-
This study employs first-principles calculations based on density functional theory to investigate the regulation of biaxial strain on the electronic structure and transport properties of single-hydrogen-vacancy germanane. The results reveal that introducing single-hydrogen-vacancy defect states not only induces p-type doping-like effects in germanane but also triggers a transition from non-magnetic to ferromagnetic states. Under -3% to 3% biaxial strain, both the structural parameters (bond length, bond angle, and corrugation height) and bandgap of single-hydrogen-vacancy germanane exhibit linear variations with strain. The p-type doping-like effect disappears at ε=0.75%, while an n-type doping-like effect emerges when strain increases to ε=2.5%. Mechanistic analysis reveals that biaxial strain primarily modulates the energies of the Fermi level, valence band maximum, and conduction band minimum, causing the defect states to shift their relative positions and transform into acceptor or donor levels. This evolution ultimately generates doping effect variations regulated by biaxial strain. Transport property calculations further demonstrate that the isotropic I-V characteristics and electron effective mass of single-hydrogen-vacancy germanane can be linearly controlled by biaxial strain, leading to corresponding changes in electron mobility. At ε=3%, the electrical conductivity and electron mobility of single-hydrogen-vacancy germanane increase significantly to 3660 S/cm and 24252 cm2/(V·s), respectively.
-
Keywords:
- strain /
- single hydrogen vacancy /
- electronic structure /
- transport properties
-
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666
[2] Ye X S, Shao Z G, Zhao H B, Yang L, Wang C L 2014 RSC Adv. 4 21216
[3] Liu C C, Jiang H, Yao Y 2011 Phys. Rev. B 84 195430
[4] Lew Yan Voon L C, Sandberg E, Aga R S, Farajian A A 2010 Appl. Phys. Lett. 97 163114
[5] Houssa M, Pourtois G, Afanas’ev V V, Stesmans A 2010 Appl. Phys. Lett. 96 082111
[6] Houssa M, Scalise E, Sankaran K, Pourtois G, Afanas’ev V V, Stesmans A 2011 Appl. Phys. Lett. 98 223107
[7] Bianco E, Butler S, Jiang S, Restrepo O D, Windl W, Goldberger J E 2013 ACS Nano. 7 4414
[8] Jiang S, Butler S, Bianco E, Restrepo O D, Windl W, Goldberger J E 2014 Nat Commun 5 3389
[9] Xu L, Liu J, Shao C, Li H, Ma W, Yan J, Zhang Y, Dai Y, Lei X, Liao C, Zhang Z, Zhao W, Lu J, Zhang H 2024 J. Appl. Phys. 135 134303
[10] AlMutairi A, Zhao Y, Yin D, Yoon Y 2017 IEEE Electron Device Lett. 38 673
[11] Zhao Y, AlMutairi A, Yoon Y 2017 IEEE Electron Device Lett. 38 1743
[12] Sahoo N G, Esteves R J, Punetha V D, Pestov D, Arachchige I U, McLeskey J T 2016 Appl. Phys. Lett. 109 023507
[13] Li Y, Chen Z 2014 J. Phys. Chem. C 118 1148
[14] Yan J, Cao D, Yang X, Wang J, Jiang Z, Jiao Z, Shu H 2022 Appl. Phys. A 128 958
[15] Wang X, Liu G, Liu R F, Luo W W, Wu M S, Sun B Z, Lei X L, Ouyang C Y, Xu B 2018 Nanotechnology 29 465202
[16] Ye J P, Liu G, Han Y, Luo W W, Sun B Z, Lei X L, Xu B, Ouyang C Y, Zhang H L 2019 Phys. Chem. Chem. Phys. 21 20287
[17] Chen Q, Liang L, Potsi G, Wan P, Lu J, Giousis T, Thomou E, Gournis D, Rudolf P, Ye J 2019 Nano Lett. 19 1520
[18] Qiu J, Wang H, Wang J, Yao X, Meng S, Liu Y 2022 Phys. Rev. B 106 184102
[19] Zhao J, Zeng H 2016 RSC Adv. 6 28298
[20] Wang X, Liu G, Liu R F, Luo W W, Sun B Z, Lei X L, Ouyang C Y, Xu B 2019 J. Appl. Phys. 125 082504
[21] Zeng J, Liu G, Han Y, Luo W, Wu M, Xu B, Ouyang C 2021 ACS Omega 6 14639
[22] Kresse G, Hafner J 1993 Phys. Rev. B: Condens. Matter 47 558
[23] Blochl P E 1994 Phys. Rev. B: Condens. Matter 50 17953
[24] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[25] Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188
[26] Taylor J, Guo H, Wang J 2001 Phys. Rev. B 63 245407
[27] Brandbyge M, Mozos J L, Ordejón P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401
[28] Yang W, Cao Y, Han J, Lin X, Wang X, Wei G, Lv C, Bournel A, Zhao W 2021 Nanoscale 13 862
[29] Hu L, Zhao J, Yang J 2014 J. Phys.: Condens. Matter 26 335302
[30] Liu L, Ji Y, Liu L 2019 Bull. Mater. Sci. 42 157
[31] Yang Z H, Liu G, Wu M S, Shi J, Ouyang C Y, Yang S B, Xu B 2023 Acta Phys. Sin. 72 127101
[32] Zhou Y, Liu K, Xiao H, Xiang X, Nie J, Li S, Huang H, Zu X 2015 J. Mater. Chem. A 3 3128
[33] Tong X, Fang L, Liu R 2019 AIP Adv. 9 055324
[34] Chung Y F, Chang S T 2024 Nanomaterials 14 1420
[35] Yu D, Zhang Y, Liu F 2008 Phys. Rev. B 78 245204
[36] Hosseini M, Elahi M, Pourfath M, Esseni D 2015 J. Phys. D: Appl. Phys. 48 375104
Metrics
- Abstract views: 21
- PDF Downloads: 0
- Cited By: 0