Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Design and fabrication of GdHoErCoNiAl metallic glasses with excellent glass forming capability and magnetocaloric effects

Wang Zhuang Jin Fan Li Wei Ruan Jia-Yi Wang Long-Fei Wu Xue-Lian Zhang Yi-Kun Yuan Chen-Chen

Citation:

Design and fabrication of GdHoErCoNiAl metallic glasses with excellent glass forming capability and magnetocaloric effects

Wang Zhuang, Jin Fan, Li Wei, Ruan Jia-Yi, Wang Long-Fei, Wu Xue-Lian, Zhang Yi-Kun, Yuan Chen-Chen
cstr: 32037.14.aps.73.20241132
PDF
HTML
Get Citation
  • In this work, Gd20+2xHo20–xEr20–xCo20Ni10Al10 (x = 0, 5, 10) high-entropy metallic glasses (MGs) with a critical diameter of 2 mm are successfully designed and fabricated by substituting Gd, Ho and Er. The effects of type and content of rare-earth (RE) elements on the microstructure, thermodynamic behaviors, and magnetocaloric effect (MCE) are investigated systematically. The amorphous structures of the ribbons and as-cast rods are confirmed by X-ray diffraction (XRD) with Cu Kα radiation (2θ = 20°–80°). The atomic-scale ordered configurations are examined by using high-resolution transmission electron microscope (HRTEM). Thermal analysis is carried out on differential scanning calorimeter (DSC) with a heating rate of 20 K/min by using ribbons. The magnetic measurements are conducted by using magnetometer in a temperature range of 5–180 K. According to DSC traces, it is suggested that as Ho and Er are replaced by Gd, the thermal stability of MGs slightly decreases, for example, both glass transition temperature (Tg) and initial crystallization temperature (Tx) decrease gradually, meanwhile the liquidus temperature (Tl) increases, which results in a reduction of glass-forming ability criteria such as the reduced glass transition temperatures Trg (Trg = Tg/Tl), γ (γ = Tx/(Tg + Tl)), and γm (γm = (2TxTg)/Tl), thermodynamically. The analyses based on XRD and HRTEM show that the degree of order in MGs decreases with Gd content increasing, which facilitates the glass formation. The magnetocaloric parameters such as Curie temperature (Tc), maximum magnetic entropy change ($ | {\Delta S_{\text{M}}^{{\text{pk}}}} | $) and relative cooling power (RCP) all increase gradually with the addition of Gd. The Gd40Ho10Er10CoNiAl exhibits the best refrigeration performance in all studied systems, where the peak value of $ |{\Delta S}_{{\mathrm{M}}}| $ is 8.31 J/(kg·K) and RCP is 740.82 J/kg. The results indicate that MCEs of MGs including RCP, Tc and $ | {\Delta S_{\text{M}}^{{\text{pk}}}} | $, mainly depend on the de Gennes factor rather than the effective magnetic moment, while thermodynamic properties are more affected by the f-d hybridization effect. As the number of 4f electrons increases, the thermal stability increases with the degree f-d orbital hybridization increasing. In summary, the RE-based MG with high thermal stability and adjustable Tc can be achieved by the RE substitution via adjusting the number of 4f electrons.
      Corresponding author: Yuan Chen-Chen, yuanchenchenneu@hotmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 52071078) and the “Zhishan” Scholars Programs of Southeast University, China (Grant No. 2242021R41158).
    [1]

    Gschneidner K A, Pecharsky V, Tsokol A 2005 Rep. Prog. Phys. 68 1479Google Scholar

    [2]

    Uporov S, Ryltsev R, Bykov V, Uporova N, Estemirova S K, Chtchelkatchev N 2021 J. Alloys Compd. 854 157170Google Scholar

    [3]

    Warburg E 1881 Ann. Der. Phys. 249 141Google Scholar

    [4]

    Debye P 1926 Ann. Der. Phys. 386 1154Google Scholar

    [5]

    Giauque W F 1927 J. Am. Chem. Soc. 49 1864Google Scholar

    [6]

    Pecharsky V K, Gschneidner Jr K A 1997 Phys. Rev. Lett. 78 4494Google Scholar

    [7]

    Pecharsky V K, Gschneidner Jr K A 1997 Appl. Phys. Lett. 70 3299Google Scholar

    [8]

    Jia Y S, Zhao X Y, Liu X L, Li L W 2020 J. Alloys Compd. 813 152177Google Scholar

    [9]

    Zhang Y K, Zhu J, Li S, Zhang B, Wang Y M, Wang J, Ren Z M 2022 J. Alloys Compd. 895 162633Google Scholar

    [10]

    Wang Q, Pan L L, Tang B Z, Ding D, Xia L 2022 J. Non-Cryst. Solids 580 121394Google Scholar

    [11]

    Luo Q, Zhao D Q, Pan M X, Wang W H 2007 Appl. Phys. Lett. 90 211903Google Scholar

