Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Influence of biaxial strain effects on thermal transport and thermoelectric performance of Janus transition metal dichalcogenide monolayers

ZHANG Min TANG Guihua SHI Xiaolei LI Yifei ZHAO Xin HUANG Dian CHEN Zhigang

Citation:

Influence of biaxial strain effects on thermal transport and thermoelectric performance of Janus transition metal dichalcogenide monolayers

ZHANG Min, TANG Guihua, SHI Xiaolei, LI Yifei, ZHAO Xin, HUANG Dian, CHEN Zhigang
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Janus transition metal dichalcogenide monolayers, characterized by antisymmetric crystal structures and unique physical properties, show great potential applications in micro/nano-electronic devices and thermoelectrics. In this work, the strain-tuned phonon thermal transport and thermoelectric performance of six Janus transition metal dichalcogenide monolayers are systematically investigated by first-principles calculations. This study focuses on monolayers of PtSSe and PtTeSe with a 1T-phase crystal structure, as well as monolayers of MoSSe, MoTeSe, WSSe, and WTeSe with a 1H-phase crystal structure. For all these monolayers, first-principles calculations are performed using the open-source software Quantum ESPRESSO. The lattice thermal conductivity is obtained based on lattice dynamics and iterative solutions of the Boltzmann transport equation. The thermal conductivities of PtSSe, MoSSe, and WSSe monolayers are generally higher than those of PtTeSe, MoTeSe, and WTeSe. Acoustic phonons are responsible for the majority of thermal transport, contributing over 95%. Under unstrained conditions, monolayer PtSSe demonstrates a superior thermal conductivity of 104 W·m−1·K−1, making it advantageous for thermal management applications in electronic devices. Under tensile strain, the thermal conductivities of PtSSe, MoSSe, and WSSe monolayers exhibit a monotonic decrease trend; however, for PtTeSe, MoTeSe, and WTeSe monolayers, their thermal conductivities initially show an increase trend, followed by a subsequent decrease trend. Under a 10% tensile strain, the thermal conductivities of these six Janus monolayers all demonstrate a reduction exceeding 60%. Furthermore, this work provides a comprehensive analysis of the influences of strain on specific heat capacity, phonon group velocity, and phonon lifetime. The phonon mode-level analysis and cross-calculated thermal conductivity (with specific heat capacity, phonon group velocity, and phonon lifetime replaced by values under different strain conditions) reveal that phonon lifetime is the dominant factor governing thermal conductivity under strain. For electrical transport properties, calculations are performed using the Boltzmann transport equation based on deformation potential theory. At room temperature, the thermoelectric figure of merit (ZT) for PtTeSe is 0.91 without strain, which can be improved to 1.31 under 10% tensile strain. The ZT value reaches as high as 3.96 for p-type PtTeSe and 2.38 for n-type PtTeSe at 700 K, indicating that the PtTeSe monolayer is a highly promising thermoelectric material. Strain-induced enhancement in the thermoelectric performance of PtTeSe is facilitated by reducing lattice thermal conductivity and reconfigurating the band structure. This work demonstrates that strain engineering is an effective strategy for adjusting the thermal transport and thermoelectric properties of Janus transition metal dichalcogenide monolayers.
  • 图 1  晶体结构的俯视图和侧视图 (a) PtXY单分子层; (b) MoXY和WXY单分子层(X = S/Te, Y = Se)

    Figure 1.  Top view and side view of crystal structures: (a) PtXY monolayers; (b) MoXY and WXY monolayers (X = S/Te, Y = Se).

    图 2  不同应变下 Janus TMDCs 单分子层的室温热导率

    Figure 2.  Thermal conductivity of Janus TMDCs monolayers under different strains at room temperature.

    图 3  不同应变作用下Janus TMDCs单分子层的声子色散关系 (a) PtSSe; (b) MoSSe; (c) WSSe; (d) PtTeSe; (e) MoTeSe; (f) WTeSe

    Figure 3.  Phonon dispersions of (a) PtSSe, (b) MoSSe, (c) WSSe, (d) PtTeSe, (e) MoTeSe, and (f) WTeSe monolayers under different strains.

    图 4  不同应变作用下Janus TMDCs单分子层的体积比热容

    Figure 4.  Heat capacity of Janus TMDCs monolayers under different strains.

