Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Tuning magnetic properties of two-dimensional antiferromagnetic MPX3 by organic cations intercalation

Mi Meng-Juan Yu Li-Xuan Xiao Han Lü Bing-Bing Wang Yi-Lin

Citation:

Tuning magnetic properties of two-dimensional antiferromagnetic MPX3 by organic cations intercalation

Mi Meng-Juan, Yu Li-Xuan, Xiao Han, Lü Bing-Bing, Wang Yi-Lin
PDF
HTML
Get Citation
  • Electrical control of magnetism of two-dimensional (2D) antiferromagnetic (AFM) materials combines the advantages of controlling magnetism by purely electrical means, compatibility with semiconductor process, low energy consumption, heterogeneous integration of 2D materials with van der Waals (vdW) interface, and AFM materials with no stray field, resistance to external magnetic field interference, and high intrinsic frequency, and thus becomes a research focus in the field. The carrier concentration control is the main mechanism of electrical control of magnetism, and has been proved to be an effective way to control the magnetic properties of materials. The intralayer-antiferromagnetic materials have net-zero magnetic moments, and it is a challenging task to measure their regulated magnetic properties. Therefore, there is limited research on the electrical control of magnetism of intralayer-antiferromagnetic materials, and their potential mechanisms are not yet clear. Based on the diversity of organic cations, the present work systematically modulates the carrier concentrations of 2D intralayer-antiferromagnetic materials MPX3 (M = Mn, Fe, Ni; X = S, Se) by utilizing organic cations intercalation, and investigates the influence of electron doping on their magnetic properties. Phase transitions between AFM-ferrimagnetic (FIM)/ferromagnetic (FM) depending on carrier concentration changes are observed in MPX3 materials, and the corresponding regulation mechanism is revealed through theoretical calculations. This research provides new insights into the carrier-controlled magnetic phase transition of 2D magnetic materials, and opens up a pathway for studying the correlation between the electronic structure and magnetic properties of 2D magnets, and designing novel spintronic devices as well.
      Corresponding author: Lü Bing-Bing, bingbinglyu@sdu.edu.cn ; Wang Yi-Lin, yilinwang@email.sdu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 92065206, 12304042), the National Key R&D Program of China (Grant No. 2022YFA1602704), the Natural Science Foundation of Shandong Province, China (Grant No. ZR2023ZD10), and the Postdoctoral Fellowship Program of China Postdocoral Science Foundation (Grant No. GZC20231434).
    [1]

    Mermin N D, Wagner H 1966 Phys. Rev. Lett. 17 1133Google Scholar

    [2]

    Gong C, Li L, Li Z L, Ji H W, Stern A, Xia Y, Cao T, Bao W, Wang C Z, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J, Zhang X 2017 Nature 546 265Google Scholar

    [3]

    Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, Xu X D 2017 Nature 546 270Google Scholar

    [4]

    Zhang Z, Shang J, Jiang C, Rasmita A, Gao W, Yu T 2019 Nano Lett. 19 3138Google Scholar

    [5]

    Sun X D, Li W Y, Wang X, Sui Q, Zhang T Y, Wang Z, Liu L, Li D, Feng S, Zhong S Y, Wang H W, Bouchiat V, Nunez Regueiro M, Rougemaille N, Coraux J, Purbawati A, Hadj-Azzem A, Wang Z H, Dong B J, Wu X, Yang T, Yu G Q, Wang B W, Han Z, Han X F, Zhang Z D 2020 Nano Res. 13 3358Google Scholar

    [6]

    Meng L J, Zhou Z, Xu M Q, Yang S Q, Si K P, Liu L X, Wang X G, Jiang H N, Li B X, Qin P X, Zhang P, Wang J L, Liu Z X, Tang P Z, Ye Y, Zhou W, Bao L H, Gao H J, Gong Y J 2021 Nat. Commun. 12 809Google Scholar

    [7]

    Kang L X, Ye C, Zhao X X, Zhou X Y, Hu J X, Li Q, Liu D, Das C M, Yang J F, Hu D Y, Chen J Q, Cao X, Zhang Y, Xu M Z, Di J, Tian D, Song P, Kutty G, Zeng Q S, Fu Q D, Deng Y, Zhou J D, Ariando A, Miao F, Hong G, Huang Y Z, Pennycook S J, Yong K T, Ji W, Wang X R , Liu Z 2020 Nat. Commun. 11 3729Google Scholar

    [8]

    Zhang Y, Chu J W, Yin L, Shifa T A, Cheng Z Z, Cheng R Q, Wang F, Wen Y, Zhan X Y, Wang Z X, He J 2019 Adv. Mater. 31 1900056Google Scholar

    [9]

    Bonilla M, Kolekar S, Ma Y, Diaz H C, Kalappattil V, Das R, Eggers T, Gutierrez H R, Phan M H, Batzill M 2018 Nat. Nanotechnol. 13 289Google Scholar

    [10]

    Zhang Z P, Niu J J, Yang P F, Gong Y, Ji Q Q, Shi J P, Fang Q Y, Jiang S L, Li H, Zhou X B, Gu L, Wu X S, Zhang Y F 2017 Adv. Mater. 29 1702359Google Scholar

    [11]

    Deng Y J, Yu Y J, Song Y C, Zhang J Z, Wang N Z, Sun Z Y, Yi Y F, Wu Y Z, Wu S W, Zhu J Y, Wang J, Chen X H, Zhang Y B 2018 Nature 563 94Google Scholar

    [12]

    Fei Z, Huang B, Malinowski P, Wang W, Song T, Sanchez J, Yao W, Xiao D, Zhu X, May A F, Wu W, Cobden D H, Chu J H, Xu X D 2018 Nat. Mater. 17 778Google Scholar

    [13]

    May A F, Ovchinnikov D, Zheng Q, Hermann R, Calder S, Huang B, Fei Z, Liu Y, Xu X D, McGuire M A 2019 ACS Nano 13 4436Google Scholar

    [14]

    Zhang G J, Guo F, Wu H, Wen X K, Yang L, Jin W, Zhang W F, Chang H X 2022 Nat. Commun. 13 5067Google Scholar

    [15]

    Cai X, Song T, Wilson N P, Clark G, He M, Zhang X, Taniguchi T, Watanabe K, Yao W, Xiao D, McGuire M A, Cobden D H, Xu X D 2019 Nano Lett. 19 3993Google Scholar

    [16]

    Lee J U, Lee S, Ryoo J H, Kang S, Kim T Y, Kim P, Park C H, Park J G, Cheong H 2016 Nano Lett. 16 7433Google Scholar

    [17]

    Kim K, Lim S Y, Lee J U, Lee S, Kim T Y, Park K, Jeon G S, Park C H, Park J G, Cheong H 2019 Nat. Commun. 10 345Google Scholar

    [18]

    Kim K, Lim S Y, Kim J, Lee J-U, Lee S, Kim P, Park K, Son S, Park C-H, Park J-G, Cheong H 2019 2D Mater. 6 041001Google Scholar

    [19]

    Gong Y, Guo J W, Li J H, Zhu K J, Liao M H, Liu X Z, Zhang Q H, Gu L, Tang L, Feng X, Zhang D, Li W, Song C L, Wang L L, Yu P, Chen X, Wang Y Y, Yao H, Duan W H, Xu Y, Zhang S C, Ma X C, Xue Q K, He K 2019 Chin. Phys. Lett. 36 076801Google Scholar

    [20]

    Telford E J, Dismukes A H, Lee K, Cheng M, Wieteska A, Bartholomew A K, Chen Y S, Xu X D, Pasupathy A N, Zhu X, Dean C R, Roy X 2020 Adv. Mater. 32 2003240Google Scholar