    [12]

    Lim X 2016 Nature 533 306Google Scholar

    [13]

    Huo J T, Huo L S, Li J W, Men H, Wang X M, Inoue A, Chang C T, Wang J Q, Li R W 2015 J. Appl. Phys. 117 073902Google Scholar

    [14]

    Huo J T, Huo L S, Men H, Wang X M, Inoue A, Wang J, Chang C T, Li R W 2015 Intermetallics 58 31Google Scholar

    [15]

    Sheng W, Wang J Q, Wang G, Huo J T, Wang X, Li R W 2018 Intermetallics 96 79Google Scholar

    [16]

    Li J W, Xue L, Yang W, Yuan C, Huo J T, Shen B 2018 Intermetallics 96 90Google Scholar

    [17]

    Zhang Y K, Zhu J, Li S, Wang J, Ren Z M 2022 J. Mater. Sci. Technol. 102 66Google Scholar

    [18]

    Li L W, Xu C, Yuan Y, Zhou S Q 2018 Materialia 3 74Google Scholar

    [19]

    Yang Y, Chen Y, Yu P, Qian L J, Wu F F, Cui Y T, Wu Z M, Ding D, Xia L 2015 J. Nanosci. Nanotechnol. 15 3295Google Scholar

    [20]

    Li L W, Xu C, Yuan Y, Zhou S Q 2018 Mater. Res. Lett. 6 413Google Scholar

    [21]

    Dong Z Q, Wang Z J, Yin S H 2020 J. Magn. Magn. Mater. 514 167270Google Scholar

    [22]

    Luo L, Shen H X, Bao Y, Yin H B, Jiang S D, Huang Y J, Guo S Y, Gao S, Xing D W, Li Z, Sun J F 2020 J. Magn. Magn. Mater. 507 166856Google Scholar

    [23]

    Zhang Y K, Xu P, Zhu J, Yan S, Zhang J, Li L W 2023 Mater. Today Phys. 32 101031Google Scholar

    [24]

    Zhang Y K, Zhu J, Hao Z, Hao W, Mo Z, Li L W 2023 Mater. Des. 229 111894Google Scholar

    [25]

    Civan E, Sarlar K, Kucuk I 2017 Philos. Mag. 97 1464Google Scholar

    [26]

    Johnson F, Shull R D 2006 J. Appl. Phys. 99 08K909Google Scholar

    [27]

    Kucuk I, Sarlar K, Adam A, Civan E 2016 Philos. Mag. 96 3120Google Scholar

    [28]

    Wu K N, Liu C, Li Q, Huo J T, Li M C, Chang C T, Sun Y F 2019 J. Magn. Magn. Mater. 489 165404Google Scholar

    [29]

    Wang G F, Li H L, Zhao Z R, Zhang X F 2017 J. Alloys Compd. 692 793Google Scholar

    [30]

    Lv Y B, Chen Q J, Huang Y L 2019 J. Rare Earth. 37 404Google Scholar

    [31]

    Guo D, Moreno-Ramírez L M, Romero-Muñiz C, Zhang Y K, Law J Y, Franco V, Wang J, Ren Z M 2021 Sci. China Mater. 64 2846Google Scholar

    [32]

    Xue L, Shao L L, Li Z, Han Z D, Zhang B S, Huo J T, Wang X M, Zhu S S, Qian B, Cheng J B, Shen B L 2022 J. Mater. Res. Technol. 18 5301Google Scholar

    [33]

    Lindner N, Śniadecki Z, Kołodziej M, Grenèche J M, Marcin J, Škorvánek I, Idzikowski B 2022 J. Mater. Sci. 57 553Google Scholar

    [34]

    Zheng Z G, Qiu Z G, Zeng D C 2019 Mater. Res. Express 6 096109Google Scholar

    [35]

    Law J Y, Ramanujan R V, Franco V 2010 J. Alloys Compd. 508 14Google Scholar

    [36]

    糜晓磊, 胡亮, 武博文, 龙强, 魏炳波 2024 物理学报 73 097102Google Scholar

    Mi X L, Hu L, Wu B W, Long Q, Wei B B 2024 Acta Phys. Sin. 73 097102Google Scholar

    [37]

    Xue L, Shao L L, Luo Q, Shen B L 2019 J. Alloys Compd. 790 633Google Scholar

    [38]

    Wei S J, Shen H X, Zhang L Y, Luo L, Tang X X, Sun J F, Li X Q 2024 Rare Metals 43 1234Google Scholar

    [39]

    Lu S F, Ma L, Wang J, Du Y S, Li L W, Zhao J T, Rao G H 2021 J. Alloys Compd. 874 159918Google Scholar

    [40]

    Yeh J W 2013 JOM 65 1759Google Scholar

    [41]

    Ma E, Wu X L 2019 Nat. Commun. 10 5623Google Scholar

    [42]

