-
In recent years, topological antiferromagnetic material with hexagonal Kagome structure has attracted great research interest due to its unique properties. Although its net magnetic moment is close to zero, the topological antiferromagnet exhibits the strong magnetoelectric, the magneto-optical, and the magnetothermal effect, with a strength comparable to that of ferromagnetic material, which makes it highly valuable for various applications. After several years of extensive studies, it has been realized that most of the unique properties of topological antiferromagnet are actually closely related to its magnetic structure. However, it has been found that the magnetic structure of the material is highly sensitive to its chemical composition and growth condition. Therefore, it is crucial to develop a universal and simple method of measuring the magnetic structure and determining the magnetic phase transition of hexagonal Kagome topological antiferromagnetic material, which can severe as a good supplement for the current high-energy neutron diffraction approach that is not accessible for ordinary laboratories. In this study, we have successfully prepared high-quality (
$ 11\bar{2}0 $ )-oriented hexagonal Kagome antiferromagnetic Mn3Sn thin films on ($1 \bar{1} 02$ )-oriented Al2O3 single crystal substrates by using the pulsed laser deposition method. After systematically measuring how the magnetic and transport properties of the Mn3Sn thin film change with temperature, it is found that its magnetization curve, Hall resistivity curve, and magnetoresistance curve exhibit certain anomalous features at some or all of its three magnetic phase transition temperatures. These features can serve as good evidences of magnetic phase transitions in this hexagonal Kagome antiferromagnetic Mn3Sn thin film, or even could be used to measure the temperatures of these magnetic phase transitions. Our work contributes to the further advancement of the application of hexagonal Kagome topological antiferromagnetic materials to spin electronic devices.-
Keywords:
- topological antiferromagnet /
- magnetic phase transition /
- anomalous Hall resistance /
- anisotropic magnetoresistance
[1] Xiong D R, Jiang Y H, Shi K W, Du A, Yao Y X, Guo Z X, Zhu D Q, Cao K H, Peng S Z, Cai W L, Zhu D P, Zhao W S 2022 Fundam. Res. 2 522Google Scholar
[2] Jungwirth T, Marti X, Wadley P, Wunderlich J 2016 Nat. Nanotechnol. 11 231Google Scholar
[3] Bai H, Zhang Y C, Han L, Zhou Y J, Pan F, Song C 2022 Appl. Phys. Rev. 9 041316Google Scholar
[4] Zhang B, Zeng Y, Zhao Z J, Qiu D P, Zhang T, Hou Y L 2022 Rare Met. 41 2921Google Scholar
[5] Mak K Y, Xia J, Zhang X C, Li L, Fattouhi M, Ezawa M, Liu X X, Zhou Y 2022 Rare Met. 41 2249Google Scholar
[6] Nakatsuji S, Kiyohara N, Higo T 2015 Nature 527 212Google Scholar
[7] Zhao Z P, Guo Q, Chen F H, Zhang K W, Jiang Y 2021 Rare Met. 40 2862
[8] Higo T, Man H Y, Gopman D B, et al. 2018 Nat. Photo. 12 73Google Scholar
[9] Li X K, Xu L C, Ding L C, Wang J H, Shen M S, Lu X F, Zhu Z W, Behnia K 2017 Phys. Rev. Lett. 119 056601Google Scholar
[10] Yang H, Sun Y, Zhang Y, Shi W J, Parkin S S P, Yan B H 2017 New J. Phys. 19 015008Google Scholar
[11] Kuroda K, Tomita T, Suzuki M T, et al. 2017 Nat. Mater. 16 1090Google Scholar
[12] Gao D, Peng Z, Zhang N B, Xie Y F, Yang Y C, Yang W H, Xia S, Yan W, Deng L J, Liu T, Qin J, Zhong X Y, Bi L 2022 Appl. Phys. Lett. 121 242403Google Scholar
[13] Brown P J, Nunezt V, Tassett F, Forsytht J B, Radhakrishna P 1990 J. Phys. Condens. Matter. 2 9409Google Scholar
[14] Cable J W, Wakabayashi N, Radhakrishna P 1994 J. Appl. Phys. 75 6601Google Scholar
[15] Zimmer G J, Kren E 1972 AIP Conf. Proc. 5 513
[16] Liu J J, Meng K K, Chen J K, Wu Y, Miao J, Xu X G, Jiang Y 2022 Rare Met. 41 3012Google Scholar
[17] Yoon J Y, Takeuchi Y, Itoh R, Kanai S, Fukami S, Ohno H 2020 Appl. Phys. Express 13 013001Google Scholar
[18] Kurdi S, Zilske P, Xu X D, Frentrup M, Vickers M E, Sakuraba Y, Reiss G, Barber Z H, Koo J W J 2020 Appl. Phys. 127 165302Google Scholar
[19] Sung N H, Ronning F, Thompson J D, Bauer E D 2018 Appl. Phys. Lett. 112 132406Google Scholar
[20] Duan T F, Ren W J, Liu W L, Li S J, Liu W, Zhang Z D 2015 Appl. Phys. Lett. 107 082403Google Scholar
[21] Deng Y C, Liu X H, Chen Y Y, Du Z Z, Jiang N, Shen C, Zhang E Z, Zheng H Z, Lu H Z, Wang K Y 2023 Nat. Sci. Rev. 10 nwac154Google Scholar
[22] Liu X H, Feng Q Y, Zhang D, Deng Y C, Dong S, Zhang E Z, Li W H, Lu Q Y, Chang K, Wang K Y 2023 Adv. Mater. 35 2211634Google Scholar
[23] Jiang N, Deng Y C, Liu X H, Zhang D, Zhang E Z, Zheng H Z, Chang K, Shen C, Wang K Y 2023 Appl. Phys. Lett. 123 072401Google Scholar
[24] Kimata M, Chen H, Kondou K, Sujimoto S, Muduli P K, Ikhlas M, Omori Y, Tomita T, Macdonald A H, Nakatsuji S, Otani Y 2019 Nature 565 627Google Scholar
[25] Chen T S, Tomita T, Minami S, Fu M X, Koretsune T, Kitatani M, Muhammad I, Nishio-Hamane D, Ishii R, Ishii F, Arita R, Nakatsuji S 2021 Nat Commun. 12 572Google Scholar
-
图 4 (a)霍尔电阻率(ρxy)随磁场(H)的变化; (b)载流子浓度(ne)、(c)霍尔矫顽力($ {H}_{{\mathrm{c}}}^{{\mathrm{A}}{\mathrm{H}}} $)和(d)饱和反常霍尔电阻率(|ρAH |)随温度的变化
Figure 4. Temperature dependence of Hall resistance: (a) ρxy -H loops at different temperatures; (b) ne -T; (c) $ {H}_{{\mathrm{c}}}^{{\mathrm{A}}{\mathrm{H}}} $ -T; (d) |ρAH | -T.
