Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Numerical Study of Magnetism and Magnetocaloric Effect in Mn-Rich Ni-Mn-Ga Alloy

WANG Bo ZHANG Yufen SHAO Hui ZHANG Zeyu HU Yong

Citation:

Numerical Study of Magnetism and Magnetocaloric Effect in Mn-Rich Ni-Mn-Ga Alloy

WANG Bo, ZHANG Yufen, SHAO Hui, ZHANG Zeyu, HU Yong
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • This study investigates the magnetocaloric effect-based green magnetic refrigeration technology, with a focus on Ni-Mn-Ga Heusler alloys as promising magnetic refrigerant candidates. To elucidate the role of Mn-rich composition in regulating the magnetic and magnetocaloric properties, a multi-scale computational approach integrating first-principles calculations and Monte Carlo simulations was adopted. This methodology enables a detailed analysis of how Mn atoms occupying Ni versus Ga sites influence the alloy’s microstructure, atomic magnetic moments, exchange interactions, and macroscopic magnetocaloric response. The results demonstrate that Mn site occupancy critically governs the magnetic performance: occupation of Ni sites reduces the total magnetic moment and Curie temperature, thereby diminishing the magnetic entropy change; in contrast, Mn occupying Ga sites markedly enhances both the total magnetic moment and the magnetic entropy change. Notably, the Ni8Mn7Ga1 alloy achieves a maximum magnetic entropy change of 2.32 J·kg-1·K-1 under a 2 T magnetic field, substantially surpassing that of the stoichiometric Ni8Mn4Ga4 alloy. Further electronic structure analysis reveals that Mn content variation modulates the density of states near the Fermi level, optimizes orbital hybridization and ferromagnetic exchange interactions, and consequently tailors the magnetic phase transition behavior. Critical exponent analysis confirms that the magnetic interactions are long-range in nature and tend toward mean-field behavior with compositional changes. By establishing a clear “composition-structure-magnetism-magnetocaloric performance” relationship at the atomic scale, this work provides theoretical foundations for designing high-performance, low-hysteresis magnetic refrigeration materials.
  • [1]

    Dong Y, Coleman M, Miller S A 2021 Annu. Rev. Environ. Resour. 46 59

    [2]

    Zimm C, Jastrab C, Sternberg A, Pecharsky V K, Gschneidner Jr K A, Osborne M, Anderson I 1998 Adv. Cryog. Eng. 43 1759

    [3]

    Pecharsky V K, Gschneidner Jr K A 1997 Phys. Rev. Lett. 78 4494

    [4]

    Provenzano V, Shapiro A J, Shull R D 2004 Nature (London) 429 853

    [5]

    Tegus O, Brück E, Buschow K H J, de Boer R D 2002 Nature (London) 415 150

    [6]

    Zheng X Q, Shen J, Hu F X, Sun J R, Shen B G 2016 Acta Phys. Sin. 65 217502 (in Chinese) [郑新奇,沈俊,胡凤霞,孙继荣,沈保根 2016 物理学报 65 217502]

    [7]

    Li R, Shen J, Zhang Z B, Li Z X, Mo Z J, Gao X Q, Hai P, Fu Q 2024 Acta Phys. Sin. 73 037501 (in Chinese) [李瑞,沈俊,张志鹏,李振兴,莫兆军,高新强,海鹏,付琪 2024 物理学报 73 037501]

    [8]

    Tickle R, James R D 1999 J. Magn. Magn. Mater. 195 627

    [9]

    Chen J, Hana Z, Qiana B, Zhang P, Wang D, Duc Y 2011 J. Magn. Magn. Mater. 323 248

    [10]

    Sharma V K, Chattopadhyay M K, Kumar R, Ganguli T, Tiwari P, Roy S B 2007 J. Phys.: Conden. Matter 19 496207

    [11]

    Hu F X, Shen B G, Sun J R, Cheng Z H, Rao G H, Zhang X X 2001 Appl. Phys. Lett. 78 3675

    [12]

    Fujieda S, Fujita A, Fukamichi K 2002 Appl. Phys. Lett. 81 1276

    [13]

    Shen Q, van Rooij F, Zhang Z, Hao W, Dugulan A I, van Dijk N, Brück E, Li L 2026 J. Mater. Sci. Technol. 254 196

    [14]

    Na Y, Wang Z, Kong Z, Xie Y, Zhang Y 2025 J. Rare Earth. https://doi.org/10.1016/j.jre.2025.09.044

    [15]