    Gu J L, Luan H W, Zhao S F, Bu H T, Si J J, Shao Y, Yao K F 2020 Mater. Sci. Eng. A 786 139417Google Scholar

    [43]

    Xue L, Shao L L, Zhang B S, Li Z, Cheng J B, Shen B L 2024 J. Rare Earth. 42 129Google Scholar

    [44]

    Pang C M, Yuan C C, Chen L, Xu H, Guo K, He J C, Li Y, Wei M S, Wang X M, Huo J T, Shen B L 2020 J. Non-Cryst. Solids 549 120354Google Scholar

    [45]

    Pang C M, Chen L, Xu H, Guo W, Lv Z W, Huo J T, Cai M J, Shen B L, Wang X L, Yuan C C 2020 J. Alloys Compd. 827 154101Google Scholar

    [46]

    Wang X, Tang B Z, Wang Q, Yu P, Ding D, Xia L 2020 J. Non-Cryst. Solids 544 120146Google Scholar

    [47]

    Hao F, Lin H, Zhou C, Liu Y Z, Li J B 2011 Phys. Chem. Chem. Phys. 13 15918Google Scholar

    [48]

    Wang Q, Liu C T, Yang Y, Liu J B, Dong Y D, Lu J 2014 Sci. Rep. 4 4648Google Scholar

    [49]

    Imafuku M, Yaoita K, Sato S, Zhang W, Inoue A, Waseda Y 2001 Mater. Sci. Eng. A 304 660Google Scholar

    [50]

    Wang W H 2009 Adv. Mater. 21 4524Google Scholar

    [51]

    Yuan C C, Shen X, Cui J, Gu L, Yu R C, Xi X K 2012 Appl. Phys. Lett. 101 021902Google Scholar

    [52]

    Liu Z H, Zhang Y K J, Liu E K, Liu G D, Ma X Q, Wu G H 2015 J. Phys. D Appl. Phys. 48 325001Google Scholar

    [53]

    Yuan C C, Yang F, Xi X K, Shi C L, Holland-Moritz D, Li M Z, Hu F, Shen B L, Wang X L, Meyer A, Wang W H 2020 Mater. Today 32 26Google Scholar

    [54]

    Jin F, Pang C M, Wang X M, Yuan C C 2023 J. Non-Cryst. Solids 600 121992Google Scholar

    [55]

    Inoue A 2000 Acta Mater. 48 279Google Scholar

    [56]

    Lu Z P, Tan H, Ng S C, Li Y 2000 Scr. Mater. 42 667Google Scholar

    [57]

    Lu Z P, Liu C T 2002 Acta Mater. 50 3501Google Scholar

    [58]

    Lu Z P, Liu C T 2003 Phys. Rev. Lett. 91 115505Google Scholar

    [59]

    Du X H, Huang J C, Liu C T, Lu Z P 2007 J. Appl. Phys. 101 086108Google Scholar

    [60]

    Zhang W, Jia F, Zhang X, Xie G, Inoue A 2010 Metall. Mater. Trans. A 41 1685Google Scholar

    [61]

    Zhang Y K, Guo D, Wu B B, Wang H F, Guan R G, Li X, Ren Z M 2020 J. Appl. Phys. 127 033905Google Scholar

    [62]

    Yin H, Wang J Q, Huang Y, Shen H X, Guo S, Fan H, Huo J T, Sun J 2023 J. Mater. Sci. Technol. 149 167Google Scholar

    [63]

    Zhong H X, Li K, Zhang Q, Wang J, Meng F L, Wu Z J, Yan J M, Zhang X B 2016 NPG Asia Mater. 8 e308Google Scholar

    [64]

    Franco V, Blázquez J, Conde A 2006 J. Appl. Phys. 89 222512Google Scholar

    [65]

    Zhang H Y, Li R, Zhang L L, Zhang T 2014 J. Appl. Phys. 115 133903Google Scholar

    [66]

    Yosida K 1957 Phys. Rev. 107 396Google Scholar

    [67]

    Banerjee B 1964 Phys. Lett. 12 16Google Scholar

    [68]

    Franco V, Conde A, Romero-Enrique J M, Blázquez J S 2008 J. Phys. Condens. Matter 20 285207Google Scholar

    [69]

    Oesterreicher H, Parker F 1984 J. Appl. Phys. 55 4334Google Scholar

    [70]

    Guo D, Zhang Y K, Geng S H, Xu H, Ren Z M, Wilde G 2018 J. Mater. Sci. 53 9816Google Scholar

    [71]

    Zhang Y K, Li H D, Geng S H, Lu X G, Wilde G 2019 J. Alloys Compd. 770 849Google Scholar

    [72]

    Dong Z Q, Yin S H 2020 J. Magn. Magn. Mater. 495 165888Google Scholar

    [73]

    Huo J T, Zhao D Q, Bai H Y, Axinte E, Wang W H 2013 J. Non-Cryst. Solids 359 1Google Scholar

  • 图 1  Gd20+2xHo20–xEr20–xCoNiAl (x = 0, 5, 10)非晶合金条带(a)和铸棒(b)的XRD图谱

    Figure 1.  XRD patterns of Gd20+2xHo20–xEr20–xCoNiAl (x = 0, 5, 10) ribbons (a) and rods (b).

