-
Janus transition metal dichalcogenide monolayers, characterized by antisymmetric crystal structures and unique physical properties, show great potential applications in micro/nano-electronic devices and thermoelectrics. In this work, the strain-tuned phonon thermal transport and thermoelectric performance of six Janus transition metal dichalcogenide monolayers are systematically investigated by first-principles calculations. This study focuses on monolayers of PtSSe and PtTeSe with a 1T-phase crystal structure, as well as monolayers of MoSSe, MoTeSe, WSSe, and WTeSe with a 1H-phase crystal structure. For all these monolayers, first-principles calculations are performed using the open-source software Quantum ESPRESSO. The lattice thermal conductivity is obtained based on lattice dynamics and iterative solutions of the Boltzmann transport equation. The thermal conductivities of PtSSe, MoSSe, and WSSe monolayers are generally higher than those of PtTeSe, MoTeSe, and WTeSe. Acoustic phonons are responsible for the majority of thermal transport, contributing over 95%. Under unstrained conditions, monolayer PtSSe demonstrates a superior thermal conductivity of 104 W·m−1·K−1, making it advantageous for thermal management applications in electronic devices. Under tensile strain, the thermal conductivities of PtSSe, MoSSe, and WSSe monolayers exhibit a monotonic decrease trend; however, for PtTeSe, MoTeSe, and WTeSe monolayers, their thermal conductivities initially show an increase trend, followed by a subsequent decrease trend. Under a 10% tensile strain, the thermal conductivities of these six Janus monolayers all demonstrate a reduction exceeding 60%. Furthermore, this work provides a comprehensive analysis of the influences of strain on specific heat capacity, phonon group velocity, and phonon lifetime. The phonon mode-level analysis and cross-calculated thermal conductivity (with specific heat capacity, phonon group velocity, and phonon lifetime replaced by values under different strain conditions) reveal that phonon lifetime is the dominant factor governing thermal conductivity under strain. For electrical transport properties, calculations are performed using the Boltzmann transport equation based on deformation potential theory. At room temperature, the thermoelectric figure of merit (ZT) for PtTeSe is 0.91 without strain, which can be improved to 1.31 under 10% tensile strain. The ZT value reaches as high as 3.96 for p-type PtTeSe and 2.38 for n-type PtTeSe at 700 K, indicating that the PtTeSe monolayer is a highly promising thermoelectric material. Strain-induced enhancement in the thermoelectric performance of PtTeSe is facilitated by reducing lattice thermal conductivity and reconfigurating the band structure. This work demonstrates that strain engineering is an effective strategy for adjusting the thermal transport and thermoelectric properties of Janus transition metal dichalcogenide monolayers.
-
Keywords:
- Janus transition metal dichalcogenides /
- thermoelectric /
- strain /
- first-principles
-
图 7 采用不同应变作用下的比热容、声子群速度和声子寿命交叉计算的Janus TMDCs单分子层热导率 (a) PtSSe, MoSSe和WSSe; (b) PtTeSe, MoTeSe和WTeSe
Figure 7. Cross-calculated thermal conductivity with heat capacity, phonon group velocity, and phonon lifetime replaced by values under different strains for Janus TMDCs monolayers: (a) PtSSe, MoSSe, and WSSe; (b) PtTeSe, MoTeSe, and WTeSe.
