    [25]

    Liu X, Gao P, Hu W, Yang J 2020 J. Phys. Chem. Lett. 11 4070Google Scholar

    [26]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558Google Scholar

    [27]

    Kresse G, Hafner J 1994 Phys. Rev. B 49 14251Google Scholar

    [28]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [29]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [30]

    Li Q, Zhou W, Wan X, Zhou J 2021 Physica E 131 114753Google Scholar

    [31]

    Wang Q, Cao L, Liang S J, Wu W, Wang G, Lee C H, Ong W L, Yang H Y, Ang L K, Yang S A 2021 npj 2D Mater. Appl. 5 1Google Scholar

    期刊类型引用(1)

    1. 汤家鑫,李占海,邓小清,张振华. GaN/VSe_2范德瓦耳斯异质结电接触特性及调控效应. 物理学报. 2023(16): 223-234 . 百度学术

    其他类型引用(1)

  • 图 1  (a) MSH与(c) WSN的侧视图与俯视图; (b) MSH与(d) WSN的能带结构. 费米能级被设置为0点

    Figure 1.  Top and side views of (a) MSH and (c) WSN; band structures of (b) MSH and (d) WSN. The Fermi level is set to zero.

    图 2  (a) MHS/WSN与(c) MSH/WSN肖特基结的侧视图; (b) MHS/WSN与(d) MSH/WSN肖特基结的俯视图

    Figure 2.  Side views of (a) MHS/WSN and (c) MSH/WSN Schottky-junctions. Top views of (b) MHS/WSN and (d) MSH/WSN Schottky-junctions.

    图 3  (a) MHS/WSN与(d) MSH/WSN肖特基结的投影能带结构; (b) MHS/WSN与(e) MSH/WSN肖特基结的两个界面之间沿Z平面的平面平均差分电荷密度; (c) MHS/WSN与(f) MSH/WSN肖特基结的有效静电势. 其中绿色和黄色线条分别代表了MSH和WSN对肖特基结的贡献, 费米能级被设置为0点

    Figure 3.  Projected band structures of (a) MHS/WSN and (d) MSH/WSN Schottky-junctions. Plane-averaged differential charge densities between two interfaces along Z-plane of (b) MHS/WSN and (e) MSH/WSN Schottky-junctions. The effective electrostatic potential of (c) MHS/WSN and (f) MSH/WSN Schottky-junctions. The green and yellow lines represent the contributions of MSH and WSN, respectively. The Fermi level is set to zero.

    图 4  不同外加电场下MSH/WSN肖特基结的投影能带结构(–0.4 — +0.4 V/Å), 费米能级被设置为0点

    Figure 4.  Projected band structures of MSH/WSN Schottky-junctions under different external electric fields (ranging from –0.4 to 0.4 V/Å). The Fermi level is set to zero.

    图 5  MSH/WSN肖特基结在不同(a)外电场(Eext)和(b)双轴应变(ε)下的肖特基势垒的变化

    Figure 5.  Variation of the Schottky barrier heights under different (a) external electric fields (Eext) and (b) biaxial strain (ε) in MSH/WSN Schottky-junction.

    图 6  不同双轴应变ε下MSH/WSN肖特基结的投影能带结构(–8%—+8%), 费米能级被设置为0点

    Figure 6.  Projected band structures of MSH/WSN Schottky-junctions under different biaxial strain ε (ranging from –8% to 8%). The Fermi level is set to zero.

    图 7  基于MSH/WSN肖特基结的可调谐肖特基二极管的示意图

    Figure 7.  Schematic diagram of a tunable Schottky diode based on MSH/WSN Schottky-junctions.

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D E, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183Google Scholar

    [3]

    Neto A C, Guinea F, Peres N M, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109Google Scholar

    [4]

    Akinwande D, Brennan C J, Bunch J S, Egberts P, Felts J R, Gao H, Huang R, Kim J S, Li T, Li Y 2017 Extreme Mech. Lett. 13 42Google Scholar

    [5]

    Mayorov A S, Gorbachev R V, Morozov S V, Britnell L, Jalil R, Ponomarenko L A, Blake P, Novoselov K S, Watanabe K, Taniguchi T 2011 Nano Lett. 11 2396Google Scholar

    [6]

    Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, Kis A 2017 Nat. Rev. Mater. 2 17033

    [7]

    Choi W, Choudhary N, Han G H, Park J, Akinwande D, Lee Y H 2017 Mater. Today 20 116Google Scholar

    [8]

    Chhowalla M, Shin H S, Eda G, Li L J, Loh K P, Zhang H 2013 Nat. Chem. 5 263Google Scholar

    [9]

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699Google Scholar

    [10]

    Liu L, Feng Y, Shen Z 2003 Phys. Rev. B 68 104102Google Scholar

    [11]

    Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L 2010 Nat. Nanotechnol. 5 722Google Scholar

    [12]