    图 5  不同应变作用下Janus TMDCs单分子层的声子群速度 (a) PtSSe; (b) MoSSe; (c) WSSe; (d) PtTeSe; (e) MoTeSe; (f) WTeSe

    Figure 5.  Phonon group velocity of Janus TMDCs monolayers under different strains: (a) PtSSe; (b) MoSSe; (c) WSSe; (d) PtTeSe; (e) MoTeSe; (f) WTeSe.

    图 6  不同应变作用下Janus TMDCs单分子层的声子寿命 (a) PtSSe; (b) MoSSe; (c) WSSe; (d) PtTeSe; (e) MoTeSe; (f) WTeSe

    Figure 6.  Phonon lifetime of Janus TMDCs monolayers under different strains: (a) PtSSe; (b) MoSSe; (c) WSSe; (d) PtTeSe; (e) MoTeSe; (f) WTeSe.

    图 7  采用不同应变作用下的比热容、声子群速度和声子寿命交叉计算的Janus TMDCs单分子层热导率 (a) PtSSe, MoSSe和WSSe; (b) PtTeSe, MoTeSe和WTeSe

    Figure 7.  Cross-calculated thermal conductivity with heat capacity, phonon group velocity, and phonon lifetime replaced by values under different strains for Janus TMDCs monolayers: (a) PtSSe, MoSSe, and WSSe; (b) PtTeSe, MoTeSe, and WTeSe.

    图 8  不同应变作用下Janus TMDCs单分子层的能带结构 (a) PtSSe; (b) MoSSe; (c) WSSe; (d) PtTeSe; (e) MoTeSe; (f) WTeSe

    Figure 8.  Band structures of Janus TMDCs monolayers under different strains: (a) PtSSe; (b) MoSSe; (c) WSSe; (d) PtTeSe; (e) MoTeSe; (f) WTeSe.

    图 9  300 K下塞贝克系数随载流子浓度的变化 (a) PtSSe; (b) MoSSe; (c) WSSe; (d) PtTeSe; (e) MoTeSe; (f) WTeSe

    Figure 9.  Seebeck coefficient as a function of carrier concentration at 300 K: (a) PtSSe; (b) MoSSe; (c) WSSe; (d) PtTeSe; (e) MoTeSe; (f) WTeSe.

    图 10  室温下电导率随载流子浓度的变化 (a) PtSSe; (b) MoSSe; (c) WSSe; (d) PtTeSe; (e) MoTeSe; (f) WTeSe

    Figure 10.  Electrical conductivity as a function of carrier concentration at 300 K: (a) PtSSe; (b) MoSSe; (c) WSSe; (d) PtTeSe; (e) MoTeSe; (f) WTeSe.

    图 11  300 K下热电优值随载流子浓度的变化 (a) PtSSe; (b) MoSSe; (c) WSSe; (d) PtTeSe; (e) MoTeSe; (f) WTeSe

    Figure 11.  ZT value as a function of carrier concentration at 300 K: (a) PtSSe; (b) MoSSe; (c) WSSe; (d) PtTeSe; (e) MoTeSe; (f) WTeSe.

    图 12  热电优值随温度的变化 (a) p型热电; (b) n型热电

    Figure 12.  ZT value as a function of temperature: (a) p-type; (b) n-type.

  • [1]

    Zhang Y, Lü Q, Wang H, Zhao S, Xiong Q, Lü R, Zhang X 2022 Science 378 169Google Scholar

    [2]

    武鹏, 谈论, 李炜, 曹立伟, 赵俊博, 曲尧, 李昂 2023 物理学报 72 118101Google Scholar

    Wu P, Tan L, Li W, Cao L W, Zhao J B, Qu Y, Li A 2023 Acta Phys. Sin. 72 118101Google Scholar

    [3]

    Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, Kis A 2017 Nat. Rev. Mater. 2 17033Google Scholar

    [4]

    赵欣, 唐桂华, 李一斐, 张敏 2021 工程热物理学报 42 2455

    Zhao X, Tang G H, Li Y F, Zhang M 2021 Journal of Engineering Thermophysics 42 2455

    [5]

    Zhang J, Jia S, Kholmanov I, Dong L, Er D, Chen W, Guo H, Jin Z, Shenoy V B, Shi L, Lou J 2017 ACS Nano 11 8192Google Scholar

    [6]

    Lu A Y, Zhu H, Xiao J, Chuu C P, Han Y, Chiu M H, Cheng C C, Yang C W, Wei K H, Yang Y, Wang Y, Sokaras D, Nordlund D, Yang P, Muller D A, Chou M Y, Zhang X, Li L J 2017 Nat. Nanotechnol. 12 744Google Scholar