    [21]

    Otrokov M M, Klimovskikh, II, Bentmann H, Estyunin D, Zeugner A, Aliev Z S, Gass S, Wolter A U B, Koroleva A V, Shikin A M, Blanco-Rey M, Hoffmann M, Rusinov I P, Vyazovskaya A Y, Eremeev S V, Koroteev Y M, Kuznetsov V M, Freyse F, Sanchez Barriga J, Amiraslanov I R, Babanly M B, Mamedov N T, Abdullayev N A, Zverev V N, Alfonsov A, Kataev V, Buchner B, Schwier E F, Kumar S, Kimura A, Petaccia L, Di Santo G, Vidal R C, Schatz S, Kissner K, Unzelmann M, Min C H, Moser S, Peixoto T R F, Reinert F, Ernst A, Echenique P M, Isaeva A, Chulkov E V 2019 Nature 576 416Google Scholar

    [22]

    Thiel L, Wang Z, Tschudin M A, Rohner D, Gutiérrez-Lezama I, Ubrig N, Gibertini M, Giannini E, Morpurgo A F, Maletinsky P 2019 Science 364 973Google Scholar

    [23]

    Li T X, Jiang S W, Sivadas N, Wang Z F, Xu Y, Weber D, Goldberger J E, Watanabe K, Taniguchi T, Fennie C J, Mak K F, Shan J 2019 Nat. Mater. 18 1303Google Scholar

    [24]

    Song T C, Fei Z Y, Yankowitz M, Lin Z, Jiang Q N, Hwangbo K, Zhang Q, Sun B S, Taniguchi T, Watanabe K, McGuire M A, Graf D, Cao T, Chu J H, Cobden D H, Dean C R, Xiao D, Xu X D 2019 Nat. Mater. 18 1298Google Scholar

    [25]

    Cai W P, Sun H L, Xia W, Wu C W, Liu Y, Liu H, Gong Y, Yao D X, Guo Y F, Wang M 2020 Phys. Rev. B 102 144525Google Scholar

    [26]

    Wang Y, Wang C, Liang S J, Ma Z, Xu K, Liu X, Zhang L, Admasu A S, Cheong S W, Wang L, Chen M, Liu Z, Cheng B, Ji W, Miao F 2020 Adv. Mater. 32 e2004533Google Scholar

    [27]

    Li X, Yang J 2014 J. Mater. Chem. C 2 7071Google Scholar

    [28]

    Cenker J, Sivakumar S, Xie K C, Miller A, Thijssen P, Liu Z Y, Dismukes A, Fonseca J, Anderson E, Zhu X Y, Roy X, Xiao D, Chu J H, Cao T, Xu X D 2022 Nat. Nanotechnol. 17 256Google Scholar

    [29]

    Ji Z Q, Huang T, Li Y, Liu X Y, Wei L J, Wu H, Jin J M, Pu Y, Li F 2023 Chin. Phys. Lett. 40 057701Google Scholar

    [30]

    Wang Z W, Liang J H, Yang H X 2023 Chin. Phys. Lett. 40 017501Google Scholar

    [31]

    刘南舒, 王聪, 季威 2022 物理学报 71 127504Google Scholar

    Liu N-S, Wang C, Ji W 2022 Acta Phys. Sin. 71 127504Google Scholar

    [32]

    Cao Y, Zhang X M, Zhang X P, Yan F G, Wang Z A, Zhu W K, Tan H, Golovach V N, Zheng H Z, Wang K Y 2022 Phys. Rev. Appl. 17 L051001Google Scholar

    [33]

    Wang H, Liu Y, Wu P, Hou W, Jiang Y, Li X, Pandey C, Chen D, Yang Q, Wang H, Wei D, Lei N, Kang W, Wen L, Nie T, Zhao W, Wang K L 2020 ACS Nano 14 10045Google Scholar

    [34]

    Jiang S, Shan J, Mak K F 2018 Nat. Mater. 17 406Google Scholar

    [35]

    Wang Z A, Xue W, Yan F, Zhu W K, Liu Y, Zhang X, Wei Z, Chang K, Yuan Z, Wang K 2023 Nano Lett. 23 710Google Scholar

    [36]

    肖寒, 弭孟娟, 王以林 2021 物理学报 70 127503Google Scholar

    Xiao H, Mi M J, Wang Y L 2021 Acta Phys. Sin. 70 127503Google Scholar

    [37]

    Jiang S, Li L, Wang Z, Mak K F, Shan J 2018 Nat. Nanotechnol. 13 549Google Scholar

    [38]

    Huang B, Clark G, Klein D R, MacNeill D, Navarro-Moratalla E, Seyler K L, Wilson N, McGuire M A, Cobden D H, Xiao D, Yao W, Jarillo-Herrero P, Xu X D 2018 Nat. Nanotechnol. 13 544Google Scholar

    [39]

    Wang Z, Zhang T Y, Ding M, Dong B J, Li Y X, Chen M L, Li X X, Huang J Q, Wang H W, Zhao X T, Li Y, Li D, Jia C K, Sun L D, Guo H H, Ye Y, Sun D M, Chen Y S, Yang T, Zhang J, Ono S, Han Z, Zhang Z D 2018 Nat. Nanotechnol. 13 554Google Scholar

    [40]

    Verzhbitskiy I A, Kurebayashi H, Cheng H, Zhou J, Khan S, Feng Y P, Eda G 2020 Nat. Electron. 3 460Google Scholar

    [41]

    Wang N, Tang H, Shi M, Zhang H, Zhuo W, Liu D, Meng F, Ma L, Ying J, Zou L, Sun Z, Chen X 2019 J. Am. Chem. Soc. 141 17166Google Scholar

    [42]

    Mi M J, Zheng X W, Wang S L, Zhou Y, Yu L X, Xiao H, Song H N, Shen B, Li F, Bai L H, Chen Y X, Wang S P, Liu X H, Wang Y L 2022 Adv. Funct. Mater. 32 2112750Google Scholar

    [43]

    Tezze D, Pereira J M, Asensio Y, Ipatov M, Calavalle F, Casanova F, Bittner A M, Ormaza M, Martin-Garcia B, Hueso L E, Gobbi M 2022 Nanoscale 14 1165Google Scholar

    [44]

    Tang M, Huang J W, Qin F, Zhai K, Ideue T, Li Z Y, Meng F H, Nie A M, Wu L L, Bi X Y, Zhang C R, Zhou L, Chen P, Qiu C Y, Tang P Z, Zhang H J, Wan X G, Wang L, Liu Z Y, Tian Y J, Iwasa Y, Yuan H T 2023 Nat. Electron. 6 28Google Scholar

    [45]

    Peng Y X, Ding S L, Cheng M, Hu Q F, Yang J, Wang F G, Xue M Z, Liu Z, Lin Z C, Avdeev M, Hou Y L, Yang W Y, Zheng Y, Yang J B 2020 Adv. Mater. 32 2001200Google Scholar

    [46]

    Hu C W, Gordon K N, Liu P F, Liu J Y, Zhou X Q, Hao P P, Narayan D, Emmanouilidou E, Sun H Y, Liu Y T, Brawer H, Ramirez A P, Ding L, Cao H B, Liu Q H, Dessau D, Ni N 2020 Nat. Commun. 11 97Google Scholar

    [47]

    Gong C, Zhang X 2019 Science 363 eaav4450Google Scholar

    [48]

    Zhang Y, Xu H J, Yi C J, Wang X, Huang Y, Tang J, Jiang J L, He C L, Zhao M K, Ma T Y, Dong J, Guo C Y, Feng J F, Wan C H, Wei H X, Du H F, Shi Y G, Yu G Q, Zhang G Y, Han X F 2021 Appl. Phys. Lett. 118 262406Google Scholar

