-
This study investigates the magnetocaloric effect-based green magnetic refrigeration technology, with a focus on Ni-Mn-Ga Heusler alloys as promising magnetic refrigerant candidates. To elucidate the role of Mn-rich composition in regulating the magnetic and magnetocaloric properties, a multi-scale computational approach integrating first-principles calculations and Monte Carlo simulations was adopted. This methodology enables a detailed analysis of how Mn atoms occupying Ni versus Ga sites influence the alloy’s microstructure, atomic magnetic moments, exchange interactions, and macroscopic magnetocaloric response. The results demonstrate that Mn site occupancy critically governs the magnetic performance: occupation of Ni sites reduces the total magnetic moment and Curie temperature, thereby diminishing the magnetic entropy change; in contrast, Mn occupying Ga sites markedly enhances both the total magnetic moment and the magnetic entropy change. Notably, the Ni8Mn7Ga1 alloy achieves a maximum magnetic entropy change of 2.32 J·kg-1·K-1 under a 2 T magnetic field, substantially surpassing that of the stoichiometric Ni8Mn4Ga4 alloy. Further electronic structure analysis reveals that Mn content variation modulates the density of states near the Fermi level, optimizes orbital hybridization and ferromagnetic exchange interactions, and consequently tailors the magnetic phase transition behavior. Critical exponent analysis confirms that the magnetic interactions are long-range in nature and tend toward mean-field behavior with compositional changes. By establishing a clear “composition-structure-magnetism-magnetocaloric performance” relationship at the atomic scale, this work provides theoretical foundations for designing high-performance, low-hysteresis magnetic refrigeration materials.
-
Keywords:
- Ni-Mn-Ga alloy /
- magnetocaloric effect /
- second-order magnetic phase transition /
- Monte Carlo simulation
-
[1] Dong Y, Coleman M, Miller S A 2021 Annu. Rev. Environ. Resour. 46 59
[2] Zimm C, Jastrab C, Sternberg A, Pecharsky V K, Gschneidner Jr K A, Osborne M, Anderson I 1998 Adv. Cryog. Eng. 43 1759
[3] Pecharsky V K, Gschneidner Jr K A 1997 Phys. Rev. Lett. 78 4494
[4] Provenzano V, Shapiro A J, Shull R D 2004 Nature (London) 429 853
[5] Tegus O, Brück E, Buschow K H J, de Boer R D 2002 Nature (London) 415 150
[6] Zheng X Q, Shen J, Hu F X, Sun J R, Shen B G 2016 Acta Phys. Sin. 65 217502 (in Chinese) [郑新奇,沈俊,胡凤霞,孙继荣,沈保根 2016 物理学报 65 217502]
[7] Li R, Shen J, Zhang Z B, Li Z X, Mo Z J, Gao X Q, Hai P, Fu Q 2024 Acta Phys. Sin. 73 037501 (in Chinese) [李瑞,沈俊,张志鹏,李振兴,莫兆军,高新强,海鹏,付琪 2024 物理学报 73 037501]
[8] Tickle R, James R D 1999 J. Magn. Magn. Mater. 195 627
[9] Chen J, Hana Z, Qiana B, Zhang P, Wang D, Duc Y 2011 J. Magn. Magn. Mater. 323 248
[10] Sharma V K, Chattopadhyay M K, Kumar R, Ganguli T, Tiwari P, Roy S B 2007 J. Phys.: Conden. Matter 19 496207
[11] Hu F X, Shen B G, Sun J R, Cheng Z H, Rao G H, Zhang X X 2001 Appl. Phys. Lett. 78 3675
[12] Fujieda S, Fujita A, Fukamichi K 2002 Appl. Phys. Lett. 81 1276
[13] Shen Q, van Rooij F, Zhang Z, Hao W, Dugulan A I, van Dijk N, Brück E, Li L 2026 J. Mater. Sci. Technol. 254 196
[14] Na Y, Wang Z, Kong Z, Xie Y, Zhang Y 2025 J. Rare Earth. https://doi.org/10.1016/j.jre.2025.09.044
[15] Campos A, Rocco D, Carvalho A, Caron L, Coelho A, Gama S, Silva L, Gandra F, Santos A, Cardoso L, von Ranke P J, Oliveira N A 2006 Nat. Mater. 5 802
[16] Gschneidner Jr K A, Pecharsky V V, Tsokol A O 2005 Rep. Prog. Phys. 68 1479
[17] Gshneidner Jr K A, Pecharsky V V 2008 Int. J. Refrig. 31 945
[18] Planes A, Mañosa L, Acet M 2009 J. Phys.: Condens. Matter 21 233201
[19] Franco V, Blázquez J S, Ingalge B, Conde A 2012 Ann. Rev. Mater. Res. 42 305
[20] de Oliveira N A, von Ranke P J, Troper A 2014 Int. J. Refrig. 37 237
[21] Dunand D C, Mullner P 2011 Adv. Mater. 23 216