    [7]

    Lin Y C, Liu C, Yu Y, Zarkadoula E, Yoon M, Puretzky A A, Liang L, Kong X, Gu Y, Strasser A, Meyer H M, III, Lorenz M, Chisholm M F, Ivanov I N, Rouleau C M, Duscher G, Xiao K, Geohegan D B 2020 ACS Nano 14 3896Google Scholar

    [8]

    Trivedi D B, Turgut G, Qin Y, Sayyad M Y, Hajra D, Howell M, Liu L, Yang S, Patoary N H, Li H, Petrić M M, Meyer M, Kremser M, Barbone M, Soavi G, Stier A V, Müller K, Yang S, Esqueda I S, Zhuang H, Finley J J, Tongay S 2020 Adv. Mater. 32 2006320Google Scholar

    [9]

    Sant R, Gay M, Marty A, Lisi S, Harrabi R, Vergnaud C, Dau M T, Weng X, Coraux J, Gauthier N, Renault O, Renaud G, Jamet M 2020 npj 2D Mater. Appl. 4 41

    [10]

    Qin Y, Sayyad M, Montblanch A R P, Feuer M S G, Dey D, Blei M, Sailus R, Kara D M, Shen Y, Yang S, Botana A S, Atature M, Tongay S 2022 Adv. Mater. 34 2106222Google Scholar

    [11]

    Huang S J, Zhang T, Zeng Z Y, Geng H Y, Chen X R 2024 Vacuum 224 113143Google Scholar

    [12]

    Liu J, Shen T, Wang L, Ren J C, Liu W, Li S 2024 Adv. Funct. Mater. 34 2401737Google Scholar

    [13]

    Cui H, Yang T, Peng X, Zhang G 2022 J. Mater. Res. Technol. 18 1218Google Scholar

    [14]

    张德贺, 周文哲, 李奥林, 欧阳方平 2021 物理学报 70 096301Google Scholar

    Zhang D H, Zhou W Z, Li A L, Ouyang F P 2021 Acta Phys. Sin. 70 096301Google Scholar

    [15]

    张宇航, 李孝宝, 詹春晓, 王美芹, 浦玉学 2023 物理学报 72 046201Google Scholar

    Zhang Y H, Li X B, Zhan C X, Wang M Q, Pu Y X 2023 Acta Phys. Sin. 72 046201Google Scholar

    [16]

    Tao W L, Yi M, E. H C, Yan C, Ji G F 2019 Philos. Mag. 99 1025Google Scholar

    [17]

    Liu C, Yao M, Yang J, Xi J, Ke X 2020 Mater. Today Phys. 15 100277Google Scholar

    [18]

    Bera J, Betal A, Sahu S 2021 J. Alloys Compd. 872 159704Google Scholar

    [19]

    Guo S D 2018 Phys. Chem. Chem. Phys. 20 7236Google Scholar

    [20]

    Han D, Qin H, Tu H, Chen Y, Sun H, Xue Y, Zeng X 2025 J. Electron. Mater. 54 2180Google Scholar

    [21]

    Tao W L, Lan J Q, Hu C E, Cheng Y, Zhu J, Geng H Y 2020 J. Appl. Phys. 127 035101Google Scholar

    [22]

    Guo S D, Li Y F, Guo X S 2019 Comput. Mater. Sci. 161 16Google Scholar

    [23]

    Patel A, Singh D, Sonvane Y, Thakor P B, Ahuja R 2020 ACS Appl. Mater. Interfaces 12 46212Google Scholar

    [24]

    Han D, Wang M, Yang X, Du M, Cheng L, Wang X 2022 J. Alloys Compd. 903 163850Google Scholar

    [25]

    Zhang M, Tang G H, Li Y F, Fu B, Wang X Y 2020 Int. J. Thermophys. 41 57Google Scholar

    [26]

    Zhang R, Koutsos V, Cheung R 2016 Appl. Phys. Lett. 108 042104Google Scholar

    [27]

    Bertolazzi S, Brivio J, Kis A 2011 ACS Nano 5 9703Google Scholar

    [28]

    Pan L, Carrete J, Wang Z 2022 J. Phys. Condens. Mater. 34 015303Google Scholar

    [29]

    Ahmad S, Idrees M, Khan F, Nguyen C V, Ahmad I, Amin B 2021 Chem. Phys. Lett. 776 138689Google Scholar

    [30]

    Ahmad S, Khan F, Amin B, Ahmad I 2021 J. Solid State Chem. 299 122189Google Scholar