-
[1] Zhang Y, Lü Q, Wang H, Zhao S, Xiong Q, Lü R, Zhang X 2022 Science 378 169
Google Scholar
[2] 武鹏, 谈论, 李炜, 曹立伟, 赵俊博, 曲尧, 李昂 2023 物理学报 72 118101
Google Scholar
Wu P, Tan L, Li W, Cao L W, Zhao J B, Qu Y, Li A 2023 Acta Phys. Sin. 72 118101
Google Scholar
[3] Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, Kis A 2017 Nat. Rev. Mater. 2 17033
Google Scholar
[4] 赵欣, 唐桂华, 李一斐, 张敏 2021 工程热物理学报 42 2455
Zhao X, Tang G H, Li Y F, Zhang M 2021 Journal of Engineering Thermophysics 42 2455
[5] Zhang J, Jia S, Kholmanov I, Dong L, Er D, Chen W, Guo H, Jin Z, Shenoy V B, Shi L, Lou J 2017 ACS Nano 11 8192
Google Scholar
[6] Lu A Y, Zhu H, Xiao J, Chuu C P, Han Y, Chiu M H, Cheng C C, Yang C W, Wei K H, Yang Y, Wang Y, Sokaras D, Nordlund D, Yang P, Muller D A, Chou M Y, Zhang X, Li L J 2017 Nat. Nanotechnol. 12 744
Google Scholar
[7] Lin Y C, Liu C, Yu Y, Zarkadoula E, Yoon M, Puretzky A A, Liang L, Kong X, Gu Y, Strasser A, Meyer H M, III, Lorenz M, Chisholm M F, Ivanov I N, Rouleau C M, Duscher G, Xiao K, Geohegan D B 2020 ACS Nano 14 3896
Google Scholar
[8] Trivedi D B, Turgut G, Qin Y, Sayyad M Y, Hajra D, Howell M, Liu L, Yang S, Patoary N H, Li H, Petrić M M, Meyer M, Kremser M, Barbone M, Soavi G, Stier A V, Müller K, Yang S, Esqueda I S, Zhuang H, Finley J J, Tongay S 2020 Adv. Mater. 32 2006320
Google Scholar
[9] Sant R, Gay M, Marty A, Lisi S, Harrabi R, Vergnaud C, Dau M T, Weng X, Coraux J, Gauthier N, Renault O, Renaud G, Jamet M 2020 npj 2D Mater. Appl. 4 41
[10] Qin Y, Sayyad M, Montblanch A R P, Feuer M S G, Dey D, Blei M, Sailus R, Kara D M, Shen Y, Yang S, Botana A S, Atature M, Tongay S 2022 Adv. Mater. 34 2106222
Google Scholar
[11] Huang S J, Zhang T, Zeng Z Y, Geng H Y, Chen X R 2024 Vacuum 224 113143
Google Scholar
[12] Liu J, Shen T, Wang L, Ren J C, Liu W, Li S 2024 Adv. Funct. Mater. 34 2401737
Google Scholar
[13] Cui H, Yang T, Peng X, Zhang G 2022 J. Mater. Res. Technol. 18 1218
Google Scholar
[14] 张德贺, 周文哲, 李奥林, 欧阳方平 2021 物理学报 70 096301
Google Scholar
Zhang D H, Zhou W Z, Li A L, Ouyang F P 2021 Acta Phys. Sin. 70 096301
Google Scholar
[15] 张宇航, 李孝宝, 詹春晓, 王美芹, 浦玉学 2023 物理学报 72 046201
Google Scholar
Zhang Y H, Li X B, Zhan C X, Wang M Q, Pu Y X 2023 Acta Phys. Sin. 72 046201
Google Scholar
[16] Tao W L, Yi M, E. H C, Yan C, Ji G F 2019 Philos. Mag. 99 1025
Google Scholar
[17] Liu C, Yao M, Yang J, Xi J, Ke X 2020 Mater. Today Phys. 15 100277
Google Scholar
[18] Bera J, Betal A, Sahu S 2021 J. Alloys Compd. 872 159704
Google Scholar
[19] Guo S D 2018 Phys. Chem. Chem. Phys. 20 7236
Google Scholar
[20] Han D, Qin H, Tu H, Chen Y, Sun H, Xue Y, Zeng X 2025 J. Electron. Mater. 54 2180
Google Scholar
[21] Tao W L, Lan J Q, Hu C E, Cheng Y, Zhu J, Geng H Y 2020 J. Appl. Phys. 127 035101
Google Scholar