    图 2  Gd20+2xHo20–xEr20–xCoNiAl (x = 0, 5, 10)非晶合金条带HRTEM图(a)—(c)及选区二维自相关处理图(d)—(f), 插图为选区电子衍射图

    Figure 2.  (a)−(c) HRTEM image of Gd20+2xHo20–xEr20–xCoNiAl (x = 0, 5, 10) ribbons and (d)−(f) 2D auto-correlation processing image of selected area. The inset shows the selected area electron diffraction pattern.

    图 3  (a) Gd20+2xHo20–xEr20–xCoNiAl (x = 0, 5, 10) 非晶合金条带DSC图; (b) TgTx与4f电子数的关系图

    Figure 3.  (a) DSC traces of Gd20+2xHo20–xEr20–xCoNiAl (x = 0, 5, 10) ribbons; (b) Tg and Tx as a function of 4f electron number.

    图 4  (a) Gd20+2xHo20–xEr20–xCoNiAl (x = 0, 5, 10)非晶合金200 Oe外场场冷和零场冷磁化强度与温度关系图; (b) 200 Oe外场下的$ {1 {/ } {\chi \left( T \right)}} $随温度变化曲线; (c)场冷曲线求导图; (d) TcG因子的关系

    Figure 4.  (a) Temperature dependence of ZFC and FC magnetization curves (M-T) of Gd20+2xHo20–xEr20–xCoNiAl (x = 0, 5, 10) under 200 Oe; (b) $ {1 {/ } {\chi \left( T \right)}} $ curves at H = 200 Oe; (c) dM/dT-T curves; (d) Tc as a function of G factor.

    图 5  Gd20+2xHo20–xEr20–xCoNiAl (x = 0, 5, 10)非晶合金不同温度下磁化强度与外场关系图(a)—(c)和Arrott图(d)—(f); 不同外场下的磁熵变与温度关系图(g)—(i)和$|\Delta S_{\text{M}}/ | {\Delta S_{\text{M}}^{{\text{pk}}}} |\text{-}\theta$图(j)—(l)

    Figure 5.  Isothermal magnetization curves (M-H ) (a)–(c) and Arrott plots (d)–(f); magnetic entropy changes as a function of temperature (|ΔSM|-T ) (g)–(i) and $|\Delta S_{\text{M}}/ | {\Delta S_{\text{M}}^{{\text{pk}}}} |\text{-}\theta$ curves (j)–(l) for Gd20+2xHo20–xEr20–xCoNiAl (x = 0, 5, 10).

    图 6  Gd20+2xHo20–xEr20–xCoNiAl (x = 0, 5, 10)非晶合金5 T外场下磁熵变与温度关系图, 插图为3种合金相对制冷量值

    Figure 6.  Magnetic entropy changes as a function of temperature (|ΔSM|-T) of Gd20+2xHo20–xEr20–xCoNiAl (x = 0, 5, 10) under an applied field of 5 T. The inset is RCP value.

    图 7  Gd20+2xHo20–xEr20–xCoNiAl (x = 0, 5, 10)非晶合金(a)峰值磁熵变和(b)相对制冷能力与外场关系图, 实线为指数函数拟合曲线

    Figure 7.  (a) Maximum magnetic entropy changes and (b) relative cooling power as a function of applied field ($ | {\Delta S_{\text{M}}^{{\text{pk}}}} | $/RCP-H ) for Gd20+2xHo20–xEr20–xCoNiAl (x = 0, 5, 10). The solid lines are the exponential function fitting curves.

    图 8  (a) Tc, (b) $ | {\Delta S_{\text{M}}^{{\text{pk}}}} | $和(c) RCP与G因子的关系

    Figure 8.  (a) Tc, (b) $ | {\Delta S_{\text{M}}^{{\text{pk}}}} | $, and (c) RCP as a function of G factor.

    图 9  (a) Tg, (b) Tx和(c) ΔTx与4f层电子数的关系

    Figure 9.  (a) Tg, (b) Tx, and (c) ΔTx as a function of 4f electron number.

    表 1  Gd20+2xHo20–xEr20–xCoNiAl (x = 0, 5, 10)非晶合金热力学参数(R为气体常数)

    Table 1.  Thermodynamic parameters and GFA criteria of Gd20+2xHo20–xEr20–xCoNiAl (x = 0, 5, 10).