    [49]

    Alghamdi M, Lohmann M, Li J, Jothi P R, Shao Q, Aldosary M, Su T, Fokwa B P T, Shi J 2019 Nano Lett. 19 4400Google Scholar

    [50]

    Wang X, Tang J, Xia X, He C, Zhang J, Liu Y, Wan C, Fang C, Guo C, Yang W, Guang Y, Zhang X, Xu H, Wei J, Liao M, Lu X, Feng J, Li X, Peng Y, Wei H X, Yang R, Shi D, Zhang X, Han Z, Zhang Z, Zhang G, Yu G Q, Han X F 2019 Sci. Adv. 5 eaaw8904Google Scholar

    [51]

    Shin I, Cho W J, An E S, Park S, Jeong H W, Jang S, Baek W J, Park S Y, Yang D H, Seo J H, Kim G Y, Ali M N, Choi S Y, Lee H W, Kim J S, Kim S D, Lee G H 2022 Adv. Mater. 34 2101730Google Scholar

    [52]

    Ostwal V, Shen T, Appenzeller J 2020 Adv. Mater. 32 1906021Google Scholar

    [53]

    Gupta V, Cham T M, Stiehl G M, Bose A, Mittelstaedt J A, Kang K, Jiang S, Mak K F, Shan J, Buhrman R A, Ralph D C 2020 Nano Lett. 20 7482Google Scholar

    [54]

    Mogi M, Yasuda K, Fujimura R, Yoshimi R, Ogawa N, Tsukazaki A, Kawamura M, Takahashi K S, Kawasaki M, Tokura Y 2021 Nat. Commun. 12 1404Google Scholar

    [55]

    Li W H, Zhu W K, Zhang G J, Wu H, Zhu S G, Li R Z, Zhang E Z, Zhang X M, Deng Y C, Zhang J, Zhao L X, Chang H X, Wang K Y 2023 Adv. Mater. 35 2303688Google Scholar

    [56]

    Nguyen M H, Ralph D C, Buhrman R A 2016 Phys. Rev. Lett. 116 126601Google Scholar

    [57]

    Pai C F, Ou Y X, Vilela-Leao L H, Ralph D C, Buhrman R A 2015 Phys. Rev. B 92 064426Google Scholar

    [58]

    Kao I H, Muzzio R, Zhang H T, Zhu M L, Gobbo J, Yuan S, Weber D, Rao R, Li J H, Edgar J H, Goldberger J E, Yan J Q, Mandrus D G, Hwang J, Cheng R, Katoch J, Singh S 2022 Nat. Mater. 21 1029Google Scholar

    [59]

    Ye X G, Zhu P F, Xu W Z, Shang N Z, Liu K H, Liao Z M 2022 Chin. Phys. Lett. 39 037303Google Scholar

    [60]

    Pan Z C, Li D, Ye X G, Chen Z, Chen Z H, Wang A Q, Tian M, Yao G, Liu K, Liao Z M 2023 Sci. Bull. 68 2743Google Scholar

    [61]

    Song T, Cai X, Tu M W, Zhang X, Huang B, Wilson N P, Seyler K L, Zhu L, Taniguchi T, Watanabe K, McGuire M A, Cobden D H, Xiao D, Yao W, Xu X D 2018 Science 360 1214Google Scholar

    [62]

    Song T, Tu M W, Carnahan C, Cai X, Taniguchi T, Watanabe K, McGuire M A, Cobden D H, Xiao D, Yao W, Xu X D 2019 Nano Lett. 19 915Google Scholar

    [63]

    Lan G B, Xu H J, Zhang Y, Cheng C, He B, Li J H, He C L, Wan C H, Feng J F, Wei H X, Zhang J, Han X F, Yu G Q 2023 Chin. Phys. Lett. 40 058501Google Scholar

    [64]

    Wang Z, Sapkota D, Taniguchi T, Watanabe K, Mandrus D, Morpurgo A F 2018 Nano Lett. 18 4303Google Scholar

    [65]

    Min K-H, Lee D H, Choi S-J, Lee I-H, Seo J, Kim D W, Ko K-T, Watanabe K, Taniguchi T, Ha D H, Kim C, Shim J H, Eom J, Kim J S, Jung S 2022 Nat. Mater. 21 1144Google Scholar

    [66]

    Zhu W K, Lin H L, Yan F G, Hu C, Wang Z, Zhao L X, Deng Y C, Kudrynskyi Z R, Zhou T, Kovalyuk Z D, Zheng Y, Patanè A, Žutić I, Li S, Zheng H, Wang K Y 2021 Adv. Mater. 33 2104658Google Scholar

    [67]

    Zhu W K, Zhu Y M, Zhou T, Zhang X P, Lin H L, Cui Q R, Yan F G, Wang Z, Deng Y C, Yang H X, Zhao L X, Žutić I, Belashchenko K D, Wang K Y 2023 Nat. Commun. 14 5371Google Scholar

    [68]

    Lin H L, Yan F G, Hu C, Lv Q, Zhu W K, Wang Z, Wei Z, Chang K, Wang K Y 2020 ACS Appl. Mater. Interfaces 12 43921Google Scholar

    [69]

    Jin W, Zhang G J, Wu H, Yang L, Zhang W F, Chang H X 2023 Nanoscale 15 5371Google Scholar

    [70]

    Jin W, Zhang G J, Wu H, Yang L, Zhang W F, Chang H X 2023 ACS Appl. Mater. Interfaces 15 36519Google Scholar

    [71]

    Zhu W K, Xie S H, Lin H L, Zhang G J, Wu H, Hu T G, Wang Z A, Zhang X M, Xu J H, Wang Y J, Zheng Y H, Yan F G, Zhang J, Zhao L X, Patané A, Zhang J, Chang H X, Wang K Y 2022 Chin. Phys. Lett. 39 128501Google Scholar

    [72]

    Wiedenmann A, Rossat-Mignod J, Louisy A, Brec R, Rouxel J 1981 Solid State Commun. 40 1067Google Scholar

    [73]

    Coak M J, Jarvis D M, Hamidov H, Haines C R S, Alireza P L, Liu C, Son S, Hwang I, Lampronti G I, Daisenberger D, Nahai-Williamson P, Wildes A R, Saxena S S, Park J G 2020 J. Condens. Matter Phys. 32 124003Google Scholar

    [74]

    Joy P A, Vasudevan S 1992 Phys. Rev. B 46 5425Google Scholar

    [75]

    Bhutani A, Zuo J L, McAuliffe R D, dela Cruz C R, Shoemaker D P 2020 Phys. Rev. Mater. 4 034411Google Scholar

    [76]

    Wang C, He Q Y, Halim U, Liu Y Y, Zhu E B, Lin Z Y, Xiao H, Duan X D, Feng Z Y, Cheng R, Weiss N O, Ye G J, Huang Y C, Wu H, Cheng H C, Shakir I, Liao L, Chen X H, Goddard Iii W A, Huang Y, Duan X F 2018 Nature 555 231Google Scholar

    [77]

    Wang N Z, Shi M Z, Shang C, Meng F B, Ma L K, Luo X G, Chen X H 2018 New J. Phys. 20 023014Google Scholar

    [78]

    Meng F B, Liu Z, Yang L X, Shi M Z, Ge B H, Zhang H, Ying J J, Wang Z F, Wang Z Y, Wu T, Chen X H 2020 Phys. Rev. B 102 165410Google Scholar

    [79]

    Shi M Z, Wang N Z, Lei B, Shang C, Meng F B, Ma L K, Zhang F X, Kuang D Z, Chen X H 2018 Phys. Rev. Mater. 2 074801Google Scholar