    [31]

    Wang C, Chen Y-X, Gao G, Xu K, Shao H 2022 Appl. Surf. Sci. 593 153402Google Scholar

    [32]

    Chaurasiya R, Tyagi S, Singh N, Auluck S, Dixit A 2021 J. Alloys Compd. 855 157304Google Scholar

    [33]

    Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, Dabo I, Dal Corso A, de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen A P, Smogunov A, Umari P, Wentzcovitch R M 2009 J. Phys. Condens. Mater. 21 395502Google Scholar

    [34]

    Hamann D R 2013 Phys. Rev. B 88 085117Google Scholar

    [35]

    Li W, Carrete J, A. Katcho N, Mingo N 2014 Comput. Phys. Commun. 185 1747Google Scholar

    [36]

    Madsen G K H, Carrete J, Verstraete M J 2018 Comput. Phys. Commun. 231 140Google Scholar

    [37]

    李一斐, 唐桂华, 张敏, 赵欣 2022 工程热物理学报 43 479

    Li Y F, Tang G H, Zhang M, Zhao X 2022 Journal of Engineering Thermophysics 43 479

    [38]

    Han D, Yang X, Du M, Xin G, Zhang J, Wang X, Cheng L 2021 Nanoscale 13 7176Google Scholar

    [39]

    Tang Z, Wang X, Li J, He C, Chen M, Tang C, Ouyang T 2023 Phys. Rev. B 108 214304Google Scholar

    [40]

    Bhojani A K, Kagdada H L, Singh D K 2025 Phys. Rev. B 111 085419Google Scholar

    [41]

    Yuan K, Zhang X, Tang D, Hu M 2018 Phys. Rev. B 98 144303Google Scholar

    [42]

    Tang Z Y, Wang X X, Li J, He C Y, Tang C, Wang H M, Chen M X, Ouyang T 2023 Appl. Phys. Lett. 122 172203Google Scholar

    [43]

    Tang Z, Wang X, He C, Li J, Chen M, Tang C, Ouyang T 2024 Phys. Rev. B 110 134320Google Scholar

    [44]

    Lindsay L, Broido D A, Carrete J, Mingo N, Reinecke T L 2015 Phys. Rev. B 91 121202Google Scholar

    [45]

    Zhang M, Tang G, Li Y 2021 ACS Omega 6 3980Google Scholar

    [46]

    王艳, 陈南迪, 杨陈, 曾召益, 胡翠娥, 陈向荣 2021 物理学报 70 116301Google Scholar

    Wang Y, Chen N D, Yang C, Zeng Z Y, Hu C E, Chen X R 2021 Acta Phys. Sin. 70 116301Google Scholar

    [47]

    Li Y F, Tang G H, Fu B, Zhang M, Zhao X 2020 ACS Appl. Energy Mater. 3 9234Google Scholar

    [48]

    Wang N, Li M, Xiao H, Gao Z, Liu Z, Zu X, Li S, Qiao L 2021 npj Comput. Mater. 7 18Google Scholar