    Compositions ΔSconf 4f electron number Tg/K Tx/K Tl/K ΔTx/K Trg γ γm
    x = 0 1.748R 9.33 560.6 616.3 973.0 55.7 0.576 0.402 0.691
    x = 5 1.713R 8.75 554.8 613.9 989.6 59.1 0.561 0.398 0.680
    x = 10 1.609R 8.17 551.3 605.3 985.6 54.0 0.559 0.394 0.669
    DownLoad: CSV

    表 2  Gd20+2xHo20–xEr20–xCoNiAl (x = 0, 5, 10)非晶合金的磁热参数

    Table 2.  Magnetocaloric parameters of Gd20+2xHo20–xEr20–xCoNiAl (x = 0, 5, 10).

    x
    ΔSconf G-factor Tc/K θ/K μeff/μB(实验) μeff/μB(理论) $ | {\Delta S_{\text{M}}^{{\text{pk}}}} | $/(J·kg–1·K–1) δTFWHM/K RCP/(J·kg–1) n N
    0 1.748R 7.60 65 17.968 7.18 7.75 8.21 73.99 607.20 0.80 1.00
    5 1.713R 9.64 67 77.788 6.68 7.45 8.28 80.43 665.67 0.78 1.00
    10 1.609R 11.68 81 92.191 6.61 7.14 8.31 89.17 740.82 0.76 1.01
    DownLoad: CSV
  • [1]

    Gschneidner K A, Pecharsky V, Tsokol A 2005 Rep. Prog. Phys. 68 1479Google Scholar

    [2]

    Uporov S, Ryltsev R, Bykov V, Uporova N, Estemirova S K, Chtchelkatchev N 2021 J. Alloys Compd. 854 157170Google Scholar

    [3]

    Warburg E 1881 Ann. Der. Phys. 249 141Google Scholar

    [4]

    Debye P 1926 Ann. Der. Phys. 386 1154Google Scholar

    [5]

    Giauque W F 1927 J. Am. Chem. Soc. 49 1864Google Scholar

    [6]

    Pecharsky V K, Gschneidner Jr K A 1997 Phys. Rev. Lett. 78 4494Google Scholar

    [7]

    Pecharsky V K, Gschneidner Jr K A 1997 Appl. Phys. Lett. 70 3299Google Scholar

    [8]

    Jia Y S, Zhao X Y, Liu X L, Li L W 2020 J. Alloys Compd. 813 152177Google Scholar

    [9]

    Zhang Y K, Zhu J, Li S, Zhang B, Wang Y M, Wang J, Ren Z M 2022 J. Alloys Compd. 895 162633Google Scholar

    [10]

    Wang Q, Pan L L, Tang B Z, Ding D, Xia L 2022 J. Non-Cryst. Solids 580 121394Google Scholar

    [11]

    Luo Q, Zhao D Q, Pan M X, Wang W H 2007 Appl. Phys. Lett. 90 211903Google Scholar

    [12]

    Lim X 2016 Nature 533 306Google Scholar

    [13]

    Huo J T, Huo L S, Li J W, Men H, Wang X M, Inoue A, Chang C T, Wang J Q, Li R W 2015 J. Appl. Phys. 117 073902Google Scholar

    [14]

    Huo J T, Huo L S, Men H, Wang X M, Inoue A, Wang J, Chang C T, Li R W 2015 Intermetallics 58 31Google Scholar

    [15]

    Sheng W, Wang J Q, Wang G, Huo J T, Wang X, Li R W 2018 Intermetallics 96 79Google Scholar

    [16]

    Li J W, Xue L, Yang W, Yuan C, Huo J T, Shen B 2018 Intermetallics 96 90Google Scholar

    [17]

    Zhang Y K, Zhu J, Li S, Wang J, Ren Z M 2022 J. Mater. Sci. Technol. 102 66Google Scholar

    [18]

    Li L W, Xu C, Yuan Y, Zhou S Q 2018 Materialia 3 74Google Scholar

    [19]

    Yang Y, Chen Y, Yu P, Qian L J, Wu F F, Cui Y T, Wu Z M, Ding D, Xia L 2015 J. Nanosci. Nanotechnol. 15 3295Google Scholar

    [20]

    Li L W, Xu C, Yuan Y, Zhou S Q 2018 Mater. Res. Lett. 6 413Google Scholar

    [21]

    Dong Z Q, Wang Z J, Yin S H 2020 J. Magn. Magn. Mater. 514 167270Google Scholar

    [22]

    Luo L, Shen H X, Bao Y, Yin H B, Jiang S D, Huang Y J, Guo S Y, Gao S, Xing D W, Li Z, Sun J F 2020 J. Magn. Magn. Mater. 507 166856Google Scholar

    [23]

    Zhang Y K, Xu P, Zhu J, Yan S, Zhang J, Li L W 2023 Mater. Today Phys. 32 101031Google Scholar

    [24]

    Zhang Y K, Zhu J, Hao Z, Hao W, Mo Z, Li L W 2023 Mater. Des. 229 111894Google Scholar

    [25]

