-
Fe-based amorphous alloys offer exceptional properties such as low coercivity and core losses. In recent years, interest has focused on developing amorphous alloys using selective laser melting (SLM) technology. However, the glass-forming ability (GFA) and mechanical properties pose challenges for fabricating Fe-based amorphous alloys with complex geometries. This work aims to establish fundamental processing-(micro)structure-property links in Fe-based amorphous alloys processed by selective laser melting (SLM). With that purpose, a low-energy-input melt pool was achieved and the overlap quality between adjacent melt tracks and successive deposited layers is enhanced., through optimization of printing parameters. The Fe-based amorphous alloy was obtained with a high relative density of 94.3% and a low coercivity of 0.5 Oe. Furthermore, the saturation magnetization of the printed alloy increased to 0.89 T compared to the powder feedstock. This work overcomes the mutually restrictive relationship between the glass-forming ability (GFA) and part quality during fabricating the complex-structure Fe-based amorphous alloys, holding significant implications for advancing the application of Fe-based amorphous alloys.
-
[1] Wang Y, Lucia O, Zhang Z, Guan Y, Xu D 2020IET Power Electron. 13 1711
[2] Battal F, Balci S, Sefa I 2020Meas. J. Int. Meas. Confed. 171 108848
[3] Mahesh M, Kumar K V, Abebe M, Udayakumar L, Mathankumar M 2021Mater. Today Proc. 46 3888
[4] Yao K F, Shi L X, Chen S Q, Shao Y, Chen N, Jia J L 2018Acta Phys. Sin. 67 016101(in Chinese) [姚可夫, 施凌翔, 陈双琴, 邵洋, 陈娜, 贾蓟丽2018物理学报67 016101]
[5] Li H X, Lu Z C, Wang S L, Wu Y, Lu Z P 2019Prog. Mater. Sci. 103 235
[6] Inoue A, Shinohara Y, Gook J S 1995Mater. Trans., JIM. 36 1427
[7] Ponnambalam V, Poon S J, Shiflet G J 2004J. Mater. Res. 19 1320
[8] Amiya K, Inoue A 2006Mater. Trans. 47 1615
[9] Zhang Y N, Wang Y J, Kong L T, Li J F 2012Acta Phys. Sin. 61 454(in Chinese) [张雅楠, 王有骏, 孔令体, 李金富2012物理学报61 454]
[10] Suryanarayana C, Inoue A 2013Int. Mater. Rev. 58 131
[11] Sun J, Shen P F, Shang Q Z, Zhang P Y, Liu L, Li M R, Hong L, Li W H 2023Acta Phys. Sin. 72 206(in Chinese) [孙吉, 沈鹏飞, 尚其忠, 张鹏雁, 刘莉, 李明瑞, 侯龙, 李维火2023物理学报72 206]
[12] Sohrabi S, Fu J, Li L, Zhang Y, Li X, Sun F, Ma J, Wang W H 2024Prog. Mater. Sci. 144 101283
[13] DebRoy T, Wei H L, Zuback J S, Mukherjee T, Elmer J W, Milewski J O, Beese A M, Wilson-Heid A D, De A, Zhang W 2018Prog. Mater. Sci. 92 112
[14] Pauly S, Löber L, Petters R, Stoica M, Scudino S, Kühn U, Eckert J 2013Mater. Today 16 37
[15] Mahbooba Z, Thorsson L, Unosson M, Skoglund P, West H, Horn T, Rock C, Vogli E, Harrysson O 2018Appl. Mater. Today 11 264
[16] Thorsson L, Unosson M, Pérez-Prado M T, Jin X, Tiberto P, Barrera G, Adam B, Neuber N, Ghavimi A, Frey M, Busch R 2022Mat. Design 215 110483
[17] Lu Y, Huang Y, Wu J, Lu X, Qin Z, Daisenberger D, Chiu Y L 2018Intermetallics 103 67
[18] Ouyang D, Xing W, Li N, Li Y C, Liu L 2018AM. 23 246
[19] Marattukalam J J, Pacheco V, Karlsson D, Riekehr L, Lindwall J, Forsberg F, Jansson U, Sahlberg M, Hjörvarsson B 2020AM. 33 101124
[20] Qiu C, Panwisawas C, Ward M, Basoalto H C, Brooks J W, Attallah M M 2015Acta Mater. 96 72
[21] Xing W, Ouyang D, Li N, Liu L 2018Intermetallics 103 101
[22] Ren Z, Zhang D Z, Fu G, Jiang J, Zhao M 2021Mat. Design 207 109857
[23] Ge Y, Qiao J, Chang Z, Hou M, Xu H, Yang A, Song Y, Bi W, Ma N 2024Mater. Today Commun. 39 108597
[24] Nguyen QB, Luu DN, Nai SM, Zhu Z, Chen Z, Wei J 2018Arch. Civ. Mech. Eng. 18 948
[25] Yang G, Lin X, Liu F, Hu Q, Ma L, Li J, Huang W 2012Intermetallics 22 110
[26] Nam Y G, Koo B, Chang M S, Yang S, Yu J, Park Y H, Jeong J W 2020Mater. Lett. 261 127068
[27] Shi Y, Wei D S 2023Chin. J. Lasers 50 131(in Chinese) [石岩, 魏登松2023中国激光50 131]
[28] Han Q, Gu H, Setchi R 2019Powder Technol. 352 91
[29] Luo N, Scheitler C, Ciftci N, Galgon F, Fu Z, Uhlenwinkel V, Schmidt M, Körner C 2020Mater. Charact. 162 110206
[30] Yadroitsev I, Yadroitsava I, Bertrand P, Smurov I 2012Rapid Prototyp. J. 18 201
[31] Yuan W, Chen H, Cheng T, Wei Q 2020Mat. Design 189 108542
[32] Zhang Y, Liu H, Mo J, Wang M, Chen Z, He Y, Yang W, Tang C 2019Phys. Chem. Chem. Phys. 21 12406
[33] Özden M G, Morley N A 2023J. Alloys Compd. 960 170644
[34] Sun H, Flores K M 2013Intermetallics 43 53
[35] Li S Y, Fu G, Li H L, Ren Z H, Li S B, Xiao H Q, Peng Q G 2023J. Alloys Compd. 967 171778
[36] Murayama S, Inaba H, Hoshi K, Obi Y 1993IEEE Trans. Magn. 29 2682
[37] Żrodowski Ł, Wysocki B, Wróblewski R, Krawczyńska A, Adamczyk-Cieślak B, Zdunek J, Błyskun P, Ferenc J, Leonowicz M, Święszkowski W 2019J. Alloys Compd. 771 769
[38] Wu X P, Liu S F, Ma T D, Wang S M, Wang M Y 2024AM&D. 31 99(in Chinese) [邬小萍,刘淑凤,马通达,王书明,王梦圆2024金属功能材料31 99]
[39] Guo Z Z, Hu X B 2012Acta Phys. Sin. 62 5(in Chinese)[郭子政,胡旭波2012物理学报62 5]
[40] Jung H Y, Choi S J, Prashanth K G, Stoica M, Scudino S, Yi S, Kühn U, Kim D H, Kim K B, Eckert J 2015Mat. Design 86 703
[41] Rodríguez-Sánchez M, Sadanand S, Ghavimi A, Busch R, Tiberto P, Ferrara E, Barrera G, Thorsson L, Wachter H J, Gallino I, Pérez-Prado M T 2024Mater. 35 102111
Metrics
- Abstract views: 71
- PDF Downloads: 4
- Cited By: 0