    Kim G, Jang A R, Jeong H Y, Lee Z, Kang D J, Shin H S 2013 Nano Lett. 13 1834Google Scholar

    [13]

    Watanabe K, Taniguchi T, Kanda H 2004 Nat. Mater. 3 404Google Scholar

    [14]

    Shi Y, Hamsen C, Jia X, Kim K K, Reina A, Hofmann M, Hsu A L, Zhang K, Li H, Juang Z Y 2010 Nano Lett. 10 4134Google Scholar

    [15]

    Bie Y Q, Grosso G, Heuck M, Furchi M M, Cao Y, Zheng J, Bunandar D, Navarro-Moratalla E, Zhou L, Efetov D K 2017 Nat. Nanotechnol. 12 1124Google Scholar

    [16]

    Xia F, Wang H, Xiao D, Dubey M, Ramasubramaniam A 2014 Nat. Photonics 8 899Google Scholar

    [17]

    Pomerantseva E, Gogotsi Y 2017 Nat. Energy 2 17089

    [18]

    Zhao W, Ghorannevis Z, Chu L, Toh M, Kloc C, Tan P H, Eda G 2013 ACS Nano 7 791Google Scholar

    [19]

    Hong Y L, Liu Z, Wang L, Zhou T, Ma W, Xu C, Feng S, Chen L, Chen M L, Sun D M 2020 Science 369 670Google Scholar

    [20]

    Wu Q, Cao L, Ang Y S, Ang L K 2021 Appl. Phys. Lett. 118 113102Google Scholar

    [21]

    Qian W, Chen Z, Zhang J, Yin L 2022 J. Mater. Sci. Technol. 99 215Google Scholar

    [22]

    Zang Y, Wu Q, Du W, Dai Y, Huang B, Ma Y 2021 Phys. Rev. Mater. 5 045801Google Scholar

    [23]

    Lin Y C, Liu C, Yu Y, Zarkadoula E, Yoon M, Puretzky A A, Liang L, Kong X, Gu Y, Strasser A 2020 ACS Nano 14 3896Google Scholar

    [24]

    Wan X, Chen E, Yao J, Gao M, Miao X, Wang S, Gu Y, Xiao S, Zhan R, Chen K 2021 ACS Nano 15 20319Google Scholar

    [25]

    Liu X, Gao P, Hu W, Yang J 2020 J. Phys. Chem. Lett. 11 4070Google Scholar

    [26]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558Google Scholar

    [27]

    Kresse G, Hafner J 1994 Phys. Rev. B 49 14251Google Scholar

    [28]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [29]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [30]

    Li Q, Zhou W, Wan X, Zhou J 2021 Physica E 131 114753Google Scholar

    [31]

    Wang Q, Cao L, Liang S J, Wu W, Wang G, Lee C H, Ong W L, Yang H Y, Ang L K, Yang S A 2021 npj 2D Mater. Appl. 5 1Google Scholar