    [80]

    Ma L K, Shi M Z, Kang B L, Peng K L, Meng F B, Zhu C S, Cui J H, Sun Z L, Ma D H, Wang H H, Lei B, Wu T, Chen X H 2020 Phys. Rev. Mater. 4 124803Google Scholar

    [81]

    He Q, Lin Z, Ding M, Yin A, Halim U, Wang C, Liu Y, Cheng H C, Huang Y, Duan X 2019 Nano Lett. 19 6819Google Scholar

    [82]

    Li X, Wu X, Yang J 2014 J. Am. Chem. Soc. 136 11065Google Scholar

    [83]

    Chittari B L, Park Y, Lee D, Han M, MacDonald A H, Hwang E, Jung J 2016 Phys. Rev. B 94 184428Google Scholar

    [84]

    Wildes A R, Simonet V, Ressouche E, McIntyre G J, Avdeev M, Suard E, Kimber S A J, Lançon D, Pepe G, Moubaraki B, Hicks T J 2015 Phys. Rev. B 92 224408Google Scholar

    [85]

    Wang F, Shifa T A, Yu P, He P, Liu Y, Wang F, Wang Z, Zhan X, Lou X, Xia F, He J 2018 Adv. Funct. Mater. 28 1802151Google Scholar

    [86]

    Mi M, Xiao H, Yu L, Zhang Y, Wang Y, Cao Q, Wang Y 2023 Materials Today Nano 24 100408Google Scholar

    [87]

    McCreary A, Simpson J R, Mai T T, McMichael R D, Douglas J E, Butch N, Dennis C, Aguilar R V, Walker A R H 2020 Phys. Rev. B 101 064416Google Scholar

    [88]

    Wang X, Du K, Fredrik Liu Y Y, Hu P, Zhang J, Zhang Q, Owen M H S, Lu X, Gan C K, Sengupta P, Kloc C, Xiong Q 2016 2D Mater. 3 031009Google Scholar

    [89]

    Mai T T, Garrity K F, McCreary A, Argo J, Simpson J R, Doan-Nguyen V, Aguilar R V, Walker A R H 2021 Sci. Adv. 7 eabj3106Google Scholar

    [90]

    Sun Y J, Tan Q H, Liu X L, Gao Y F, Zhang J 2019 J. Phys. Chem. Lett. 10 3087Google Scholar

    [91]

    Basnet R, Wegner A, Pandey K, Storment S, Hu J 2021 Phys. Rev. Mater. 5 064413Google Scholar

    [92]

    Han H, Lin H, Gan W, Xiao R C, Liu Y C, Ye J F, Chen L M, Wang W W, Zhang L, Zhang C J, Li H 2023 Phys. Rev. B 107 075423Google Scholar

    [93]

    Calder S, Haglund A V, Kolesnikov A I, Mandrus D 2021 Phys. Rev. B 103 024414Google Scholar

    [94]

    Le Flem G, Brec R, Ouvard G, Louisy A, Segransan P 1982 J. Phys. Chem. Solids 43 455Google Scholar

    [95]

    Jeevanandam P, Vasudevan S 1999 J. Condens. Matter Phys. 11 3563Google Scholar

    [96]

    Bao W Z, Wan J Y, Han X G, Cai X H, Zhu H L, Kim D K, Ma D K, Xu Y L, Munday J N, Drew H D, Fuhrer M S, Hu L B 2014 Nat. Commun. 5 4224Google Scholar

    [97]

    Wan C, Gu X, Dang F, Itoh T, Wang Y, Sasaki H, Kondo M, Koga K, Yabuki K, Snyder G J, Yang R, Koumoto K 2015 Nat. Mater. 14 622Google Scholar

    [98]

    Kang B L, Shi M Z, Li S J, Wang H H, Zhang Q, Zhao D, Li J, Song D W, Zheng L X, Nie L P, Wu T, Chen X H 2020 Phys. Rev. Lett. 125 097003Google Scholar

    [99]

    Zhao Y, Su Y, Guo Y, Peng J, Zhao J, Wang C, Wang L, Wu C, Xie Y 2021 ACS Mater. Lett. 3 210Google Scholar

  • 图 1  (a) 电化学有机阳离子插层示意图以及THA+插层NiPS3前后的结构示意图[42]; 剥离后得到的薄层NiPS3 (b) 和THA+插层NiPS3 (c) 的原子力显微镜图像[42]

    Figure 1.  Schematic diagram of electrochemical organic cation intercalation and the structure of NiPS3 and THA-NiPS3[42]; atomic force microscope images of exfoliated NiPS3 (b) and exfoliated intercalated THA-NiPS3 (c)[42].

    图 2  有机阳离子插层NiPS3的实验结果[42] NiPS3 (a) 和THA-NiPS3 (b) 在H // abH // c* 磁场作用下的M-T曲线, 实线和虚线分别为零场降温、场降温数据, (a)内插图为MT的一阶微分 (dM/dT vs. T), c* 为垂直于ab平面的轴; (c) T = 5 K时, NiPS3和THA-NiPS3H // ab磁场作用下MH的依赖关系; (d) 矫顽场 (黑) 和剩余磁化强度 (红) 随温度的变化关系; (e) T = 10 K时, CTA-NiPS3H // ab磁场作用下MH的依赖关系; (f) Ni(1), Ni(2)的磁矩以及净磁矩 (Ni(1)+Ni(2)) 随掺杂浓度的依赖关系

    Figure 2.  Experimental results of organic cations intercalated NiPS3[42]: Temperature dependence of magnetization (M-T) of NiPS3 (a) and THA-NiPS3 (b) under magnetic fields H // ab (red) and H // c* (black), the solid and dashed lines represent zero-field cooled (ZFC) and field cooled (FC) data, respectively, the inset in (a) shows the first-order derivative of magnetization with temperature (dM/dT vs. T), c* represents axis perpendicular to the ab plane; (c) field dependence of magnetization (M-H) of NiPS3 and THA-NiPS3 under magnetic field H // ab at T = 5 K; (d) extracted coercive field Hc (black) and remnant magnetization Mr (red) of intercalated THA-NiPS3 as a function of temperature; (e) field dependence of magnetization (M-H) of CTA-NiPS3 under magnetic field H // ab at T = 10 K; (f) magnetic moments and net magnetic moments of Ni(1) and Ni(2) as a function of doping concentrations.

    图 3  有机阳离子插层FePS3的实验结果 FePS3 (黑) 和THA-FePS3 (红) 在H // c* 磁场方向的M-T (a) 和M-H (b) 曲线, 实线和虚线分别为零场降温、场降温数据, (a)内插图为dM/dT vs T; THA-FePS3H // c* 磁场方向、不同温度下的M-H曲线 (c); CTA-FePS3H // c* 磁场下的M-T (d) 和M-H (e)曲线, (d)内插图为CTA-FePS3 的dM/dT vs. T; Fe(1), Fe(2)的磁矩以及净磁矩 (Fe(1)+Fe(2)) 随掺杂浓度的依赖关系 (f)

    Figure 3.  Experimental results of organic cations intercalated FePS3: (a), (b) M-T (a) and M-H (b) curves of FePS3 (black) and THA-FePS3 (red) under magnetic fields H // c*, the solid and dashed lines represent ZFC and FC data, respectively, the inset in (a) shows the dM/dT vs. T of FePS3; M-H curves of THA-FePS3 under magnetic fields H // c* at different temperatures (c); M-T (d) and M-H (e) curves of intercalated CTA-FePS3 under magnetic fields H // c*, the inset in (d) shows the dM/dT vs. T of CTA-FePS3; magnetic moments and net magnetic moments of Fe(1) and Fe(2) as a function of doping concentrations (f).