    Civan E, Sarlar K, Kucuk I 2017 Philos. Mag. 97 1464Google Scholar

    [26]

    Johnson F, Shull R D 2006 J. Appl. Phys. 99 08K909Google Scholar

    [27]

    Kucuk I, Sarlar K, Adam A, Civan E 2016 Philos. Mag. 96 3120Google Scholar

    [28]

    Wu K N, Liu C, Li Q, Huo J T, Li M C, Chang C T, Sun Y F 2019 J. Magn. Magn. Mater. 489 165404Google Scholar

    [29]

    Wang G F, Li H L, Zhao Z R, Zhang X F 2017 J. Alloys Compd. 692 793Google Scholar

    [30]

    Lv Y B, Chen Q J, Huang Y L 2019 J. Rare Earth. 37 404Google Scholar

    [31]

    Guo D, Moreno-Ramírez L M, Romero-Muñiz C, Zhang Y K, Law J Y, Franco V, Wang J, Ren Z M 2021 Sci. China Mater. 64 2846Google Scholar

    [32]

    Xue L, Shao L L, Li Z, Han Z D, Zhang B S, Huo J T, Wang X M, Zhu S S, Qian B, Cheng J B, Shen B L 2022 J. Mater. Res. Technol. 18 5301Google Scholar

    [33]

    Lindner N, Śniadecki Z, Kołodziej M, Grenèche J M, Marcin J, Škorvánek I, Idzikowski B 2022 J. Mater. Sci. 57 553Google Scholar

    [34]

    Zheng Z G, Qiu Z G, Zeng D C 2019 Mater. Res. Express 6 096109Google Scholar

    [35]

    Law J Y, Ramanujan R V, Franco V 2010 J. Alloys Compd. 508 14Google Scholar

    [36]

    糜晓磊, 胡亮, 武博文, 龙强, 魏炳波 2024 物理学报 73 097102Google Scholar

    Mi X L, Hu L, Wu B W, Long Q, Wei B B 2024 Acta Phys. Sin. 73 097102Google Scholar

    [37]

    Xue L, Shao L L, Luo Q, Shen B L 2019 J. Alloys Compd. 790 633Google Scholar

    [38]

    Wei S J, Shen H X, Zhang L Y, Luo L, Tang X X, Sun J F, Li X Q 2024 Rare Metals 43 1234Google Scholar

    [39]

    Lu S F, Ma L, Wang J, Du Y S, Li L W, Zhao J T, Rao G H 2021 J. Alloys Compd. 874 159918Google Scholar

    [40]

    Yeh J W 2013 JOM 65 1759Google Scholar

    [41]

    Ma E, Wu X L 2019 Nat. Commun. 10 5623Google Scholar

    [42]

    Gu J L, Luan H W, Zhao S F, Bu H T, Si J J, Shao Y, Yao K F 2020 Mater. Sci. Eng. A 786 139417Google Scholar

    [43]

    Xue L, Shao L L, Zhang B S, Li Z, Cheng J B, Shen B L 2024 J. Rare Earth. 42 129Google Scholar

    [44]

    Pang C M, Yuan C C, Chen L, Xu H, Guo K, He J C, Li Y, Wei M S, Wang X M, Huo J T, Shen B L 2020 J. Non-Cryst. Solids 549 120354Google Scholar

    [45]

    Pang C M, Chen L, Xu H, Guo W, Lv Z W, Huo J T, Cai M J, Shen B L, Wang X L, Yuan C C 2020 J. Alloys Compd. 827 154101Google Scholar

    [46]

    Wang X, Tang B Z, Wang Q, Yu P, Ding D, Xia L 2020 J. Non-Cryst. Solids 544 120146Google Scholar

    [47]

    Hao F, Lin H, Zhou C, Liu Y Z, Li J B 2011 Phys. Chem. Chem. Phys. 13 15918Google Scholar

    [48]

    Wang Q, Liu C T, Yang Y, Liu J B, Dong Y D, Lu J 2014 Sci. Rep. 4 4648Google Scholar

    [49]

    Imafuku M, Yaoita K, Sato S, Zhang W, Inoue A, Waseda Y 2001 Mater. Sci. Eng. A 304 660Google Scholar

    [50]

    Wang W H 2009 Adv. Mater. 21 4524Google Scholar

    [51]

    Yuan C C, Shen X, Cui J, Gu L, Yu R C, Xi X K 2012 Appl. Phys. Lett. 101 021902Google Scholar

    [52]

    Liu Z H, Zhang Y K J, Liu E K, Liu G D, Ma X Q, Wu G H 2015 J. Phys. D Appl. Phys. 48 325001Google Scholar

    [53]

    Yuan C C, Yang F, Xi X K, Shi C L, Holland-Moritz D, Li M Z, Hu F, Shen B L, Wang X L, Meyer A, Wang W H 2020 Mater. Today 32 26Google Scholar

    [54]

