-
The monolayer Janus MoSSe is different from its parent materials MoS2 and MoSe2. Due to the asymmetry of its structure, it is of great significance to study the unique mechanical properties of monolayer Janus MoSSe under uniaxial strain. Theoretical studies can provide useful support for improving the mechanical properties of monolayer Janus materials under strain. Using the first-principles method based on the density functional theory, combined with the classical mechanics analysis, the mechanical properties of monolayer Janus MoSSe with broken symmetry under uniaxial tensile strain at different chiral angles are calculated. The results show that the stress-strain curves are isotropic at different chiral angles when the strain is less than 5%. When the strain exceeds 5% and the Mo-S bond and Mo-Se bond are not broken, the stress-strain curves at different chiral angles show strong anisotropic responses. The strength and toughness of monolayer Janus MoSSe are highly anisotropic and chiral dependent. In contrast, its in-plane stiffness remains constant at different chiral angles. By comparing the results of the first-principles method of quantum mechanics and the classical mechanics method, it show that first-principles calculations involving many-body interactions among electrons play an important role in determining the strength and toughness of this material. This is because that the first-principles method can incorporate more accurately the many-body interactions between electrons. This study provides guidance for the construction and development of monolayer Janus MoSSe based nanomechanical devices.
-
Keywords:
- Monolayer Janus MoSSe /
- Stress /
- Strain /
- Mechanical Properties /
- First-principles calculations
-
[1] Novoselov K S, Geim A K, Morozov, S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004Science 306 666
[2] Balandin A A, Ghosh S, Bao W Z, Calizo I, Teweldebrhan D, Miao F, Lau C N 2008Nano Lett. 8 902
[3] Wang S, Ang P K, Wang Z Q, Tang A L L, Thong J T L, Loh K P 2010Nano Lett. 10 92
[4] Osada M, Sasaki T 2012 Adv. Mater. 24 210
[5] Lu A Y, Zhu H, Xiao J, Chu C P, Han Y, Chiu M H, Cheng C C, Yang C W, Wei K H, Yang Y, Wang Y, Dimosthenis, S, Nordlund D, Yang P, Muller D A, Chou M Y, Zhang X, Li L L 2017 Nat. Nanotech. 12 744
[6] Zhang J, Jia S, Kholmanov I, Dong L, Er D, Chen W, Guo H, Jin Z, Shenoy V B, Li S, Lou J 2017ACS Nano 11 8192
[7] Dong L, Shenoy V B 2017ACS Nano 11 8242
[8] Guan Z, Ni S, Hu S 2018J. Phys. Chem. C 122 6209
[9] Ji Y, Yang M, Lin H, Hou T, Wang L, Li Y, Lee S T 2018J. Phys. Chem. C 1223123
[10] Chen W, Qu L, Yao L, Hou X, Shi X, Pan H 2018J. Mater. Chem. A 6 8021
[11] Er D, Ye H, Frey N C, Kumar H, Lou J, Shenoy V B 2018 Nano lett. 18 3943
[12] Lakshmy S, Mondal B, Kalarikkal N, Rout C S, Chakraborty B 2024Adv. Powder Mater. 3 100204
[13] Chen W, Qu L, Yao L, Hou X, Shi X, Pan H 2018J. Mater. Chem. A 6 8021
[14] Hossain M Z, Ahmed T, Silverman B, Khawaja M S, Calderon J, Rutten A, Tse S 2018 J. Mech. Phys. Solids 110 118
[15] Ahmed T, Zhang Z, McDermitt C, Houssain Z M 2018J. Appl. Phys. 124 185108
[16] Zhang Y H, Li X B, Zhan C X, Wang M Q, Pu Y X 2023Acta Phys. Sin. 72 046201(in Chinese) [张宇航,李孝宝,詹春晓,王美芹,浦玉学2023物理学报72 046201]
[17] Kresse G, Joubert D 1999Phys. Rev. B 59 1758
[18] Blöchl P E 1994Phys. Rev. B 50 17953
[19] Kresse G, Hafner J 1993Phys. Rev. B 47 558
[20] Kresse G, Furthmüller J 1996Phys. Rev. B 54 11169
[21] Perdew J P, Burke K, Ernzerhof M 1996Phys. Rev. Lett. 77 3865
[22] Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C 1992Phys. Rev. B 46 6671
[23] Perdew J P, Burke K, Ernzerhof M 1996Phys. Rev. Lett 77 3865
[24] Tang X, Li S, Ma Y, Du A, Liao T, Gu Y, Kou L 2018J. Phys. Chem. C 122 19153
[25] Shi W, Wang Z 2018J. Phys.: Condens. Matt. 30 215301
[26] Lakshmy S, Mondal B, Kalarikkal N, Rout C S, Chakraborty B 2024Adv. Powder Mater. 3 100204
Metrics
- Abstract views: 175
- PDF Downloads: 8
- Cited By: 0