    图 4  有机阳离子插层FePSe3的实验结果 FePSe3 (黑)、TDA-FePSe3 (蓝) 以及THA-FePSe3 (红) 在H // c* 磁场方向的M-T (a) 和M-H (b) 曲线

    Figure 4.  Experimental results of organic cations intercalated FePSe3: The M-T (a) and M-H (b) curves of FePSe3 (black), TDA-FePSe3 (blue) and THA-FePSe3 (red).

    图 5  有机阳离子插层MnPS3的实验结果 MnPS3和THA-MnPS3H // c* 磁场下的M-T (a), M-H (b) 以及H // ab磁场下的M-H (c) 曲线; (d) CTA-MnPS3H // abH // c* 磁场下的M-H曲线. (b)—(d) 中的内插图分别为THA-MnPS3H // c* (b), H // ab (c) 以及CTA-MnPS3H // c*, H // ab (c) 小范围磁场下的M-H曲线

    Figure 5.  Experimental results of organic cations intercalated MnPS3: M-T (a), M-H (b) curves under magnetic fields H // c* and M-H (c) curves under magnetic fields H // ab of MnPS3 and THA-MnPS3; (d) M-H curves of CTA-MnPS3 under magnetic fields H // ab and H // c*. The insets in (b)–(d) show the zoom-in images of M-H curves of THA-MnPS3 under H // c* (b), H // ab (c) and CTA-MnPS3 under magnetic fields H // ab (d) and H // c*, respectively.

    图 6  有机阳离子插层MnPSe3的实验结果 (a) MnPSe3和TBA-MnPSe3H // ab磁场方向的M-T 曲线; (b) T = 5 K时, TBA-MnPSe3H // abH // c*磁场方向下的M-H曲线; (c) T = 5 K时, THA-MnPSe3H // ab磁场下的M-H曲线; (d) Néel型AFM序与FM序的相对能量随掺杂浓度的变化

    Figure 6.  Experimental results of organic cations intercalated MnPSe3: (a) M-T curves of MnPSe3 and TBA-MnPSe3 under magnetic fields H // ab; (b) M-H curves of TBA-MnPSe3 under magnetic fields H // ab and H // c* at T = 5 K; (c) M-H curve of THA-MnPSe3 under magnetic fields H // ab at T = 5 K; (d) the energy difference between the FM order and Néel AFM order as a function of doping concentration.

  • [1]

    Mermin N D, Wagner H 1966 Phys. Rev. Lett. 17 1133Google Scholar

    [2]

    Gong C, Li L, Li Z L, Ji H W, Stern A, Xia Y, Cao T, Bao W, Wang C Z, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J, Zhang X 2017 Nature 546 265Google Scholar

    [3]

    Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, Xu X D 2017 Nature 546 270Google Scholar

    [4]

    Zhang Z, Shang J, Jiang C, Rasmita A, Gao W, Yu T 2019 Nano Lett. 19 3138Google Scholar

    [5]

    Sun X D, Li W Y, Wang X, Sui Q, Zhang T Y, Wang Z, Liu L, Li D, Feng S, Zhong S Y, Wang H W, Bouchiat V, Nunez Regueiro M, Rougemaille N, Coraux J, Purbawati A, Hadj-Azzem A, Wang Z H, Dong B J, Wu X, Yang T, Yu G Q, Wang B W, Han Z, Han X F, Zhang Z D 2020 Nano Res. 13 3358Google Scholar

    [6]

    Meng L J, Zhou Z, Xu M Q, Yang S Q, Si K P, Liu L X, Wang X G, Jiang H N, Li B X, Qin P X, Zhang P, Wang J L, Liu Z X, Tang P Z, Ye Y, Zhou W, Bao L H, Gao H J, Gong Y J 2021 Nat. Commun. 12 809Google Scholar

    [7]

    Kang L X, Ye C, Zhao X X, Zhou X Y, Hu J X, Li Q, Liu D, Das C M, Yang J F, Hu D Y, Chen J Q, Cao X, Zhang Y, Xu M Z, Di J, Tian D, Song P, Kutty G, Zeng Q S, Fu Q D, Deng Y, Zhou J D, Ariando A, Miao F, Hong G, Huang Y Z, Pennycook S J, Yong K T, Ji W, Wang X R , Liu Z 2020 Nat. Commun. 11 3729Google Scholar

    [8]

    Zhang Y, Chu J W, Yin L, Shifa T A, Cheng Z Z, Cheng R Q, Wang F, Wen Y, Zhan X Y, Wang Z X, He J 2019 Adv. Mater. 31 1900056Google Scholar

    [9]

    Bonilla M, Kolekar S, Ma Y, Diaz H C, Kalappattil V, Das R, Eggers T, Gutierrez H R, Phan M H, Batzill M 2018 Nat. Nanotechnol. 13 289Google Scholar

    [10]

    Zhang Z P, Niu J J, Yang P F, Gong Y, Ji Q Q, Shi J P, Fang Q Y, Jiang S L, Li H, Zhou X B, Gu L, Wu X S, Zhang Y F 2017 Adv. Mater. 29 1702359Google Scholar

    [11]

    Deng Y J, Yu Y J, Song Y C, Zhang J Z, Wang N Z, Sun Z Y, Yi Y F, Wu Y Z, Wu S W, Zhu J Y, Wang J, Chen X H, Zhang Y B 2018 Nature 563 94Google Scholar

    [12]

    Fei Z, Huang B, Malinowski P, Wang W, Song T, Sanchez J, Yao W, Xiao D, Zhu X, May A F, Wu W, Cobden D H, Chu J H, Xu X D 2018 Nat. Mater. 17 778Google Scholar

    [13]

    May A F, Ovchinnikov D, Zheng Q, Hermann R, Calder S, Huang B, Fei Z, Liu Y, Xu X D, McGuire M A 2019 ACS Nano 13 4436Google Scholar

    [14]

    Zhang G J, Guo F, Wu H, Wen X K, Yang L, Jin W, Zhang W F, Chang H X 2022 Nat. Commun. 13 5067Google Scholar

    [15]

    Cai X, Song T, Wilson N P, Clark G, He M, Zhang X, Taniguchi T, Watanabe K, Yao W, Xiao D, McGuire M A, Cobden D H, Xu X D 2019 Nano Lett. 19 3993Google Scholar

    [16]

    Lee J U, Lee S, Ryoo J H, Kang S, Kim T Y, Kim P, Park C H, Park J G, Cheong H 2016 Nano Lett. 16 7433Google Scholar

    [17]

    Kim K, Lim S Y, Lee J U, Lee S, Kim T Y, Park K, Jeon G S, Park C H, Park J G, Cheong H 2019 Nat. Commun. 10 345Google Scholar

    [18]

    Kim K, Lim S Y, Kim J, Lee J-U, Lee S, Kim P, Park K, Son S, Park C-H, Park J-G, Cheong H 2019 2D Mater. 6 041001Google Scholar

    [19]

    Gong Y, Guo J W, Li J H, Zhu K J, Liao M H, Liu X Z, Zhang Q H, Gu L, Tang L, Feng X, Zhang D, Li W, Song C L, Wang L L, Yu P, Chen X, Wang Y Y, Yao H, Duan W H, Xu Y, Zhang S C, Ma X C, Xue Q K, He K 2019 Chin. Phys. Lett. 36 076801Google Scholar

    [20]

    Telford E J, Dismukes A H, Lee K, Cheng M, Wieteska A, Bartholomew A K, Chen Y S, Xu X D, Pasupathy A N, Zhu X, Dean C R, Roy X 2020 Adv. Mater. 32 2003240Google Scholar

    [21]