[22] Webster P J, Ziebeck K R A, Town S L, Peak M S 1984 Philos. Magn. 49 295
[23] Entel P, Dannenberg A, Siewert M, Herper H C, Gruner M E, Buchelnikov V D, Chernenko V A 2011 Mater. Sci. Forum 684 1
[24] Datta S, Dheke S S, Panda S K, Rout S N, Das T, Kar M 2023 J. Alloys Compd. 968 172251
[25] Fabbrici S, Porcari G, Cugini F, Solzi M, Kamarad J, Arnold Z, Cabassi R, Albertini F 2014 Entropy 16 2204
[26] Schleicher B, Klar D, Ollefs K, Diestel A, Walecki D, Weschke E, Schultz L, Nielsch K, Fähler S, Wende H, Gruner M E 2017 J. Phys. D: Appl. Phys. 50 465005
[27] Diestel A, Niemann R, Schleicher B, Nielsch K, Fähler S 2018 Energy Technol. 6 1463
[28] Schröter M, Herper H C, Grünebohm A 2022 J. Phys. D: Appl. Phys. 55 025002
[29] Fu S, Gao J, Wang K, Ma L, Zhu J 2024 Intermetallics 169 108276
[30] Mendonça A A, Ghivelder L, Bernardo P L, Cohen L F, Gomes A M 2023 J. Alloys Compd. 938 168444
[31] Sarkar S K, Babu P D, Biswas A, Siruguri V, Krishnan M 2016 J. Alloys Compd. 670 281
[32] Zhang X, Qian M, Zhang Z, Wei L, Geng L, Sun J 2016 Appl. Phys. Lett. 108 052401
[33] Gràcia-Condal A, Planes A, Mañosa L, Wei Z, Guo J, Soto-Parra D, Liu J 2022 Phys. Rev. Mater. 6 084403
[34] Liu Y, Zhang X, Xing D, Shen H, Chen D, Liu J, Sun J 2014 J. Alloys Compd. 616 184
[35] Liu Y, Luo L, Zhang X, Shen H, Liu J, Sun J, Zu N 2019 Intermetallics 112 106538
[36] Qian M, Zhang X, Wei L, Martin P, Sun J, Geng L, Scott T B, Peng H X 2018 Sci. Rep. 8 16574
[37] Qian M, Zhang X, Jia Z, Wan, X, Geng L 2018 Mater. Des. 148 115
[38] Zhang Y C, Franco V, Wang Y F, Peng H X, Qin F X 2022 J. Alloys Compd. 918 165664
[39] Chiu W T, Sratong-on P, Chang T F M, Tahara M, Sone M, Chernenko V, Hosoda H 2023 J. Mater. Res. Technol. 23 131
[40] Zhang Y, Gao Y, Franco V, Yin H, Peng H X, Qin F 2023 Sci. China Mater. 66 3670
[41] Hu F X, Shen B G, Sun J R 2000 Appl. Phys. Lett. 76 3460
[42] Pasquale M, Sasso C P, Lewis L H, Giudici L, Lograsso T, Schlagel D 2005 Phys. Rev. B 72 094435
[43] Miroshkina O N, Sokolovskiy V V, Zagrebin M A, Taskaev S V, Buchelnikov V D 2020 Phys. Solid State 62 785
[44] Brown P J, Crangle J, Kanomata T, Matsumoto M, Neumann K U, Ouladdiaf B, Ziebeck K R A 2002 J. Phys.: Condens. Matter 14 10159
[45] Hafner J 2000 Acta Mater. 48 71
[46] Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169
[47] Kresse G, Hafner J 1993 Phys. Rev. B 47 558
[48] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[49] Perdew J P, Wang Y 1992 Phys. Rev. B 45 13244
[50] Blöchl P E 1994 Phys. Rev. B 50 17953
[51] Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188
[52] Ebert H, Dreysee H 1999 The Use of the LMTO Method (Lecture Notes in Physics) (Berlin: Springer) 535 pp 191-246
[53] Ebert H 2005 The Munich SPR-KKR Package (Version 8.6) SPRKKR 8.6 Manual
[54] Minár J, Perlov A, Ebert H, Hashizume H 2005 J. Phys.: Condens. Matter 17 5785
[55] Zhang C, Zhang Z, Wang D, Hu Y 2024 Appl. Phys. Lett. 124 082407
[56] Liechtenstein A I, Katsnelson M I, Antropov V P, Gubanov V A 1987 J. Magn. Magn. Mater. 67 65
[57] Phan M H, Yu S C 2007 J. Magn. Magn. Mater. 308 325
[58] Pecharsky V K, Gschneidner K A 2000 Annu. Rev. Mater. Sci. 30 387
[59] Hu Y, Wang Y, Li Z, Chi X, Lu Q, Hu T, Liu Y, Du A, Shi F 2018 Appl. Phys. Lett. 113 133902
[60] Hu Y, Hu T, Chi X, Wang Y, Lu Q, Yu L, Li R, Liu Y, Du A, Li Z, Shi F 2019 Appl. Phys. Lett. 114 023903
[61] Hao F, Hu Y 2020 Appl. Phys. Lett. 117 063902
[62] Zhang J, Hu Y 2021 Appl. Phys. Lett. 119 213903
[63] Oesterreicher H, Parker F T 1984 J. Appl. Phys. 55 4334
[64] Franco V, Blázquez J S, Conde A 2006 Appl. Phys. Lett. 89 222512
[65] Franco V, Conde A, Sidhaye D, Prasad B L V, Poddar P, Srinath S, Phan M H, Srikanth H 2010 J. Appl. Phys. 107 09A902
[66] Liu Y, Petrovic C 2018 Phys. Rev. B 97 174418
Metrics
- Abstract views: 53
- PDF Downloads: 4
- Cited By: 0









下载: