Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Design and fabrication of GdHoErCoNiAl metallic glasses with an excellent glass forming ability and magnetocaloric effects

Wang Zhuang Jin Fan Li Wei Ruan Jia-yi Wang Long-fei Wu Xue-lian Zhang Yi-kun Yuan Chen-chen

Citation:

Design and fabrication of GdHoErCoNiAl metallic glasses with an excellent glass forming ability and magnetocaloric effects

Wang Zhuang, Jin Fan, Li Wei, Ruan Jia-yi, Wang Long-fei, Wu Xue-lian, Zhang Yi-kun, Yuan Chen-chen
PDF
Get Citation
  • In this work, Gd20+2xHo20-xEr20-xCo20Ni10Al10 (x = 0, 5, 10) high-entropy metallic glasses (MGs) with a critical diameter of 2 mm were successfully designed and fabricated by the substitution of Gd, Ho and Er. The effects of types and contents of rare earth (RE) elements on the microstructure, thermodynamic behaviors, and magnetocaloric effect (MCE) were investigated systematically. The amorphous structure of the ribbons and as-cast rods were confirmed by X-ray diffraction (XRD) with Cu Kα radiation (2θ = 20°-80°). The atomic-scale ordered configurations were examined by using high-resolution transmission electron microscop (HRTEM). Thermal analysis was carried out on differential scanning calorimeter (DSC) with a heating rate of 20 K/min by using ribbons. The magnetic measurements were conducted by using magnetometer in the temperature range of 5-180 K. According to DSC traces, it suggests that as Ho and Er are replaced by Gd, the thermal stability of MGs slightly decreases, e.g., both glass transition temperature (Tg) and initial crystallization temperature (Tx) decrease gradually, meanwhile the liquidus temperature (Tl) increases, which results in a reduction of glass-forming ability criteria such as the reduced glass transition temperatures Trg (Trg = Tg/T1)、γ (γ = Tx/(Tg + T1))和γm (γm = (2Tx-Tg)/T1), thermodynamically. The analyses based on XRD and HRTEM show that the degree of order in MGs decreases with increasing Gd content, which facilitates the glass formation. The magnetocaloric parameters such as Curie temperature (Tc), maximum magnetic entropy change (|ΔSMpk|) and relative cooling power (RCP) all increase gradually with the addition of Gd. Gd40Ho10Er10CoNiAl exhibits the best refrigeration performance among all studied systems, where the peak value of |ΔSM| is 8.31 J·kg-1·K-1 and RCP is 740.82 J·kg-1. The results indicate that MCEs of MGs including RCP, Tc and |ΔSMpk|, mainly depend on the de Gennes factor rather than the effective magnetic moment, while thermodynamic properties are more affected by the f-d hybridization effect. With the increase of 4f electrons, the thermal stability increases with increasing the degree f-d orbital hybridization. In summary, the RE-based MG with high thermal stability and adjustable Tc can be achieved by means of the RE substitution via adjusting the number of 4f electrons.
  • [1]

    Gschneidner K A, Pecharsky V, Tsokol A 2005 Rep. Prog. Phys. 68 1479

    [2]

    Uporov S, Ryltsev R, Bykov V, Uporova N, Estemirova S K, Chtchelkatchev N 2021 J. Alloys Compd. 854 157170

    [3]

    Warburg E 1881 Ann. Der. Phys. 249 141

    [4]

    Debye P 1926 Ann. Der Phys. 386 1154

    [5]

    Giauque W F 1927 J. Am. Chem. Soc. 49 1864

    [6]

    Pecharsky V K, Gschneidner Jr K A 1997 Phys. Rev. Lett. 78 4494

    [7]

    Pecharsky V K, Gschneidner Jr K A 1997 Appl. Phys. Lett. 70 3299

    [8]

    Jia Y, Zhao X, Liu X, Li L 2020 J. Alloys Compd. 813 152177

    [9]

    Zhang Y, Zhu J, Li S, Zhang B, Wang Y, Wang J, Ren Z 2022 J. Alloys Compd. 895 162633

    [10]

    Wang Q, Pan L L, Tang B Z, Ding D, Xia L 2022 J. Non-Cryst. Solids 580 121394

    [11]

    Luo Q, Zhao D Q, Pan M X, Wang W H 2007 Appl. Phys. Lett. 90 211903

    [12]

    Lim X 2016 Nature 533 306

    [13]

    Huo J, Huo L, Li J, Men H, Wang X, Inoue A, Chang C, Wang J Q, Li R W 2015 J. Appl. Phys. 117 073902

    [14]

    Huo J, Huo L, Men H, Wang X, Inoue A, Wang J, Chang C, Li R W 2015 Intermetallics 58 31

    [15]

