Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Influences of interstitial atoms H, B and C on magnetic properties and magnetocaloric effect in LaFe11.5Al1.5 compound

Yang Jing-Jie Zhao Jin-Liang Xu Lei Zhang Hong-Guo Yue Ming Liu Dan-Min Jiang Yi-Jian

Citation:

Influences of interstitial atoms H, B and C on magnetic properties and magnetocaloric effect in LaFe11.5Al1.5 compound

Yang Jing-Jie, Zhao Jin-Liang, Xu Lei, Zhang Hong-Guo, Yue Ming, Liu Dan-Min, Jiang Yi-Jian
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Magnetic refrigeration materials based on magnetocaloric effect (MCE) attract wide attention.In the past decades, magnetic materials with MCE have been extensively studied due to their enormous potential applications in magnetic refrigeration fields.Among these materials,La (Fe,Al)13 compound is perceived to be one of the promising candidates as high-performance magnetic refrigerant because of its giant magnetic entropy change,tunable Curie temperature,low cost and toxin-free.For LaFe13-xAlx compounds,previous studies showed that the TC can increase by substituting Co for Fe,which leads to the value of maximum magnetic entropy change (-△SM) decreasing.In addition,the interstitial atom (N,H,C and B) can cause the lattice to expand,which shifts the anti-ferromagnetic (AFM) ground state to the ferromagnetic (FM) state.The TC increases with doping the interstitial atoms,accompanied by a remarkable change in the magnetic properties related to the magneto-volume effect.In this paper,the magnetic properties and the magnetocaloric effects of LaFe11.5Al1.5Hx(x=0,0.12,0.6 and 1.3), LaFe11.5Al1.5By(y=0.1,0.2 and 0.3) and LaFe11.5Al1.5Cz(z=0.1,0.2,0.3,0.4 and 0.5) intermetallic compounds are studied.The H,B or C atoms are inserted into the LaFe11.5Al1.5 compounds by gas-solid or solid-solid reaction.All the compounds crystallize into the cubic NaZn13-type structure.The magnetic ground state changes from the AFM to the FM state due to the introduction of interstitial atoms.Unlike the patent compound LaFe11.5Al1.5,all of the hydrides,borides and carbides display a typical FM state,which easily reach saturation under a magnetic field of 1 T.In addition,the saturation magnetization (MS) slightly increases and the Curie temperature (TC) significantly is enhanced with increasing the interstitial atom (H,B or C) content.It is attractive that the magnetic transition changes from the second-order to the weakly first-order with increasing hydrogen content,which is in contrast with the magnetic transition from the weakly first-order to the second-order with increasing boron or carbon content.All the compounds of LaFe11.5Al1.5 hydrides, borides and carbides exhibit a considerable magnetic entropy change.The values of maximum magnetic entropy change (-△SM) reach 12.3 J/kg·K for LaFe11.5Al1.5H1.3,9.6 J/kg·K for LaFe11.5Al1.5B0.1 and 10.8 J/kg·K for LaFe11.5Al1.5C0.2 under a magnetic field change of 0-5 T,respectively.And the values of refrigerant capacity (RC) reach 259.2 J/kg for LaFe11.5Al1.5H0.6,116.4 J/kg for LaFe11.5Al1.5B0.1,and 230.4 J/kg for LaFe11.5Al1.5C0.1 under a magnetic field change of 0-5 T,respectively,indicating that LaFe11.5Al1.5H0.6 compound is a promising candidate for magnetic refrigerants.
      Corresponding author: Zhao Jin-Liang, zhaojinliang@bjut.edu.cn;yueming@bjut.edu.cn ; Yue Ming, zhaojinliang@bjut.edu.cn;yueming@bjut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51401002, 51171003), the Beijing Natural Science Foundation, China (Grant No. 1112005), and Open Fund Funded Project of the State Key Laboratory of New Metal Materials, China (Grant No. 2015-ZD).
    [1]

    Gschneidner Jr K A, Pecharsky V K, Tsokol A O 2005 Rep. Prog. Phys. 68 1479

    [2]

    Pecharsky V K, Gschneider Jr K A 1997 Phys. Rev. Lett. 78 4494

    [3]