-
[1] Xiong D R, Jiang Y H, Shi K W, Du A, Yao Y X, Guo Z X, Zhu D Q, Cao K H, Peng S Z, Cai W L, Zhu D P, Zhao W S 2022 Fundam. Res. 2 522Google Scholar
[2] Jungwirth T, Marti X, Wadley P, Wunderlich J 2016 Nat. Nanotechnol. 11 231Google Scholar
[3] Bai H, Zhang Y C, Han L, Zhou Y J, Pan F, Song C 2022 Appl. Phys. Rev. 9 041316Google Scholar
[4] Zhang B, Zeng Y, Zhao Z J, Qiu D P, Zhang T, Hou Y L 2022 Rare Met. 41 2921Google Scholar
[5] Mak K Y, Xia J, Zhang X C, Li L, Fattouhi M, Ezawa M, Liu X X, Zhou Y 2022 Rare Met. 41 2249Google Scholar
[6] Nakatsuji S, Kiyohara N, Higo T 2015 Nature 527 212Google Scholar
[7] Zhao Z P, Guo Q, Chen F H, Zhang K W, Jiang Y 2021 Rare Met. 40 2862
[8] Higo T, Man H Y, Gopman D B, et al. 2018 Nat. Photo. 12 73Google Scholar
[9] Li X K, Xu L C, Ding L C, Wang J H, Shen M S, Lu X F, Zhu Z W, Behnia K 2017 Phys. Rev. Lett. 119 056601Google Scholar
[10] Yang H, Sun Y, Zhang Y, Shi W J, Parkin S S P, Yan B H 2017 New J. Phys. 19 015008Google Scholar
[11] Kuroda K, Tomita T, Suzuki M T, et al. 2017 Nat. Mater. 16 1090Google Scholar
[12] Gao D, Peng Z, Zhang N B, Xie Y F, Yang Y C, Yang W H, Xia S, Yan W, Deng L J, Liu T, Qin J, Zhong X Y, Bi L 2022 Appl. Phys. Lett. 121 242403Google Scholar
[13] Brown P J, Nunezt V, Tassett F, Forsytht J B, Radhakrishna P 1990 J. Phys. Condens. Matter. 2 9409Google Scholar
[14] Cable J W, Wakabayashi N, Radhakrishna P 1994 J. Appl. Phys. 75 6601Google Scholar
[15] Zimmer G J, Kren E 1972 AIP Conf. Proc. 5 513
[16] Liu J J, Meng K K, Chen J K, Wu Y, Miao J, Xu X G, Jiang Y 2022 Rare Met. 41 3012Google Scholar
[17] Yoon J Y, Takeuchi Y, Itoh R, Kanai S, Fukami S, Ohno H 2020 Appl. Phys. Express 13 013001Google Scholar
[18] Kurdi S, Zilske P, Xu X D, Frentrup M, Vickers M E, Sakuraba Y, Reiss G, Barber Z H, Koo J W J 2020 Appl. Phys. 127 165302Google Scholar
[19] Sung N H, Ronning F, Thompson J D, Bauer E D 2018 Appl. Phys. Lett. 112 132406Google Scholar
[20] Duan T F, Ren W J, Liu W L, Li S J, Liu W, Zhang Z D 2015 Appl. Phys. Lett. 107 082403Google Scholar
[21] Deng Y C, Liu X H, Chen Y Y, Du Z Z, Jiang N, Shen C, Zhang E Z, Zheng H Z, Lu H Z, Wang K Y 2023 Nat. Sci. Rev. 10 nwac154Google Scholar
[22] Liu X H, Feng Q Y, Zhang D, Deng Y C, Dong S, Zhang E Z, Li W H, Lu Q Y, Chang K, Wang K Y 2023 Adv. Mater. 35 2211634Google Scholar
[23] Jiang N, Deng Y C, Liu X H, Zhang D, Zhang E Z, Zheng H Z, Chang K, Shen C, Wang K Y 2023 Appl. Phys. Lett. 123 072401Google Scholar
[24] Kimata M, Chen H, Kondou K, Sujimoto S, Muduli P K, Ikhlas M, Omori Y, Tomita T, Macdonald A H, Nakatsuji S, Otani Y 2019 Nature 565 627Google Scholar
[25] Chen T S, Tomita T, Minami S, Fu M X, Koretsune T, Kitatani M, Muhammad I, Nishio-Hamane D, Ishii R, Ishii F, Arita R, Nakatsuji S 2021 Nat Commun. 12 572Google Scholar
Catalog
Metrics
- Abstract views: 2846
- PDF Downloads: 129
- Cited By: 0