    Jin F, Pang C M, Wang X M, Yuan C C 2023 J. Non-Cryst. Solids 600 121992Google Scholar

    [55]

    Inoue A 2000 Acta Mater. 48 279Google Scholar

    [56]

    Lu Z P, Tan H, Ng S C, Li Y 2000 Scr. Mater. 42 667Google Scholar

    [57]

    Lu Z P, Liu C T 2002 Acta Mater. 50 3501Google Scholar

    [58]

    Lu Z P, Liu C T 2003 Phys. Rev. Lett. 91 115505Google Scholar

    [59]

    Du X H, Huang J C, Liu C T, Lu Z P 2007 J. Appl. Phys. 101 086108Google Scholar

    [60]

    Zhang W, Jia F, Zhang X, Xie G, Inoue A 2010 Metall. Mater. Trans. A 41 1685Google Scholar

    [61]

    Zhang Y K, Guo D, Wu B B, Wang H F, Guan R G, Li X, Ren Z M 2020 J. Appl. Phys. 127 033905Google Scholar

    [62]

    Yin H, Wang J Q, Huang Y, Shen H X, Guo S, Fan H, Huo J T, Sun J 2023 J. Mater. Sci. Technol. 149 167Google Scholar

    [63]

    Zhong H X, Li K, Zhang Q, Wang J, Meng F L, Wu Z J, Yan J M, Zhang X B 2016 NPG Asia Mater. 8 e308Google Scholar

    [64]

    Franco V, Blázquez J, Conde A 2006 J. Appl. Phys. 89 222512Google Scholar

    [65]

    Zhang H Y, Li R, Zhang L L, Zhang T 2014 J. Appl. Phys. 115 133903Google Scholar

    [66]

    Yosida K 1957 Phys. Rev. 107 396Google Scholar

    [67]

    Banerjee B 1964 Phys. Lett. 12 16Google Scholar

    [68]

    Franco V, Conde A, Romero-Enrique J M, Blázquez J S 2008 J. Phys. Condens. Matter 20 285207Google Scholar

    [69]

    Oesterreicher H, Parker F 1984 J. Appl. Phys. 55 4334Google Scholar

    [70]

    Guo D, Zhang Y K, Geng S H, Xu H, Ren Z M, Wilde G 2018 J. Mater. Sci. 53 9816Google Scholar

    [71]

    Zhang Y K, Li H D, Geng S H, Lu X G, Wilde G 2019 J. Alloys Compd. 770 849Google Scholar

    [72]

    Dong Z Q, Yin S H 2020 J. Magn. Magn. Mater. 495 165888Google Scholar

    [73]

    Huo J T, Zhao D Q, Bai H Y, Axinte E, Wang W H 2013 J. Non-Cryst. Solids 359 1Google Scholar