    Tegus O, Brck E, Buschow K H J, de Boer F R 2002 Nature 415 150

    [4]

    Hu F X, Shen B G, Sun J R, Cheng Z H, Rao G H, Zhang X X 2001 Appl. Phys. Lett. 78 3675

    [5]

    Shen B G, Sun J R, Hu F X, Zhang H W, Cheng Z H 2009 Adv. Mater. 21 4545

    [6]

    Liu D M, Huang Q Z, Yue M, Lynn J W, Liu L J, Chen Y, Wu Z H, Zhang J X 2009 Phys. Rev. B 80 174415

    [7]

    Wada H, Tanabe Y 2001 Appl. Phys. Lett. 79 3302

    [8]

    Yue M, Li Z Q, Wang X L, Liu D M, Zhang J X, Liu X B 2009 J. Appl. Phys. 105 07A915

    [9]

    Zhang D K, Zhao J L, Zhang H G, Xu M F, Yue M 2014 J. Supercond. Nov. Magn. 27 1899

    [10]

    Shen B G, Hu F X, Dong Q Y, Sun J R 2013 Chin. Phys. B 22 017502

    [11]

    van der Kraan A M, Buschow K H J, Palstra T T M 1983 Hyperfine Int. 16 717

    [12]

    Palstra T T M, Nieuwenhuys G J, Mydosh J A, Buschow K H J 1985 Phys. Rev. B 31 4622

    [13]

    Hu F X, Shen B G, Sun J R, Cheng Z H 2001 Phys. Rev. B 64 012409

    [14]

    Moze O, Kockelmann W, Liu J P, de Boer F R, Buschow K H J 1999 J. Magn. Magn. Mater. 195 391

    [15]

    Moze O, Kockelmann W, Liu J P, de Boer F R, Buschow K H J 2000 J. Appl. Phys. 87 5284

    [16]

    Wang F, Chen Y F, Wang G J, Sun J R, Shen B G 2004 J. Phys.: Condens. Matter 16 2103

    [17]

    Chen J, Zhang H W, Zhang L G, Dong Q Y, Wang R W 2006 Chin. Phys. 15 845

    [18]

    Zhang D K, Zhao J L, Zhang H G, Xu M F, Yue M 2014 J. Alloys Compd. 591 143

    [19]

    Zhang D K, Zhao J L, Zhang H G, Yue M 2014 Acta Phys. Sin. 63 197501 (in Chinese) [张登奎, 赵金良, 张红国, 岳明 2014 物理学报 63 197501]

    [20]

    Zhang D K, Zhao J L, Shen J, Zhang H G, Yue M 2014 J. Appl. Phys. 115 183908

    [21]

    Liu J P, Tang N, de Boer F R, de Chatel P F, Buschow K H J 1995 J. Magn. Magn. Mater. 140 1035

    [22]

    Irisawa K, Fujita A, Fukamichi K, Yamazaki Y, Iijima Y 2002 J. Appl. Phys. 91 8882

    [23]

    Irisawa K, Fujita A, Fukamichi K, Yamazaki Y, Iijima Y, Matsubara E 2001 J. Alloys Compd. 316 70

    [24]

    Jia L, Sun J R, Shen J, Gao B, Zhao T Y, Zhang H W, Hu F X, Shen B G 2011 J. Alloys Compd. 509 5804

    [25]

    Li Z W, Morrish A H 1997 Phys. Rev. B 55 3670

    [26]

    Cam Thanh D T, Brck E, Tegus O, Klaasse J C P, Gortenmulder T J, Buschow K H J 2006 J. Appl. Phys. 99 08Q107

    [27]

    Fujii H, Sun H 1995 in: Buschow K H J ed. Handbook of Magnetic Materials (vol. 9) (Amsterdam: Elsevier) pp303-311

    [28]

    Liu X B, Altounian Z, Ryan D H 2004 J. Phys. D: Appl. Phys. 37 2469

    [29]

    Liu X B, Ryan D H, Altounian Z 2004 J. Magn. Magn. Mater. 270 305

    [30]

    Sun J R, Hu F X, Shen B G 2000 Phys. Rev. Lett. 85 4191

    [31]