  • [1] Sun Zhi-Xuan, Zhao Chang-Song, Cheng Fang. The control of the contact properties in the ferroelectric heterojunction T-NbTe2/Ga2S3. Acta Physica Sinica, 2025, 74(10): . doi: 10.7498/aps.74.20241705
    [2] Li Jing-Hui, Cao Sheng-Guo, Han Jia-Ning, Li Zhan-Hai, Zhang Zhen-Hua. Electrical contact properties of 2D metal-semiconductor heterojunctions composed of different phases of NbS2 and GeS2. Acta Physica Sinica, 2024, 73(13): 137102. doi: 10.7498/aps.73.20240530
    [3] Huang Min, Li Zhan-Hai, Cheng Fang. Tunable electronic structures and interface contact in graphene/C3N van der Waals heterostructures. Acta Physica Sinica, 2023, 72(14): 147302. doi: 10.7498/aps.72.20230318
    [4] Deng Xu-Liang, Ji Xian-Fei, Wang De-Jun, Huang Ling-Qin. First principle study on modulating of Schottky barrier at metal/4H-SiC interface by graphene intercalation. Acta Physica Sinica, 2022, 71(5): 058102. doi: 10.7498/aps.71.20211796
    [5] Bi Si-Han, Song Jian-Jun, Zhang Dong, Zhang Shi-Qi. A Ge-based dual channel rectified single ended Schottky barrier field effect transistor for 2.45 GHz microwave wireless energy transmission. Acta Physica Sinica, 2022, 71(20): 208401. doi: 10.7498/aps.71.20220855
    [6] Huang Ling-Qin, Zhu Jing, Ma Yue, Liang Ting, Lei Cheng, Li Yong-Wei, Gu Xiao-Gang. Research status and progress of metal contacts of SiC power devices. Acta Physica Sinica, 2021, 70(20): 207302. doi: 10.7498/aps.70.20210675
    [7] Guo Li-Juan, Hu Ji-Song, Ma Xin-Guo, Xiang Ju. Interfacial interaction and Schottky contact of two-dimensional WS2/graphene heterostructure. Acta Physica Sinica, 2019, 68(9): 097101. doi: 10.7498/aps.68.20190020
    [8] Xu Feng1\2, Yu Guo-Hao, Deng Xu-Guang, Li Jun-Shuai, Zhang Li, Song Liang, Fan Ya-Ming, Zhang Bao-Shun. Current transport mechanism of Schottky contact of Pt/Au/n-InGaN. Acta Physica Sinica, 2018, 67(21): 217802. doi: 10.7498/aps.67.20181191
    [9] Yan Guang-Ming, Li Cheng, Tang Meng-Rao, Huang Shi-Hao, Wang Chen, Lu Wei-Fang, Huang Wei, Lai Hong-Kai, Chen Song-Yan. Properties and mechanism analysis of metal/Ge ohmic contact. Acta Physica Sinica, 2013, 62(16): 167304. doi: 10.7498/aps.62.167304
    [10] Wan Ning, Guo Chun-Sheng, Zhang Yan-Feng, Xiong Cong, Ma Wei-Dong, Shi Lei, Li Rui, Feng Shi-Wei. Gate current degradation model of the AlGaAs/InGaAs PHEMT. Acta Physica Sinica, 2013, 62(15): 157203. doi: 10.7498/aps.62.157203
    [11] Shao Zheng-Zheng, Wang Xiao-Feng, Zhang Xue-Ao, Chang Sheng-Li. Piezoelectric discharge characteristic of ZnO nanorod studied with atomic force microscopy. Acta Physica Sinica, 2010, 59(1): 550-554. doi: 10.7498/aps.59.550
    [12] Huang Wei, Chen Zhi-Zhan, Chen Yi, Shi Er-Wei, Zhang Jing-Yu, Liu Qing-Feng, Liu Qian. Effect of Ni thickness on the contact properties of Ni/6H-SiC analyzed by combinatorial method. Acta Physica Sinica, 2010, 59(5): 3466-3472. doi: 10.7498/aps.59.3466
    [13] Tang Xiao-Yan, Zhang Yi-Men, Zhang Yu-Ming. The threshold voltage of SiC Schottky barrier source/drain MOSFET. Acta Physica Sinica, 2009, 58(1): 494-497. doi: 10.7498/aps.58.494
    [14] Lin Ruo-Bing, Wang Xin-Juan, Feng Qian, Wang Chong, Zhang Jin-Cheng, Hao Yue. Study on mechanism of AlGaN/GaN high electron mobility transistors by high temperature Schottky annealing. Acta Physica Sinica, 2008, 57(7): 4487-4491. doi: 10.7498/aps.57.4487
    [15] Wang Chong, Feng Qian, Hao Yue, Wan Hui. Effect of pre-metallization processing and annealing on Ni/Au Schottky contacts in AlGaN/GaN heterostructures. Acta Physica Sinica, 2006, 55(11): 6085-6089. doi: 10.7498/aps.55.6085
    [16] Zhu Yun, Wang Tai-Hong. Investigations of three-terminal electronic measurement on quantum dot devices. Acta Physica Sinica, 2003, 52(3): 677-682. doi: 10.7498/aps.52.677
    [17] Wang Yuan, Zhang Yi-Men, Zhang Yu-Ming, Tang Xiao-Yan. A simulation study of 6H-SiC Schottky barrier source/drain MOSFET. Acta Physica Sinica, 2003, 52(10): 2553-2557. doi: 10.7498/aps.52.2553
    [18] ZHU DE-GUANG, WU DING-FEN. A METHOD TO DETERMINE THE SPECIFIC CONTACT RESISTANCE OF METAL-SEMICONDUCTOR CONTACT——CIRCULAR RING STRUCTURE METHOD. Acta Physica Sinica, 1987, 36(6): 752-759. doi: 10.7498/aps.36.752
    [19] WU DING-FEN, WANG DE-NING. A MODEL OF OHMIC CONTACT OF GaAs AND OTHER SEMICONDUCTOR. Acta Physica Sinica, 1985, 34(3): 332-340. doi: 10.7498/aps.34.332
    [20] CHEN CUN-LI. SPECIFIC CONTACT RESISTANCE OF METAL-BULK SEMI-CONDUCTOR——FOUR-POINT CONFIGURATION MODEL. Acta Physica Sinica, 1984, 33(9): 1314-1320. doi: 10.7498/aps.33.1314
  • 期刊类型引用(1)

    1. 汤家鑫,李占海,邓小清,张振华. GaN/VSe_2范德瓦耳斯异质结电接触特性及调控效应. 物理学报. 2023(16): 223-234 . 百度学术

    其他类型引用(1)

Metrics
  • Abstract views:  5567
  • PDF Downloads:  130
  • Cited By: 2
Publishing process
  • Received Date:  05 May 2022
  • Accepted Date:  06 July 2022
  • Available Online:  19 October 2022
  • Published Online:  05 November 2022

/

返回文章
返回