    Otrokov M M, Klimovskikh, II, Bentmann H, Estyunin D, Zeugner A, Aliev Z S, Gass S, Wolter A U B, Koroleva A V, Shikin A M, Blanco-Rey M, Hoffmann M, Rusinov I P, Vyazovskaya A Y, Eremeev S V, Koroteev Y M, Kuznetsov V M, Freyse F, Sanchez Barriga J, Amiraslanov I R, Babanly M B, Mamedov N T, Abdullayev N A, Zverev V N, Alfonsov A, Kataev V, Buchner B, Schwier E F, Kumar S, Kimura A, Petaccia L, Di Santo G, Vidal R C, Schatz S, Kissner K, Unzelmann M, Min C H, Moser S, Peixoto T R F, Reinert F, Ernst A, Echenique P M, Isaeva A, Chulkov E V 2019 Nature 576 416Google Scholar

    [22]

    Thiel L, Wang Z, Tschudin M A, Rohner D, Gutiérrez-Lezama I, Ubrig N, Gibertini M, Giannini E, Morpurgo A F, Maletinsky P 2019 Science 364 973Google Scholar

    [23]

    Li T X, Jiang S W, Sivadas N, Wang Z F, Xu Y, Weber D, Goldberger J E, Watanabe K, Taniguchi T, Fennie C J, Mak K F, Shan J 2019 Nat. Mater. 18 1303Google Scholar

    [24]

    Song T C, Fei Z Y, Yankowitz M, Lin Z, Jiang Q N, Hwangbo K, Zhang Q, Sun B S, Taniguchi T, Watanabe K, McGuire M A, Graf D, Cao T, Chu J H, Cobden D H, Dean C R, Xiao D, Xu X D 2019 Nat. Mater. 18 1298Google Scholar

    [25]

    Cai W P, Sun H L, Xia W, Wu C W, Liu Y, Liu H, Gong Y, Yao D X, Guo Y F, Wang M 2020 Phys. Rev. B 102 144525Google Scholar

    [26]

    Wang Y, Wang C, Liang S J, Ma Z, Xu K, Liu X, Zhang L, Admasu A S, Cheong S W, Wang L, Chen M, Liu Z, Cheng B, Ji W, Miao F 2020 Adv. Mater. 32 e2004533Google Scholar

    [27]

    Li X, Yang J 2014 J. Mater. Chem. C 2 7071Google Scholar

    [28]

    Cenker J, Sivakumar S, Xie K C, Miller A, Thijssen P, Liu Z Y, Dismukes A, Fonseca J, Anderson E, Zhu X Y, Roy X, Xiao D, Chu J H, Cao T, Xu X D 2022 Nat. Nanotechnol. 17 256Google Scholar

    [29]

    Ji Z Q, Huang T, Li Y, Liu X Y, Wei L J, Wu H, Jin J M, Pu Y, Li F 2023 Chin. Phys. Lett. 40 057701Google Scholar

    [30]

    Wang Z W, Liang J H, Yang H X 2023 Chin. Phys. Lett. 40 017501Google Scholar

    [31]

    刘南舒, 王聪, 季威 2022 物理学报 71 127504Google Scholar

    Liu N-S, Wang C, Ji W 2022 Acta Phys. Sin. 71 127504Google Scholar

    [32]

    Cao Y, Zhang X M, Zhang X P, Yan F G, Wang Z A, Zhu W K, Tan H, Golovach V N, Zheng H Z, Wang K Y 2022 Phys. Rev. Appl. 17 L051001Google Scholar

    [33]

    Wang H, Liu Y, Wu P, Hou W, Jiang Y, Li X, Pandey C, Chen D, Yang Q, Wang H, Wei D, Lei N, Kang W, Wen L, Nie T, Zhao W, Wang K L 2020 ACS Nano 14 10045Google Scholar

    [34]

    Jiang S, Shan J, Mak K F 2018 Nat. Mater. 17 406Google Scholar

    [35]

    Wang Z A, Xue W, Yan F, Zhu W K, Liu Y, Zhang X, Wei Z, Chang K, Yuan Z, Wang K 2023 Nano Lett. 23 710Google Scholar

    [36]

    肖寒, 弭孟娟, 王以林 2021 物理学报 70 127503Google Scholar

    Xiao H, Mi M J, Wang Y L 2021 Acta Phys. Sin. 70 127503Google Scholar

    [37]

    Jiang S, Li L, Wang Z, Mak K F, Shan J 2018 Nat. Nanotechnol. 13 549Google Scholar

    [38]

    Huang B, Clark G, Klein D R, MacNeill D, Navarro-Moratalla E, Seyler K L, Wilson N, McGuire M A, Cobden D H, Xiao D, Yao W, Jarillo-Herrero P, Xu X D 2018 Nat. Nanotechnol. 13 544Google Scholar

    [39]

    Wang Z, Zhang T Y, Ding M, Dong B J, Li Y X, Chen M L, Li X X, Huang J Q, Wang H W, Zhao X T, Li Y, Li D, Jia C K, Sun L D, Guo H H, Ye Y, Sun D M, Chen Y S, Yang T, Zhang J, Ono S, Han Z, Zhang Z D 2018 Nat. Nanotechnol. 13 554Google Scholar

    [40]

    Verzhbitskiy I A, Kurebayashi H, Cheng H, Zhou J, Khan S, Feng Y P, Eda G 2020 Nat. Electron. 3 460Google Scholar

    [41]

    Wang N, Tang H, Shi M, Zhang H, Zhuo W, Liu D, Meng F, Ma L, Ying J, Zou L, Sun Z, Chen X 2019 J. Am. Chem. Soc. 141 17166Google Scholar

    [42]

    Mi M J, Zheng X W, Wang S L, Zhou Y, Yu L X, Xiao H, Song H N, Shen B, Li F, Bai L H, Chen Y X, Wang S P, Liu X H, Wang Y L 2022 Adv. Funct. Mater. 32 2112750Google Scholar

    [43]

    Tezze D, Pereira J M, Asensio Y, Ipatov M, Calavalle F, Casanova F, Bittner A M, Ormaza M, Martin-Garcia B, Hueso L E, Gobbi M 2022 Nanoscale 14 1165Google Scholar

    [44]

    Tang M, Huang J W, Qin F, Zhai K, Ideue T, Li Z Y, Meng F H, Nie A M, Wu L L, Bi X Y, Zhang C R, Zhou L, Chen P, Qiu C Y, Tang P Z, Zhang H J, Wan X G, Wang L, Liu Z Y, Tian Y J, Iwasa Y, Yuan H T 2023 Nat. Electron. 6 28Google Scholar

    [45]

    Peng Y X, Ding S L, Cheng M, Hu Q F, Yang J, Wang F G, Xue M Z, Liu Z, Lin Z C, Avdeev M, Hou Y L, Yang W Y, Zheng Y, Yang J B 2020 Adv. Mater. 32 2001200Google Scholar

    [46]

    Hu C W, Gordon K N, Liu P F, Liu J Y, Zhou X Q, Hao P P, Narayan D, Emmanouilidou E, Sun H Y, Liu Y T, Brawer H, Ramirez A P, Ding L, Cao H B, Liu Q H, Dessau D, Ni N 2020 Nat. Commun. 11 97Google Scholar

    [47]

    Gong C, Zhang X 2019 Science 363 eaav4450Google Scholar

    [48]

    Zhang Y, Xu H J, Yi C J, Wang X, Huang Y, Tang J, Jiang J L, He C L, Zhao M K, Ma T Y, Dong J, Guo C Y, Feng J F, Wan C H, Wei H X, Du H F, Shi Y G, Yu G Q, Zhang G Y, Han X F 2021 Appl. Phys. Lett. 118 262406Google Scholar

    [49]