    Caron L, Ou Z Q, Nguyen T T, Cam Thanh D T, Tegus O, Bruck E 2009 J. Magn. Magn. Mater. 321 3559

  • [1]

    Gschneidner Jr K A, Pecharsky V K, Tsokol A O 2005 Rep. Prog. Phys. 68 1479

    [2]

    Pecharsky V K, Gschneider Jr K A 1997 Phys. Rev. Lett. 78 4494

    [3]

    Tegus O, Brck E, Buschow K H J, de Boer F R 2002 Nature 415 150

    [4]

    Hu F X, Shen B G, Sun J R, Cheng Z H, Rao G H, Zhang X X 2001 Appl. Phys. Lett. 78 3675

    [5]

    Shen B G, Sun J R, Hu F X, Zhang H W, Cheng Z H 2009 Adv. Mater. 21 4545

    [6]

    Liu D M, Huang Q Z, Yue M, Lynn J W, Liu L J, Chen Y, Wu Z H, Zhang J X 2009 Phys. Rev. B 80 174415

    [7]

    Wada H, Tanabe Y 2001 Appl. Phys. Lett. 79 3302

    [8]

    Yue M, Li Z Q, Wang X L, Liu D M, Zhang J X, Liu X B 2009 J. Appl. Phys. 105 07A915

    [9]

    Zhang D K, Zhao J L, Zhang H G, Xu M F, Yue M 2014 J. Supercond. Nov. Magn. 27 1899

    [10]

    Shen B G, Hu F X, Dong Q Y, Sun J R 2013 Chin. Phys. B 22 017502

    [11]

    van der Kraan A M, Buschow K H J, Palstra T T M 1983 Hyperfine Int. 16 717

    [12]

    Palstra T T M, Nieuwenhuys G J, Mydosh J A, Buschow K H J 1985 Phys. Rev. B 31 4622

    [13]

    Hu F X, Shen B G, Sun J R, Cheng Z H 2001 Phys. Rev. B 64 012409

    [14]

    Moze O, Kockelmann W, Liu J P, de Boer F R, Buschow K H J 1999 J. Magn. Magn. Mater. 195 391

    [15]

    Moze O, Kockelmann W, Liu J P, de Boer F R, Buschow K H J 2000 J. Appl. Phys. 87 5284

    [16]

    Wang F, Chen Y F, Wang G J, Sun J R, Shen B G 2004 J. Phys.: Condens. Matter 16 2103

    [17]

    Chen J, Zhang H W, Zhang L G, Dong Q Y, Wang R W 2006 Chin. Phys. 15 845

    [18]

    Zhang D K, Zhao J L, Zhang H G, Xu M F, Yue M 2014 J. Alloys Compd. 591 143

    [19]

    Zhang D K, Zhao J L, Zhang H G, Yue M 2014 Acta Phys. Sin. 63 197501 (in Chinese) [张登奎, 赵金良, 张红国, 岳明 2014 物理学报 63 197501]

    [20]

    Zhang D K, Zhao J L, Shen J, Zhang H G, Yue M 2014 J. Appl. Phys. 115 183908

    [21]

    Liu J P, Tang N, de Boer F R, de Chatel P F, Buschow K H J 1995 J. Magn. Magn. Mater. 140 1035

    [22]

    Irisawa K, Fujita A, Fukamichi K, Yamazaki Y, Iijima Y 2002 J. Appl. Phys. 91 8882

    [23]

    Irisawa K, Fujita A, Fukamichi K, Yamazaki Y, Iijima Y, Matsubara E 2001 J. Alloys Compd. 316 70

    [24]

    Jia L, Sun J R, Shen J, Gao B, Zhao T Y, Zhang H W, Hu F X, Shen B G 2011 J. Alloys Compd. 509 5804

    [25]

    Li Z W, Morrish A H 1997 Phys. Rev. B 55 3670

    [26]

    Cam Thanh D T, Brck E, Tegus O, Klaasse J C P, Gortenmulder T J, Buschow K H J 2006 J. Appl. Phys. 99 08Q107

    [27]