    Sheng W, Wang J Q, Wang G, Huo J, Wang X, Li R W 2018 Intermetallics 96 79

    [16]

    Li J, Xue L, Yang W, Yuan C, Huo J, Shen B 2018 Intermetallics 96 90

    [17]

    Zhang Y, Zhu J, Li S, Wang J, Ren Z 2022 J. Mater. Sci. Technol. 102 66

    [18]

    Li L, Xu C, Yuan Y, Zhou S 2018 Materialia 3 74

    [19]

    Yang Y, Chen Y, Yu P, Qian L J, Wu F F, Cui Y T, Wu Z M, Ding D, Xia L 2015 J. Nanosci. Nanotechnol. 15 3295

    [20]

    Li L, Xu C, Yuan Y, Zhou S 2018 Mater. Res. Lett. 6 413

    [21]

    Dong Z, Wang Z, Yin S 2020 J. Magn. Magn. Mater. 514 167270

    [22]

    Luo L, Shen H, Bao Y, Yin H, Jiang S, Huang Y, Guo S, Gao S, Xing D, Li Z, Sun J 2020 J. Magn. Magn. Mater. 507 166856

    [23]

    Zhang Y, Xu P, Zhu J, Yan S, Zhang J, Li L 2023 Mater. Today Phys. 32 101031

    [24]

    Zhang Y, Zhu J, Hao Z, Hao W, Mo Z, Li L 2023 Mater. Des. 229 111894

    [25]

    Civan E, Sarlar K, Kucuk I 2017 Philos. Mag. 97 1464

    [26]

    Johnson F, Shull R D 2006 J. Appl. Phys. 99 08K909

    [27]

    Kucuk I, Sarlar K, Adam A, Civan E 2016 Philos. Mag. 96 3120

    [28]

    Wu K, Liu C, Li Q, Huo J, Li M, Chang C, Sun Y 2019 J. Magn. Magn. Mater. 489 165404

    [29]

    Wang G F, Li H L, Zhao Z R, Zhang X F 2017 J. Alloys Compd. 692 793

    [30]

    Lv Y, Chen Q, Huang Y 2019 J. Rare Earth. 37 404

    [31]

    Guo D, Moreno-Ramírez L M, Romero-Muñiz C, Zhang Y, Law J Y, Franco V, Wang J, Ren Z 2021 Sci. China Mater. 64 2846

    [32]

    Xue L, Shao L, Li Z, Han Z, Zhang B, Huo J, Wang X, Zhu S, Qian B, Cheng J, Shen B 2022 J. Mater. Res. Technol. 18 5301

    [33]

    Lindner N, Śniadecki Z, Kołodziej M, Grenèche J M, Marcin J, Škorvánek I, Idzikowski B 2022 J. Mater. Sci. 57 553

    [34]

    Zheng Z G, Qiu Z G, Zeng D C 2019 Mater. Res. Express 6 096109

    [35]

    Law J Y, Ramanujan R V, Franco V 2010 J. Alloys Compd. 508 14

    [36]

    Mi X L, Hu L, Wu B W, Long Q, Wei B B 2024 Acta Phys. Sinica 73 097102

    [37]

    Xue L, Shao L, Luo Q, Shen B 2019 J. Alloys Compd. 790 633

    [38]

    Wei S J, Shen H X, Zhang L Y, Luo L, Tang X X, Sun J F, Li X Q 2024 Rare Metals 43 1234

    [39]

    Lu S F, Ma L, Wang J, Du Y S, Li L, Zhao J T, Rao G H 2021 J. Alloys Compd. 874 159918

    [40]

    Yeh J W 2013 JOM 65 1759

    [41]

    Ma E, Wu X 2019 Nat. Commun. 10 5623

    [42]

    Gu J L, Luan H W, Zhao S F, Bu H T, Si J J, Shao Y, Yao K F 2020 Mater. Sci. Eng. A 786 139417

    [43]

    Xue L, Shao L, Zhang B, Li Z, Cheng J, Shen B 2024 J. Rare Earth. 42 129

    [44]

    Pang C M, Yuan C C, Chen L, Xu H, Guo K, He J C, Li Y, Wei M S, Wang X M, Huo J T, Shen B L 2020 J. Non-Cryst. Solids 549 120354

    [45]

    Pang C M, Chen L, Xu H, Guo W, Lv Z W, Huo J T, Cai M J, Shen B L, Wang X L, Yuan C C 2020 J. Alloys Compd. 827 154101

    [46]

    Wang X, Tang B Z, Wang Q, Yu P, Ding D, Xia L 2020 J. Non-Cryst. Solids 544 120146

    [47]

    Hao F, Lin H, Zhou C, Liu Y, Li J 2011 Phys. Chem. Chem. Phys. 13 15918

    [48]