    Alghamdi M, Lohmann M, Li J, Jothi P R, Shao Q, Aldosary M, Su T, Fokwa B P T, Shi J 2019 Nano Lett. 19 4400Google Scholar

    [50]

    Wang X, Tang J, Xia X, He C, Zhang J, Liu Y, Wan C, Fang C, Guo C, Yang W, Guang Y, Zhang X, Xu H, Wei J, Liao M, Lu X, Feng J, Li X, Peng Y, Wei H X, Yang R, Shi D, Zhang X, Han Z, Zhang Z, Zhang G, Yu G Q, Han X F 2019 Sci. Adv. 5 eaaw8904Google Scholar

    [51]

    Shin I, Cho W J, An E S, Park S, Jeong H W, Jang S, Baek W J, Park S Y, Yang D H, Seo J H, Kim G Y, Ali M N, Choi S Y, Lee H W, Kim J S, Kim S D, Lee G H 2022 Adv. Mater. 34 2101730Google Scholar

    [52]

    Ostwal V, Shen T, Appenzeller J 2020 Adv. Mater. 32 1906021Google Scholar

    [53]

    Gupta V, Cham T M, Stiehl G M, Bose A, Mittelstaedt J A, Kang K, Jiang S, Mak K F, Shan J, Buhrman R A, Ralph D C 2020 Nano Lett. 20 7482Google Scholar

    [54]

    Mogi M, Yasuda K, Fujimura R, Yoshimi R, Ogawa N, Tsukazaki A, Kawamura M, Takahashi K S, Kawasaki M, Tokura Y 2021 Nat. Commun. 12 1404Google Scholar

    [55]

    Li W H, Zhu W K, Zhang G J, Wu H, Zhu S G, Li R Z, Zhang E Z, Zhang X M, Deng Y C, Zhang J, Zhao L X, Chang H X, Wang K Y 2023 Adv. Mater. 35 2303688Google Scholar

    [56]

    Nguyen M H, Ralph D C, Buhrman R A 2016 Phys. Rev. Lett. 116 126601Google Scholar

    [57]

    Pai C F, Ou Y X, Vilela-Leao L H, Ralph D C, Buhrman R A 2015 Phys. Rev. B 92 064426Google Scholar

    [58]

    Kao I H, Muzzio R, Zhang H T, Zhu M L, Gobbo J, Yuan S, Weber D, Rao R, Li J H, Edgar J H, Goldberger J E, Yan J Q, Mandrus D G, Hwang J, Cheng R, Katoch J, Singh S 2022 Nat. Mater. 21 1029Google Scholar

    [59]

    Ye X G, Zhu P F, Xu W Z, Shang N Z, Liu K H, Liao Z M 2022 Chin. Phys. Lett. 39 037303Google Scholar

    [60]

    Pan Z C, Li D, Ye X G, Chen Z, Chen Z H, Wang A Q, Tian M, Yao G, Liu K, Liao Z M 2023 Sci. Bull. 68 2743Google Scholar

    [61]

    Song T, Cai X, Tu M W, Zhang X, Huang B, Wilson N P, Seyler K L, Zhu L, Taniguchi T, Watanabe K, McGuire M A, Cobden D H, Xiao D, Yao W, Xu X D 2018 Science 360 1214Google Scholar

    [62]

    Song T, Tu M W, Carnahan C, Cai X, Taniguchi T, Watanabe K, McGuire M A, Cobden D H, Xiao D, Yao W, Xu X D 2019 Nano Lett. 19 915Google Scholar

    [63]

    Lan G B, Xu H J, Zhang Y, Cheng C, He B, Li J H, He C L, Wan C H, Feng J F, Wei H X, Zhang J, Han X F, Yu G Q 2023 Chin. Phys. Lett. 40 058501Google Scholar

    [64]

    Wang Z, Sapkota D, Taniguchi T, Watanabe K, Mandrus D, Morpurgo A F 2018 Nano Lett. 18 4303Google Scholar

    [65]

    Min K-H, Lee D H, Choi S-J, Lee I-H, Seo J, Kim D W, Ko K-T, Watanabe K, Taniguchi T, Ha D H, Kim C, Shim J H, Eom J, Kim J S, Jung S 2022 Nat. Mater. 21 1144Google Scholar

    [66]

    Zhu W K, Lin H L, Yan F G, Hu C, Wang Z, Zhao L X, Deng Y C, Kudrynskyi Z R, Zhou T, Kovalyuk Z D, Zheng Y, Patanè A, Žutić I, Li S, Zheng H, Wang K Y 2021 Adv. Mater. 33 2104658Google Scholar

    [67]

    Zhu W K, Zhu Y M, Zhou T, Zhang X P, Lin H L, Cui Q R, Yan F G, Wang Z, Deng Y C, Yang H X, Zhao L X, Žutić I, Belashchenko K D, Wang K Y 2023 Nat. Commun. 14 5371Google Scholar

    [68]

    Lin H L, Yan F G, Hu C, Lv Q, Zhu W K, Wang Z, Wei Z, Chang K, Wang K Y 2020 ACS Appl. Mater. Interfaces 12 43921Google Scholar

    [69]

    Jin W, Zhang G J, Wu H, Yang L, Zhang W F, Chang H X 2023 Nanoscale 15 5371Google Scholar

    [70]

    Jin W, Zhang G J, Wu H, Yang L, Zhang W F, Chang H X 2023 ACS Appl. Mater. Interfaces 15 36519Google Scholar

    [71]

    Zhu W K, Xie S H, Lin H L, Zhang G J, Wu H, Hu T G, Wang Z A, Zhang X M, Xu J H, Wang Y J, Zheng Y H, Yan F G, Zhang J, Zhao L X, Patané A, Zhang J, Chang H X, Wang K Y 2022 Chin. Phys. Lett. 39 128501Google Scholar

    [72]

    Wiedenmann A, Rossat-Mignod J, Louisy A, Brec R, Rouxel J 1981 Solid State Commun. 40 1067Google Scholar

    [73]

    Coak M J, Jarvis D M, Hamidov H, Haines C R S, Alireza P L, Liu C, Son S, Hwang I, Lampronti G I, Daisenberger D, Nahai-Williamson P, Wildes A R, Saxena S S, Park J G 2020 J. Condens. Matter Phys. 32 124003Google Scholar

    [74]

    Joy P A, Vasudevan S 1992 Phys. Rev. B 46 5425Google Scholar

    [75]

    Bhutani A, Zuo J L, McAuliffe R D, dela Cruz C R, Shoemaker D P 2020 Phys. Rev. Mater. 4 034411Google Scholar

    [76]

    Wang C, He Q Y, Halim U, Liu Y Y, Zhu E B, Lin Z Y, Xiao H, Duan X D, Feng Z Y, Cheng R, Weiss N O, Ye G J, Huang Y C, Wu H, Cheng H C, Shakir I, Liao L, Chen X H, Goddard Iii W A, Huang Y, Duan X F 2018 Nature 555 231Google Scholar

    [77]

    Wang N Z, Shi M Z, Shang C, Meng F B, Ma L K, Luo X G, Chen X H 2018 New J. Phys. 20 023014Google Scholar

    [78]

    Meng F B, Liu Z, Yang L X, Shi M Z, Ge B H, Zhang H, Ying J J, Wang Z F, Wang Z Y, Wu T, Chen X H 2020 Phys. Rev. B 102 165410Google Scholar

    [79]

    Shi M Z, Wang N Z, Lei B, Shang C, Meng F B, Ma L K, Zhang F X, Kuang D Z, Chen X H 2018 Phys. Rev. Mater. 2 074801Google Scholar

    [80]