    Fujii H, Sun H 1995 in: Buschow K H J ed. Handbook of Magnetic Materials (vol. 9) (Amsterdam: Elsevier) pp303-311

    [28]

    Liu X B, Altounian Z, Ryan D H 2004 J. Phys. D: Appl. Phys. 37 2469

    [29]

    Liu X B, Ryan D H, Altounian Z 2004 J. Magn. Magn. Mater. 270 305

    [30]

    Sun J R, Hu F X, Shen B G 2000 Phys. Rev. Lett. 85 4191

    [31]

    Caron L, Ou Z Q, Nguyen T T, Cam Thanh D T, Tegus O, Bruck E 2009 J. Magn. Magn. Mater. 321 3559

  • [1] Mi Meng-Juan, Yu Li-Xuan, Xiao Han, Lü Bing-Bing, Wang Yi-Lin. Tuning magnetic properties of two-dimensional antiferromagnetic MPX3 by organic cations intercalation. Acta Physica Sinica, 2024, 73(5): 057501. doi: 10.7498/aps.73.20232010
    [2] Wang Zhuang, Jin Fan, Li Wei, Ruan Jia-Yi, Wang Long-Fei, Wu Xue-Lian, Zhang Yi-Kun, Yuan Chen-Chen. Design and fabrication of GdHoErCoNiAl metallic glasses with excellent glass forming capability and magnetocaloric effects. Acta Physica Sinica, 2024, 73(21): 217101. doi: 10.7498/aps.73.20241132
    [3] Tan Bi, Gao Dong, Deng Deng-Fu, Chen Shu-Yao, Bi Lei, Liu Dong-Hua, Liu Tao. Transport characterization of magnetic phase transition in Mn3Sn thin films. Acta Physica Sinica, 2024, 73(6): 067501. doi: 10.7498/aps.73.20231766
    [4] Lin Yuan, Hu Feng-Xia, Shen Bao-Gen. Phase transition regulation, magnetocaloric effect, and abnormal thermal expansion. Acta Physica Sinica, 2023, 72(23): 237501. doi: 10.7498/aps.72.20231118
    [5] Zhang Yan, Zong Shuo-Tong, Sun Zhi-Gang, Liu Hong-Xia, Chen Feng-Hua, Zhang Ke-Wei, Hu Ji-Fan, Zhao Tong-Yun, Shen Bao-Gen. Magnetic and anisotropic magnetocaloric effects of HoCoSi fast quenching ribbons. Acta Physica Sinica, 2022, 71(16): 167501. doi: 10.7498/aps.71.20220683
    [6] Peng Jia-Xin, Tang Ben-Zhen, Chen Qi-Xin, Li Dong-Mei, Guo Xiao-Long, Xia Lei, Yu Peng. Preparation and magnetocaloric properties of Gd45Ni30Al15Co10 amorphous alloy. Acta Physica Sinica, 2022, 71(2): 026102. doi: 10.7498/aps.70.20211530
    [7] Zhang Peng, Piao Hong-Guang, Zhang Ying-De, Huang Jiao-Hong. Research progress of critical behaviors and magnetocaloric effects of perovskite manganites. Acta Physica Sinica, 2021, 70(15): 157501. doi: 10.7498/aps.70.20210097
    [8] Zhang Hu, Xing Cheng-Fen, Long Ke-Wen, Xiao Ya-Ning, Tao Kun, Wang Li-Chen, Long Yi. Linear dependence of magnetocaloric effect on magnetic field in Mn0.6Fe0.4NiSi0.5Ge0.5 and Ni50Mn34Co2Sn14 with first-order magnetostructural transformation. Acta Physica Sinica, 2018, 67(20): 207501. doi: 10.7498/aps.67.20180927
    [9] Hao Zhi-Hong,  Wang Hai-Ying,  Zhang Quan,  Mo Zhao-Jun. Magnetic and magnetocaloric effects of Eu0.9M0.1TiO3 (M=Ca, Sr, Ba, La, Ce, Sm) compounds. Acta Physica Sinica, 2018, 67(24): 247502. doi: 10.7498/aps.67.20181750