    Wang Q, Liu C T, Yang Y, Liu J B, Dong Y D, Lu J 2014 Sci. Rep. 4 4648

    [49]

    Imafuku M, Yaoita K, Sato S, Zhang W, Inoue A, Waseda Y 2001 Mater. Sci. Eng. A 304 660

    [50]

    Wang W H 2009 Adv. Mater. 21 4524

    [51]

    Yuan C C, Shen X, Cui J, Gu L, Yu R C, Xi X K 2012 Appl. Phys. Lett. 101 021902

    [52]

    Liu Z H, Zhang Y J, Liu E K, Liu G D, Ma X Q, Wu G H 2015 J. Phys. D Appl. Phys. 48 325001

    [53]

    Yuan C C, Yang F, Xi X K, Shi C L, Holland-Moritz D, Li M Z, Hu F, Shen B L, Wang X L, Meyer A, Wang W H 2020 Mater. Today 32 26

    [54]

    Jin F, Pang C M, Wang X M, Yuan C C 2023 J. Non-Cryst. Solids 600 121992

    [55]

    Inoue A 2000 Acta Mater. 48 279

    [56]

    Lu Z P, Tan H, Ng S C, Li Y 2000 Scr. Mater. 42 667

    [57]

    Lu Z P, Liu C T 2002 Acta Mater. 50 3501

    [58]

    Lu Z P, Liu C T 2003 Phys. Rev. Lett. 91 115505

    [59]

    Du X H, Huang J C, Liu C T, Lu Z P 2007 J. Appl. Phys. 101 086108

    [60]

    Zhang W, Jia F, Zhang X, Xie G, Inoue A 2010 Metall. Mater. Trans. A 41 1685

    [61]

    Zhang Y, Guo D, Wu B, Wang H, Guan R, Li X, Ren Z 2020 J. Appl. Phys. 127 033905

    [62]

    Yin H, Wang J Q, Huang Y, Shen H, Guo S, Fan H, Huo J, Sun J 2023 J. Mater. Sci. Technol. 149 167

    [63]

    Zhong H X, Li K, Zhang Q, Wang J, Meng F l, Wu Z J, Yan J M, Zhang X B 2016 NPG Asia Mater. 8 e308

    [64]

    Franco V, Blázquez J, Conde A 2006 J. Appl. Phys. 89 222512

    [65]

    Zhang H, Li R, Zhang L, Zhang T 2014 J. Appl. Phys. 115 133903

    [66]

    Taylor K N R, Darby M I 1972 F [C].

    [67]

    Banerjee B 1964 Phys. Lett. 12 16

    [68]

    Franco V, Conde A, Romero-Enrique J M, Blázquez J S 2008 J. Phys. Condens. Matter 20 285207

    [69]

    Oesterreicher H, Parker F 1984 J. Appl. Phys. 55 4334

    [70]

    Guo D, Zhang Y, Geng S, Xu H, Ren Z, Wilde G 2018 J. Mater. Sci. 53 9816

    [71]

    Zhang Y, Li H, Geng S, Lu X, Wilde G 2019 J. Alloys Compd. 770 849

    [72]

    Dong Z, Yin S 2020 J. Magn. Magn. Mater. 495 165888

    [73]