  • [1] LI Zhishuo, CAO Xinrui, WU Shunqing, WU Jianyang, WEN Yuhua, ZHU Zizhong. Mechanical properties of Janus monolayer MoSSe under uniaxial tensile strains at different chiral angles: first-principles investigation. Acta Physica Sinica, doi: 10.7498/aps.74.20250437
    [2] Liu Jun-Ling, Bai Yu-Jie, Xu Ning, Zhang Qin-Fang. First-principles study on electronic structure of GaS/Mg(OH)2 heterostructure. Acta Physica Sinica, doi: 10.7498/aps.73.20231979
    [3] Huang Sheng-Xing, Chen Jian, Wang Wen-Fei, Wang Xu-Dong, Yao Man. First principle calculation of thermoelectric transport performances of new dual transition metal MXene. Acta Physica Sinica, doi: 10.7498/aps.73.20240432
    [4] Zi Peng, Bai Hui, Wang Cong, Wu Yu-Tian, Ren Pei-An, Tao Qi-Rui, Wu Jin-Song, Su Xian-Li, Tang Xin-Feng. Structure and thermoelectric performance of AgyIn3.33–y/3Se5 compounds. Acta Physica Sinica, doi: 10.7498/aps.71.20220179
    [5] Pan Feng-Chun, Lin Xue-Ling, Wang Xu-Ming. First-principles study of strain effect on magnetic and optical properties in (Ga, Mo)Sb. Acta Physica Sinica, doi: 10.7498/aps.71.20212316
    [6] Jiang Nan, Li Ao-Lin, Qu Shui-Xian, Gou Si, Ouyang Fang-Ping. First principles study of magnetic transition of strain induced monolayer NbSi2N4. Acta Physica Sinica, doi: 10.7498/aps.71.20220939
    [7] Wang Na, Xu Hui-Fang, Yang Qiu-Yun, Zhang Mao-Lian, Lin Zi-Jing. First-principles study of strain-tunable charge carrier transport properties and optical properties of CrI3 monolayer. Acta Physica Sinica, doi: 10.7498/aps.71.20221019
    [8] Wang Lan, Cheng Si-Yuan, Zeng Hang-Hang, Xie Cong-Wei, Gong Yuan-Hao, Zheng Zhi, Fan Xiao-Li. Structure prediction of CuBiI ternary compound and first-principles study of photoelectric properties. Acta Physica Sinica, doi: 10.7498/aps.70.20210145
    [9] Lu Qun-Lin, Yang Wei-Huang, Xiong Fei-Bing, Lin Hai-Feng, Zhuang Qin-Qin. Effect of biaxial strain on the gas-sensing of monolayer GeSe. Acta Physica Sinica, doi: 10.7498/aps.69.20200539
    [10] Zuo Bo-Min, Yuan Jian-Mei, Feng Zhi, Mao Yu-Liang. First-principles study of five isomers of two-dimensional GeSe under in-plane strain. Acta Physica Sinica, doi: 10.7498/aps.68.20182266
    [11] Zhu Yan, Zhang Xin-Yu, Zhang Su-Hong, Ma Ming-Zhen, Liu Ri-Ping, Tian Hong-Yan. Electron transport properties of Mg2Si under hydrostatic pressures. Acta Physica Sinica, doi: 10.7498/aps.64.077103
    [12] Huang You-Lin, Hou Yu-Hua, Zhao Yu-Jun, Liu Zhong-Wu, Zeng De-Chang, Ma Sheng-Can. Influences of strain on electronic structure and magnetic properties of CoFe2O4 from first-principles study. Acta Physica Sinica, doi: 10.7498/aps.62.167502
    [13] Xie Jian-Feng, Cao Jue-Xian. Modulation of the band structure of layered BN film with stain. Acta Physica Sinica, doi: 10.7498/aps.62.017302
    [14] Dai Yun-Ya, Yang Li, Peng Shu-Ming, Long Xing-Gui, Zhou Xiao-Song, Zu Xiao-Tao. First-principles calculation for mechanical properties of metal dihydrides. Acta Physica Sinica, doi: 10.7498/aps.61.108801
    [15] Wu Mu-Sheng, Xu Bo, Liu Gang, Ouyang Chu-Ying. The effect of strain on band structure of single-layer MoS2: an ab initio study. Acta Physica Sinica, doi: 10.7498/aps.61.227102
    [16] Tang Xin-Feng, Du Bao-Li, Xu Jing-Jing, Yan Yong-Gao. Synthesis and thermoelectric properties of nonstoichiometric AgSbTe2+ x compounds. Acta Physica Sinica, doi: 10.7498/aps.60.018403
    [17] Luo Wen-Hui, Li Han, Lin Ze-Bing, Tang Xin-Feng. Effects of Si content on phase composition and thermoelectric properties of higher manganese silicide. Acta Physica Sinica, doi: 10.7498/aps.59.8783
    [18] Su Xian-Li, Tang Xin-Feng, Li Han, Deng Shu-Kang. Structure and thermoelectric properties of n-type GaxCo4Sb12 skutterudite compounds. Acta Physica Sinica, doi: 10.7498/aps.57.6488
    [19] Pan Zhi-Jun, Zhang Lan-Ting, Wu Jian-Sheng. A first-principle study of electronic and geometrical structures of semiconducting β-FeSi2 with doping. Acta Physica Sinica, doi: 10.7498/aps.54.5308
    [20] Pan Zhi-Jun, Zhang Lan-Ting, Wu Jian-Sheng. First-principles study of electronic structure for CoSi. Acta Physica Sinica, doi: 10.7498/aps.54.328
Metrics
  • Abstract views:  368
  • PDF Downloads:  23
  • Cited By: 0
Publishing process
  • Received Date:  07 March 2025
  • Accepted Date:  07 April 2025
  • Available Online:  29 April 2025

/

返回文章
返回