    [10] Huo Jun-Tao, Sheng Wei, Wang Jun-Qiang. Magnetocaloric effects and magnetic regenerator performances in metallic glasses. Acta Physica Sinica, 2017, 66(17): 176409. doi: 10.7498/aps.66.176409
    [11] Huang Ao, Lu Zhi-Peng, Zhou Meng, Zhou Xiao-Yun, Tao Ying-Qi, Sun Peng, Zhang Jun-Tao, Zhang Ting-Bo. Effects of the doping of Al and O interstitial atoms on thermodynamic properties of -Al2O3:first-principles calculations. Acta Physica Sinica, 2017, 66(1): 016103. doi: 10.7498/aps.66.016103
    [12] Zheng Xin-Qi, Shen Jun, Hu Feng-Xia, Sun Ji-Rong, Shen Bao-Gen. Research progress in magnetocaloric effect materials. Acta Physica Sinica, 2016, 65(21): 217502. doi: 10.7498/aps.65.217502
    [13] Wang Fang, Yuan Feng-Ying, Wang Jin-Zhi. Magnetic properties and magnetocaloric effect in Mn42Al50-xFe8+x alloys. Acta Physica Sinica, 2013, 62(16): 167501. doi: 10.7498/aps.62.167501
    [14] Ding Lei, Wang Cong, Chu Li-Hua, Na Yuan-Yuan, Yan Jun. Comprehensive Survey for the Frontier Disciplines Progress in lattice, magnetic and electronic transport properties of antiperovskite Mn3AX. Acta Physica Sinica, 2011, 60(9): 097507. doi: 10.7498/aps.60.097507
    [15] Zhang Hao-Lei, Li Zhe, Qiao Yan-Fei, Cao Shi-Xun, Zhang Jin-Cang, Jing Chao. Martensitic transformation and magnetocaloric effect in Ni-Co-Mn-Sn Heusler alloy. Acta Physica Sinica, 2009, 58(11): 7857-7863. doi: 10.7498/aps.58.7857
    [16] Jing Chao, Chen Ji-Ping, Li Zhe, Cao Shi-Xun, Zhang Jin-Cang. Martensitic transformation and magnetocaloric effect in Ni50Mn35In15 Heusler alloy. Acta Physica Sinica, 2008, 57(7): 4450-4455. doi: 10.7498/aps.57.4450
    [17] Zhang Li-Gang, Chen Jing, Zhu Bo-Quan, Li Ya-Wei, Wang Ru-Wu, Li Yun-Bao, Zhang Guo-Hong, Li Yu. Study on the magnetic entropy change and magnetic phase transition of NaZn13-type LaFe13-xAlxCy compounds. Acta Physica Sinica, 2006, 55(10): 5506-5510. doi: 10.7498/aps.55.5506
    [18] CHEN WEI, ZHONG WEI, PAN CHENG, CHANG HONG, DU YOU-WEI. CURIE TEMPERATURE AND MAGNETOCALORIC EFFECT OF POLYCRYSTALLINE La0.8-xCa0.2MnO3. Acta Physica Sinica, 2001, 50(2): 319-323. doi: 10.7498/aps.50.319
    [19] GUO GUANG-HUA, R.Z.LEVITIN. SPONTANEOUS AND FIELD-INDUCED MAGNETIC PHASE TRANSITIONS IN THE INTERMETALLIC COMPOUND DyMn2Ge2. Acta Physica Sinica, 2001, 50(2): 313-318. doi: 10.7498/aps.50.313
    [20] GUO GUANG-HUA, R.Z.LEVITIN. SPONTANEOUS MAGNETIC PHASE TRANSITION AND MAGNETOELASTIC ANOMALIES AT TRANSITION S IN INTERMETALLIC COMPOUNDS RMn2Ge2 (R=La,Pr,Nd,Sm,Gd,Tb, Y). Acta Physica Sinica, 2000, 49(9): 1838-1845. doi: 10.7498/aps.49.1838
Metrics
  • Abstract views:  6233
  • PDF Downloads:  110
  • Cited By: 0
Publishing process
  • Received Date:  16 October 2017
  • Accepted Date:  20 January 2018
  • Published Online:  05 April 2018

/

返回文章
返回