    Campos A, Rocco D, Carvalho A, Caron L, Coelho A, Gama S, Silva L, Gandra F, Santos A, Cardoso L, von Ranke P J, Oliveira N A 2006 Nat. Mater. 5 802

    [16]

    Gschneidner Jr K A, Pecharsky V V, Tsokol A O 2005 Rep. Prog. Phys. 68 1479

    [17]

    Gshneidner Jr K A, Pecharsky V V 2008 Int. J. Refrig. 31 945

    [18]

    Planes A, Mañosa L, Acet M 2009 J. Phys.: Condens. Matter 21 233201

    [19]

    Franco V, Blázquez J S, Ingalge B, Conde A 2012 Ann. Rev. Mater. Res. 42 305

    [20]

    de Oliveira N A, von Ranke P J, Troper A 2014 Int. J. Refrig. 37 237

    [21]

    Dunand D C, Mullner P 2011 Adv. Mater. 23 216

    [22]

    Webster P J, Ziebeck K R A, Town S L, Peak M S 1984 Philos. Magn. 49 295

    [23]

    Entel P, Dannenberg A, Siewert M, Herper H C, Gruner M E, Buchelnikov V D, Chernenko V A 2011 Mater. Sci. Forum 684 1

    [24]

    Datta S, Dheke S S, Panda S K, Rout S N, Das T, Kar M 2023 J. Alloys Compd. 968 172251

    [25]

    Fabbrici S, Porcari G, Cugini F, Solzi M, Kamarad J, Arnold Z, Cabassi R, Albertini F 2014 Entropy 16 2204

    [26]

    Schleicher B, Klar D, Ollefs K, Diestel A, Walecki D, Weschke E, Schultz L, Nielsch K, Fähler S, Wende H, Gruner M E 2017 J. Phys. D: Appl. Phys. 50 465005

    [27]

    Diestel A, Niemann R, Schleicher B, Nielsch K, Fähler S 2018 Energy Technol. 6 1463

    [28]

    Schröter M, Herper H C, Grünebohm A 2022 J. Phys. D: Appl. Phys. 55 025002

    [29]

    Fu S, Gao J, Wang K, Ma L, Zhu J 2024 Intermetallics 169 108276

    [30]

    Mendonça A A, Ghivelder L, Bernardo P L, Cohen L F, Gomes A M 2023 J. Alloys Compd. 938 168444

    [31]

    Sarkar S K, Babu P D, Biswas A, Siruguri V, Krishnan M 2016 J. Alloys Compd. 670 281

    [32]

    Zhang X, Qian M, Zhang Z, Wei L, Geng L, Sun J 2016 Appl. Phys. Lett. 108 052401

    [33]

    Gràcia-Condal A, Planes A, Mañosa L, Wei Z, Guo J, Soto-Parra D, Liu J 2022 Phys. Rev. Mater. 6 084403

    [34]

    Liu Y, Zhang X, Xing D, Shen H, Chen D, Liu J, Sun J 2014 J. Alloys Compd. 616 184

    [35]

    Liu Y, Luo L, Zhang X, Shen H, Liu J, Sun J, Zu N 2019 Intermetallics 112 106538

    [36]

    Qian M, Zhang X, Wei L, Martin P, Sun J, Geng L, Scott T B, Peng H X 2018 Sci. Rep. 8 16574

    [37]

    Qian M, Zhang X, Jia Z, Wan, X, Geng L 2018 Mater. Des. 148 115

    [38]

    Zhang Y C, Franco V, Wang Y F, Peng H X, Qin F X 2022 J. Alloys Compd. 918 165664

    [39]

    Chiu W T, Sratong-on P, Chang T F M, Tahara M, Sone M, Chernenko V, Hosoda H 2023 J. Mater. Res. Technol. 23 131

    [40]

    Zhang Y, Gao Y, Franco V, Yin H, Peng H X, Qin F 2023 Sci. China Mater. 66 3670

    [41]

    Hu F X, Shen B G, Sun J R 2000 Appl. Phys. Lett. 76 3460

    [42]

    Pasquale M, Sasso C P, Lewis L H, Giudici L, Lograsso T, Schlagel D 2005 Phys. Rev. B 72 094435

    [43]

    Miroshkina O N, Sokolovskiy V V, Zagrebin M A, Taskaev S V, Buchelnikov V D 2020 Phys. Solid State 62 785

    [44]