[22] Guo S D, Li Y F, Guo X S 2019 Comput. Mater. Sci. 161 16
Google Scholar
[23] Patel A, Singh D, Sonvane Y, Thakor P B, Ahuja R 2020 ACS Appl. Mater. Interfaces 12 46212
Google Scholar
[24] Han D, Wang M, Yang X, Du M, Cheng L, Wang X 2022 J. Alloys Compd. 903 163850
Google Scholar
[25] Zhang M, Tang G H, Li Y F, Fu B, Wang X Y 2020 Int. J. Thermophys. 41 57
Google Scholar
[26] Zhang R, Koutsos V, Cheung R 2016 Appl. Phys. Lett. 108 042104
Google Scholar
[27] Bertolazzi S, Brivio J, Kis A 2011 ACS Nano 5 9703
Google Scholar
[28] Pan L, Carrete J, Wang Z 2022 J. Phys. Condens. Mater. 34 015303
Google Scholar
[29] Ahmad S, Idrees M, Khan F, Nguyen C V, Ahmad I, Amin B 2021 Chem. Phys. Lett. 776 138689
Google Scholar
[30] Ahmad S, Khan F, Amin B, Ahmad I 2021 J. Solid State Chem. 299 122189
Google Scholar
[31] Wang C, Chen Y-X, Gao G, Xu K, Shao H 2022 Appl. Surf. Sci. 593 153402
Google Scholar
[32] Chaurasiya R, Tyagi S, Singh N, Auluck S, Dixit A 2021 J. Alloys Compd. 855 157304
Google Scholar
[33] Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, Dabo I, Dal Corso A, de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen A P, Smogunov A, Umari P, Wentzcovitch R M 2009 J. Phys. Condens. Mater. 21 395502
Google Scholar
[34] Hamann D R 2013 Phys. Rev. B 88 085117
Google Scholar
[35] Li W, Carrete J, A. Katcho N, Mingo N 2014 Comput. Phys. Commun. 185 1747
Google Scholar
[36] Madsen G K H, Carrete J, Verstraete M J 2018 Comput. Phys. Commun. 231 140
Google Scholar
[37] 李一斐, 唐桂华, 张敏, 赵欣 2022 工程热物理学报 43 479
Li Y F, Tang G H, Zhang M, Zhao X 2022 Journal of Engineering Thermophysics 43 479
[38] Han D, Yang X, Du M, Xin G, Zhang J, Wang X, Cheng L 2021 Nanoscale 13 7176
Google Scholar
[39] Tang Z, Wang X, Li J, He C, Chen M, Tang C, Ouyang T 2023 Phys. Rev. B 108 214304
Google Scholar
[40] Bhojani A K, Kagdada H L, Singh D K 2025 Phys. Rev. B 111 085419
Google Scholar
[41] Yuan K, Zhang X, Tang D, Hu M 2018 Phys. Rev. B 98 144303
Google Scholar
[42] Tang Z Y, Wang X X, Li J, He C Y, Tang C, Wang H M, Chen M X, Ouyang T 2023 Appl. Phys. Lett. 122 172203
Google Scholar
[43] Tang Z, Wang X, He C, Li J, Chen M, Tang C, Ouyang T 2024 Phys. Rev. B 110 134320
Google Scholar
[44] Lindsay L, Broido D A, Carrete J, Mingo N, Reinecke T L 2015 Phys. Rev. B 91 121202
Google Scholar
[45] Zhang M, Tang G, Li Y 2021 ACS Omega 6 3980
Google Scholar
[46] 王艳, 陈南迪, 杨陈, 曾召益, 胡翠娥, 陈向荣 2021 物理学报 70 116301
Google Scholar
Wang Y, Chen N D, Yang C, Zeng Z Y, Hu C E, Chen X R 2021 Acta Phys. Sin. 70 116301
Google Scholar
[47] Li Y F, Tang G H, Fu B, Zhang M, Zhao X 2020 ACS Appl. Energy Mater. 3 9234
Google Scholar
[48] Wang N, Li M, Xiao H, Gao Z, Liu Z, Zu X, Li S, Qiao L 2021 npj Comput. Mater. 7 18
Google Scholar
Metrics
- Abstract views: 368
- PDF Downloads: 23
- Cited By: 0