    Huo J T, Zhao D Q, Bai H Y, Axinte E, Wang W H 2013 J. Non-Cryst. Solids 359 1

  • [1] Lin Yuan, Hu Feng-Xia, Shen Bao-Gen. Phase transition regulation, magnetocaloric effect, and abnormal thermal expansion. Acta Physica Sinica, doi: 10.7498/aps.72.20231118
    [2] Sun Ji, Shen Peng-Fei, Shang Qi-Zhong, Zhang Peng-Yan, Liu Li, Li Ming-Rui, Hou Long, Li Wei-Huo. Effects of adding B element on amorphous forming ability, magnetic properties, and mechanical properties of FePBCCu alloy. Acta Physica Sinica, doi: 10.7498/aps.72.20221553
    [3] Zhang Yan, Zong Shuo-Tong, Sun Zhi-Gang, Liu Hong-Xia, Chen Feng-Hua, Zhang Ke-Wei, Hu Ji-Fan, Zhao Tong-Yun, Shen Bao-Gen. Magnetic and anisotropic magnetocaloric effects of HoCoSi fast quenching ribbons. Acta Physica Sinica, doi: 10.7498/aps.71.20220683
    [4] Peng Jia-Xin, Tang Ben-Zhen, Chen Qi-Xin, Li Dong-Mei, Guo Xiao-Long, Xia Lei, Yu Peng. Preparation and magnetocaloric properties of Gd45Ni30Al15Co10 amorphous alloy. Acta Physica Sinica, doi: 10.7498/aps.70.20211530
    [5] Ma Shuang, Hao Wei-Ye, Wang Xu-Dong, Zhang Wei, Yao Man. Mechanism analysis of metalloid elements affecting amorphous forming ability and magnetic properties of Co-Y-B alloy. Acta Physica Sinica, doi: 10.7498/aps.71.20220873
    [6] Yang Jing-Jie, Zhao Jin-Liang, Xu Lei, Zhang Hong-Guo, Yue Ming, Liu Dan-Min, Jiang Yi-Jian. Influences of interstitial atoms H, B and C on magnetic properties and magnetocaloric effect in LaFe11.5Al1.5 compound. Acta Physica Sinica, doi: 10.7498/aps.67.20172250
    [7] Li Rui-Xuan, Zhang Yong. Entropy and glass formation. Acta Physica Sinica, doi: 10.7498/aps.66.177101
    [8] Wu Yuan, Song Wen-Li, Zhou Jie, Cao Di, Wang Hui, Liu Xiong-Jun, Lü Zhao-Ping. Ductilization of bulk metallic glassy material and its mechanism. Acta Physica Sinica, doi: 10.7498/aps.66.176111
    [9] Ke Hai-Bo, Pu Zhen, Zhang Pei, Zhang Peng-Guo, Xu Hong-Yang, Huang Huo-Gen, Liu Tian-Wei, Wang Ying-Min. Research progress in U-based amorphous alloys. Acta Physica Sinica, doi: 10.7498/aps.66.176104
    [10] Huo Jun-Tao, Sheng Wei, Wang Jun-Qiang. Magnetocaloric effects and magnetic regenerator performances in metallic glasses. Acta Physica Sinica, doi: 10.7498/aps.66.176409
    [11] Zheng Xin-Qi, Shen Jun, Hu Feng-Xia, Sun Ji-Rong, Shen Bao-Gen. Research progress in magnetocaloric effect materials. Acta Physica Sinica, doi: 10.7498/aps.65.217502
    [12] Xiao Yu-Ling, He Ji-Zhou, Cheng Hai-Tao. Influence of the heat reservoir boundary on the performance of Brownian heat engine. Acta Physica Sinica, doi: 10.7498/aps.63.200501
    [13] Wang Fang, Yuan Feng-Ying, Wang Jin-Zhi. Magnetic properties and magnetocaloric effect in Mn42Al50-xFe8+x alloys. Acta Physica Sinica, doi: 10.7498/aps.62.167501
    [14] Zhang Ya-Nan, Wang You-Jun, Kong Ling-Ti, Li Jin-Fu. Influence of Y addition on the glass forming ability and soft magnetic properties of Fe-Si-B amorphous alloy. Acta Physica Sinica, doi: 10.7498/aps.61.157502
    [15] Zhang Hao-Lei, Li Zhe, Qiao Yan-Fei, Cao Shi-Xun, Zhang Jin-Cang, Jing Chao. Martensitic transformation and magnetocaloric effect in Ni-Co-Mn-Sn Heusler alloy. Acta Physica Sinica, doi: 10.7498/aps.58.7857
    [16] Jing Chao, Chen Ji-Ping, Li Zhe, Cao Shi-Xun, Zhang Jin-Cang. Martensitic transformation and magnetocaloric effect in Ni50Mn35In15 Heusler alloy. Acta Physica Sinica, doi: 10.7498/aps.57.4450
    [17] Zhang Hui, Zhang Guo-Ying, Yang Shuang, Wu Di, Qi Ke-Zhen. Effects of additional element on the glass forming ability and corrosion resistance of bulk Zr-based amorphous alloys. Acta Physica Sinica, doi: 10.7498/aps.57.7822
    [18] Wang Zhen-Yu, Yang Yuan-Sheng, Tong Wen-Hui, Li Hui-Qiang, Hu Zhuang-Qi. A new model for calculating critical cooling rates of alloy systems based on viscosity calculation. Acta Physica Sinica, doi: 10.7498/aps.56.1543
    [19] Wang Zhen-Yu, Yang Yuan-Sheng, Tong Wen-Hui, Li Hui-Qiang, Hu Zhuang-Qi. A new model for calculating the critical cooling rate of bulk metallic glass under non-isothermal condition. Acta Physica Sinica, doi: 10.7498/aps.55.1953
    [20] CHEN WEI, ZHONG WEI, PAN CHENG, CHANG HONG, DU YOU-WEI. CURIE TEMPERATURE AND MAGNETOCALORIC EFFECT OF POLYCRYSTALLINE La0.8-xCa0.2MnO3. Acta Physica Sinica, doi: 10.7498/aps.50.319
Metrics
  • Abstract views:  159
  • PDF Downloads:  1
  • Cited By: 0
Publishing process
  • Available Online:  27 September 2024

/

返回文章
返回