    Brown P J, Crangle J, Kanomata T, Matsumoto M, Neumann K U, Ouladdiaf B, Ziebeck K R A 2002 J. Phys.: Condens. Matter 14 10159

    [45]

    Hafner J 2000 Acta Mater. 48 71

    [46]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169

    [47]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558

    [48]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [49]

    Perdew J P, Wang Y 1992 Phys. Rev. B 45 13244

    [50]

    Blöchl P E 1994 Phys. Rev. B 50 17953

    [51]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [52]

    Ebert H, Dreysee H 1999 The Use of the LMTO Method (Lecture Notes in Physics) (Berlin: Springer) 535 pp 191-246

    [53]

    Ebert H 2005 The Munich SPR-KKR Package (Version 8.6) SPRKKR 8.6 Manual

    [54]

    Minár J, Perlov A, Ebert H, Hashizume H 2005 J. Phys.: Condens. Matter 17 5785

    [55]

    Zhang C, Zhang Z, Wang D, Hu Y 2024 Appl. Phys. Lett. 124 082407

    [56]

    Liechtenstein A I, Katsnelson M I, Antropov V P, Gubanov V A 1987 J. Magn. Magn. Mater. 67 65

    [57]

    Phan M H, Yu S C 2007 J. Magn. Magn. Mater. 308 325

    [58]

    Pecharsky V K, Gschneidner K A 2000 Annu. Rev. Mater. Sci. 30 387

    [59]

    Hu Y, Wang Y, Li Z, Chi X, Lu Q, Hu T, Liu Y, Du A, Shi F 2018 Appl. Phys. Lett. 113 133902

    [60]

    Hu Y, Hu T, Chi X, Wang Y, Lu Q, Yu L, Li R, Liu Y, Du A, Li Z, Shi F 2019 Appl. Phys. Lett. 114 023903

    [61]

    Hao F, Hu Y 2020 Appl. Phys. Lett. 117 063902

    [62]

    Zhang J, Hu Y 2021 Appl. Phys. Lett. 119 213903

    [63]

    Oesterreicher H, Parker F T 1984 J. Appl. Phys. 55 4334

    [64]

    Franco V, Blázquez J S, Conde A 2006 Appl. Phys. Lett. 89 222512

    [65]

    Franco V, Conde A, Sidhaye D, Prasad B L V, Poddar P, Srinath S, Phan M H, Srikanth H 2010 J. Appl. Phys. 107 09A902

    [66]