  • [1] Lin Yuan, Hu Feng-Xia, Shen Bao-Gen. Phase transition regulation, magnetocaloric effect, and abnormal thermal expansion. Acta Physica Sinica, 2023, 72(23): 237501. doi: 10.7498/aps.72.20231118
    [2] Sun Ji, Shen Peng-Fei, Shang Qi-Zhong, Zhang Peng-Yan, Liu Li, Li Ming-Rui, Hou Long, Li Wei-Huo. Effects of adding B element on amorphous forming ability, magnetic properties, and mechanical properties of FePBCCu alloy. Acta Physica Sinica, 2023, 72(2): 026101. doi: 10.7498/aps.72.20221553
    [3] Zhang Yan, Zong Shuo-Tong, Sun Zhi-Gang, Liu Hong-Xia, Chen Feng-Hua, Zhang Ke-Wei, Hu Ji-Fan, Zhao Tong-Yun, Shen Bao-Gen. Magnetic and anisotropic magnetocaloric effects of HoCoSi fast quenching ribbons. Acta Physica Sinica, 2022, 71(16): 167501. doi: 10.7498/aps.71.20220683
    [4] Peng Jia-Xin, Tang Ben-Zhen, Chen Qi-Xin, Li Dong-Mei, Guo Xiao-Long, Xia Lei, Yu Peng. Preparation and magnetocaloric properties of Gd45Ni30Al15Co10 amorphous alloy. Acta Physica Sinica, 2022, 71(2): 026102. doi: 10.7498/aps.70.20211530
    [5] Ma Shuang, Hao Wei-Ye, Wang Xu-Dong, Zhang Wei, Yao Man. Mechanism analysis of metalloid elements affecting amorphous forming ability and magnetic properties of Co-Y-B alloy. Acta Physica Sinica, 2022, 71(22): 228102. doi: 10.7498/aps.71.20220873
    [6] Yang Jing-Jie, Zhao Jin-Liang, Xu Lei, Zhang Hong-Guo, Yue Ming, Liu Dan-Min, Jiang Yi-Jian. Influences of interstitial atoms H, B and C on magnetic properties and magnetocaloric effect in LaFe11.5Al1.5 compound. Acta Physica Sinica, 2018, 67(7): 077501. doi: 10.7498/aps.67.20172250
    [7] Li Rui-Xuan, Zhang Yong. Entropy and glass formation. Acta Physica Sinica, 2017, 66(17): 177101. doi: 10.7498/aps.66.177101
    [8] Wu Yuan, Song Wen-Li, Zhou Jie, Cao Di, Wang Hui, Liu Xiong-Jun, Lü Zhao-Ping. Ductilization of bulk metallic glassy material and its mechanism. Acta Physica Sinica, 2017, 66(17): 176111. doi: 10.7498/aps.66.176111
    [9] Ke Hai-Bo, Pu Zhen, Zhang Pei, Zhang Peng-Guo, Xu Hong-Yang, Huang Huo-Gen, Liu Tian-Wei, Wang Ying-Min. Research progress in U-based amorphous alloys. Acta Physica Sinica, 2017, 66(17): 176104. doi: 10.7498/aps.66.176104
    [10] Huo Jun-Tao, Sheng Wei, Wang Jun-Qiang. Magnetocaloric effects and magnetic regenerator performances in metallic glasses. Acta Physica Sinica, 2017, 66(17): 176409. doi: 10.7498/aps.66.176409
    [11] Zheng Xin-Qi, Shen Jun, Hu Feng-Xia, Sun Ji-Rong, Shen Bao-Gen. Research progress in magnetocaloric effect materials. Acta Physica Sinica, 2016, 65(21): 217502. doi: 10.7498/aps.65.217502
    [12] Xiao Yu-Ling, He Ji-Zhou, Cheng Hai-Tao. Influence of the heat reservoir boundary on the performance of Brownian heat engine. Acta Physica Sinica, 2014, 63(20): 200501. doi: 10.7498/aps.63.200501
    [13] Wang Fang, Yuan Feng-Ying, Wang Jin-Zhi. Magnetic properties and magnetocaloric effect in Mn42Al50-xFe8+x alloys. Acta Physica Sinica, 2013, 62(16): 167501. doi: 10.7498/aps.62.167501
    [14] Zhang Ya-Nan, Wang You-Jun, Kong Ling-Ti, Li Jin-Fu. Influence of Y addition on the glass forming ability and soft magnetic properties of Fe-Si-B amorphous alloy. Acta Physica Sinica, 2012, 61(15): 157502. doi: 10.7498/aps.61.157502
    [15] Zhang Hao-Lei, Li Zhe, Qiao Yan-Fei, Cao Shi-Xun, Zhang Jin-Cang, Jing Chao. Martensitic transformation and magnetocaloric effect in Ni-Co-Mn-Sn Heusler alloy. Acta Physica Sinica, 2009, 58(11): 7857-7863. doi: 10.7498/aps.58.7857
    [16] Jing Chao, Chen Ji-Ping, Li Zhe, Cao Shi-Xun, Zhang Jin-Cang. Martensitic transformation and magnetocaloric effect in Ni50Mn35In15 Heusler alloy. Acta Physica Sinica, 2008, 57(7): 4450-4455. doi: 10.7498/aps.57.4450
    [17] Zhang Hui, Zhang Guo-Ying, Yang Shuang, Wu Di, Qi Ke-Zhen. Effects of additional element on the glass forming ability and corrosion resistance of bulk Zr-based amorphous alloys. Acta Physica Sinica, 2008, 57(12): 7822-7826. doi: 10.7498/aps.57.7822
    [18] Wang Zhen-Yu, Yang Yuan-Sheng, Tong Wen-Hui, Li Hui-Qiang, Hu Zhuang-Qi. A new model for calculating critical cooling rates of alloy systems based on viscosity calculation. Acta Physica Sinica, 2007, 56(3): 1543-1548. doi: 10.7498/aps.56.1543
    [19] Wang Zhen-Yu, Yang Yuan-Sheng, Tong Wen-Hui, Li Hui-Qiang, Hu Zhuang-Qi. A new model for calculating the critical cooling rate of bulk metallic glass under non-isothermal condition. Acta Physica Sinica, 2006, 55(4): 1953-1958. doi: 10.7498/aps.55.1953
    [20] CHEN WEI, ZHONG WEI, PAN CHENG, CHANG HONG, DU YOU-WEI. CURIE TEMPERATURE AND MAGNETOCALORIC EFFECT OF POLYCRYSTALLINE La0.8-xCa0.2MnO3. Acta Physica Sinica, 2001, 50(2): 319-323. doi: 10.7498/aps.50.319
  • supplement 2024年24期217101补充材料.pdf supplement
Metrics
  • Abstract views:  1112
  • PDF Downloads:  23
  • Cited By: 0
Publishing process
  • Received Date:  14 August 2024
  • Accepted Date:  10 September 2024
  • Available Online:  27 September 2024
  • Published Online:  05 November 2024

/

返回文章
返回