    Liu Y, Petrovic C 2018 Phys. Rev. B 97 174418

  • [1] CHEN Xiang, HE Bing. Magnetic transition, X-ray diffraction spectrum changes, and magnetocaloric effect in La0.9Pr0.1Fe12B6 Alloy. Acta Physica Sinica, doi: 10.7498/aps.74.20251002
    [2] Wang Zhuang, Jin Fan, Li Wei, Ruan Jia-Yi, Wang Long-Fei, Wu Xue-Lian, Zhang Yi-Kun, Yuan Chen-Chen. Design and fabrication of GdHoErCoNiAl metallic glasses with excellent glass forming capability and magnetocaloric effects. Acta Physica Sinica, doi: 10.7498/aps.73.20241132
    [3] Lin Yuan, Hu Feng-Xia, Shen Bao-Gen. Phase transition regulation, magnetocaloric effect, and abnormal thermal expansion. Acta Physica Sinica, doi: 10.7498/aps.72.20231118
    [4] Zhang Yan, Zong Shuo-Tong, Sun Zhi-Gang, Liu Hong-Xia, Chen Feng-Hua, Zhang Ke-Wei, Hu Ji-Fan, Zhao Tong-Yun, Shen Bao-Gen. Magnetic and anisotropic magnetocaloric effects of HoCoSi fast quenching ribbons. Acta Physica Sinica, doi: 10.7498/aps.71.20220683
    [5] Peng Jia-Xin, Tang Ben-Zhen, Chen Qi-Xin, Li Dong-Mei, Guo Xiao-Long, Xia Lei, Yu Peng. Preparation and magnetocaloric properties of Gd45Ni30Al15Co10 amorphous alloy. Acta Physica Sinica, doi: 10.7498/aps.70.20211530
    [6] Zhang Peng, Piao Hong-Guang, Zhang Ying-De, Huang Jiao-Hong. Research progress of critical behaviors and magnetocaloric effects of perovskite manganites. Acta Physica Sinica, doi: 10.7498/aps.70.20210097
    [7] Sun Shi-Feng. High-resolution coded aperture X-ray fluorescence imaging with separable masks. Acta Physica Sinica, doi: 10.7498/aps.69.20200674
    [8] Hao Zhi-Hong,  Wang Hai-Ying,  Zhang Quan,  Mo Zhao-Jun. Magnetic and magnetocaloric effects of Eu0.9M0.1TiO3 (M=Ca, Sr, Ba, La, Ce, Sm) compounds. Acta Physica Sinica, doi: 10.7498/aps.67.20181750
    [9] Yang Jing-Jie, Zhao Jin-Liang, Xu Lei, Zhang Hong-Guo, Yue Ming, Liu Dan-Min, Jiang Yi-Jian. Influences of interstitial atoms H, B and C on magnetic properties and magnetocaloric effect in LaFe11.5Al1.5 compound. Acta Physica Sinica, doi: 10.7498/aps.67.20172250
    [10] Zhang Hu, Xing Cheng-Fen, Long Ke-Wen, Xiao Ya-Ning, Tao Kun, Wang Li-Chen, Long Yi. Linear dependence of magnetocaloric effect on magnetic field in Mn0.6Fe0.4NiSi0.5Ge0.5 and Ni50Mn34Co2Sn14 with first-order magnetostructural transformation. Acta Physica Sinica, doi: 10.7498/aps.67.20180927
    [11] Li Zhen-Xing, Li Ke, Shen Jun, Dai Wei, Gao Xin-Qiang, Guo Xiao-Hui, Gong Mao-Qiong. Progress of room temperature magnetic refrigeration technology. Acta Physica Sinica, doi: 10.7498/aps.66.110701
    [12] Huo Jun-Tao, Sheng Wei, Wang Jun-Qiang. Magnetocaloric effects and magnetic regenerator performances in metallic glasses. Acta Physica Sinica, doi: 10.7498/aps.66.176409
    [13] Zheng Xin-Qi, Shen Jun, Hu Feng-Xia, Sun Ji-Rong, Shen Bao-Gen. Research progress in magnetocaloric effect materials. Acta Physica Sinica, doi: 10.7498/aps.65.217502
    [14] Cui Zhen-Guo, Gou Cheng-Jun, Hou Qing, Mao Li, Zhou Xiao-Song. Computer simulation of radiation damage caused by low energy neutron in zirconium. Acta Physica Sinica, doi: 10.7498/aps.62.156105
    [15] Wang Fang, Yuan Feng-Ying, Wang Jin-Zhi. Magnetic properties and magnetocaloric effect in Mn42Al50-xFe8+x alloys. Acta Physica Sinica, doi: 10.7498/aps.62.167501
    [16] Chen Hui, Zhang Guo-Ying, Yang Dan, Gao Jiao. A method of determining the highest temperature attained by magnetic material in the adiabatic magnetization. Acta Physica Sinica, doi: 10.7498/aps.61.097501
    [17] Zhang Hao-Lei, Li Zhe, Qiao Yan-Fei, Cao Shi-Xun, Zhang Jin-Cang, Jing Chao. Martensitic transformation and magnetocaloric effect in Ni-Co-Mn-Sn Heusler alloy. Acta Physica Sinica, doi: 10.7498/aps.58.7857
    [18] Jing Chao, Chen Ji-Ping, Li Zhe, Cao Shi-Xun, Zhang Jin-Cang. Martensitic transformation and magnetocaloric effect in Ni50Mn35In15 Heusler alloy. Acta Physica Sinica, doi: 10.7498/aps.57.4450
    [19] LIU ZHU-HONG, HU FENG-XIA, WANG WEN-HONG, CHEN JING-LAN, WU GUANG-HENG, GAO SHU-XIA, AO LING. INVESTIGATION ON MARTENSITIC TRANSFORMATION AND FIELD-INDUCED TWO-WAY SHAPE MEMORY EFFECT OF Ni-Mn-Ga ALLOY. Acta Physica Sinica, doi: 10.7498/aps.50.233
    [20] CHEN WEI, ZHONG WEI, PAN CHENG, CHANG HONG, DU YOU-WEI. CURIE TEMPERATURE AND MAGNETOCALORIC EFFECT OF POLYCRYSTALLINE La0.8-xCa0.2MnO3. Acta Physica Sinica, doi: 10.7498/aps.50.319
Metrics
  • Abstract views:  53
  • PDF Downloads:  4
  • Cited By: 0
Publishing process
  • Available Online:  01 November 2025
  • /

    返回文章
    返回