    Ma L K, Shi M Z, Kang B L, Peng K L, Meng F B, Zhu C S, Cui J H, Sun Z L, Ma D H, Wang H H, Lei B, Wu T, Chen X H 2020 Phys. Rev. Mater. 4 124803Google Scholar

    [81]

    He Q, Lin Z, Ding M, Yin A, Halim U, Wang C, Liu Y, Cheng H C, Huang Y, Duan X 2019 Nano Lett. 19 6819Google Scholar

    [82]

    Li X, Wu X, Yang J 2014 J. Am. Chem. Soc. 136 11065Google Scholar

    [83]

    Chittari B L, Park Y, Lee D, Han M, MacDonald A H, Hwang E, Jung J 2016 Phys. Rev. B 94 184428Google Scholar

    [84]

    Wildes A R, Simonet V, Ressouche E, McIntyre G J, Avdeev M, Suard E, Kimber S A J, Lançon D, Pepe G, Moubaraki B, Hicks T J 2015 Phys. Rev. B 92 224408Google Scholar

    [85]

    Wang F, Shifa T A, Yu P, He P, Liu Y, Wang F, Wang Z, Zhan X, Lou X, Xia F, He J 2018 Adv. Funct. Mater. 28 1802151Google Scholar

    [86]

    Mi M, Xiao H, Yu L, Zhang Y, Wang Y, Cao Q, Wang Y 2023 Materials Today Nano 24 100408Google Scholar

    [87]

    McCreary A, Simpson J R, Mai T T, McMichael R D, Douglas J E, Butch N, Dennis C, Aguilar R V, Walker A R H 2020 Phys. Rev. B 101 064416Google Scholar

    [88]

    Wang X, Du K, Fredrik Liu Y Y, Hu P, Zhang J, Zhang Q, Owen M H S, Lu X, Gan C K, Sengupta P, Kloc C, Xiong Q 2016 2D Mater. 3 031009Google Scholar

    [89]

    Mai T T, Garrity K F, McCreary A, Argo J, Simpson J R, Doan-Nguyen V, Aguilar R V, Walker A R H 2021 Sci. Adv. 7 eabj3106Google Scholar

    [90]

    Sun Y J, Tan Q H, Liu X L, Gao Y F, Zhang J 2019 J. Phys. Chem. Lett. 10 3087Google Scholar

    [91]

    Basnet R, Wegner A, Pandey K, Storment S, Hu J 2021 Phys. Rev. Mater. 5 064413Google Scholar

    [92]

    Han H, Lin H, Gan W, Xiao R C, Liu Y C, Ye J F, Chen L M, Wang W W, Zhang L, Zhang C J, Li H 2023 Phys. Rev. B 107 075423Google Scholar

    [93]

    Calder S, Haglund A V, Kolesnikov A I, Mandrus D 2021 Phys. Rev. B 103 024414Google Scholar

    [94]

    Le Flem G, Brec R, Ouvard G, Louisy A, Segransan P 1982 J. Phys. Chem. Solids 43 455Google Scholar

    [95]

    Jeevanandam P, Vasudevan S 1999 J. Condens. Matter Phys. 11 3563Google Scholar

    [96]

    Bao W Z, Wan J Y, Han X G, Cai X H, Zhu H L, Kim D K, Ma D K, Xu Y L, Munday J N, Drew H D, Fuhrer M S, Hu L B 2014 Nat. Commun. 5 4224Google Scholar

    [97]

    Wan C, Gu X, Dang F, Itoh T, Wang Y, Sasaki H, Kondo M, Koga K, Yabuki K, Snyder G J, Yang R, Koumoto K 2015 Nat. Mater. 14 622Google Scholar

    [98]

    Kang B L, Shi M Z, Li S J, Wang H H, Zhang Q, Zhao D, Li J, Song D W, Zheng L X, Nie L P, Wu T, Chen X H 2020 Phys. Rev. Lett. 125 097003Google Scholar

    [99]

    Zhao Y, Su Y, Guo Y, Peng J, Zhao J, Wang C, Wang L, Wu C, Xie Y 2021 ACS Mater. Lett. 3 210Google Scholar

  • [1] Yang Rui-Long, Zhang Yu-Ying, Yang Ke, Jiang Qi-Tao, Yang Xiao-Ting, Guo Jin-Zhong, Xu Xiao-Hong. Growth and magnetic properties of two-dimensional vanadium-doped Cr2S3 nanosheets. Acta Physica Sinica, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20231229
    [2] Xiong Yi-Nong, Wu Chuang-Wen, Ren Chuan-Tong, Meng De-Quan, Chen Shi-Wei, Liang Shi-Heng. Research progress of spin orbit torque of two-dimensional magnetic materials. Acta Physica Sinica, 2024, 73(1): 017502. doi: 10.7498/aps.73.20231244
    [3] Zhang Ying, Li Zhuo-Lin, Shen Bao-Gen. Research progress in the magnetic domain wall topology. Acta Physica Sinica, 2024, 73(1): 017504. doi: 10.7498/aps.73.20231612
    [4] Tan Bi, Gao Dong, Deng Deng-Fu, Chen Shu-Yao, Bi Lei, Liu Dong-Hua, Liu Tao. Transport characterization of magnetic phase transition in Mn3Sn thin films. Acta Physica Sinica, 2024, 73(6): 067501. doi: 10.7498/aps.73.20231766
    [5] Yang Rui-Long, Zhang Yu-Ying, Yang Ke, Jiang Qi-Tao, Yang Xiao-Ting, Guo Jin-Zhong, Xu Xiao-Hong. Growth and magnetic properties of two-dimensional vanadium-doped Cr2S3 nanosheets. Acta Physica Sinica, 2023, 72(24): 247501. doi: 10.7498/aps.72.20231229
    [6] Shi Meng-Zhu, Kang Bao-Lei, Meng Fan-Bao, Wu Tao, Chen Xian-Hui. Research progress of tuning correlated state in two-dimensional system by organic molecule intercalation. Acta Physica Sinica, 2022, 71(12): 127403. doi: 10.7498/aps.71.20220856
    [7] Liu Nan-Shu, Wang Cong, Ji Wei. Recent research advances in two-dimensional magnetic materials. Acta Physica Sinica, 2022, 71(12): 127504. doi: 10.7498/aps.71.20220301
    [8] Yi En-Kui, Wang Bin, Shen Han, Shen Bing. Properties of axion insulator candidate layered Eu1–xCaxIn2As2. Acta Physica Sinica, 2021, 70(12): 127502. doi: 10.7498/aps.70.20210042
    [9] Zhang Song-Ge, Chen Yu-Tong, Wang Ning, Chai Yang, Long Gen, Zhang Guang-Yu. Probe and manipulation of magnetism of two-dimensional CrI3 crystal. Acta Physica Sinica, 2021, 70(12): 127504. doi: 10.7498/aps.70.20202197
    [10] Wang Hai-Yu, Liu Ying-Jie, Xun Lu-Lu, Li Jing, Yang Qing, Tian Qi-Yun, Nie Tian-Xiao, Zhao Wei-Sheng. Research progress of preparation of large-scale two-dimensional magnetic materials and manipulation of Curie temperature. Acta Physica Sinica, 2021, 70(12): 127301. doi: 10.7498/aps.70.20210223
    [11] Xiao Han, Mi Meng-Juan, Wang Yi-Lin. Recent development in two-dimensional magnetic materials and multi-field control of magnetism. Acta Physica Sinica, 2021, 70(12): 127503. doi: 10.7498/aps.70.20202204
    [12] Jiang Xiao-Hong, Qin Si-Chen, Xing Zi-Yue, Zou Xing-Yu, Deng Yi-Fan, Wang Wei, Wang Lin. Study on physical properties and magnetism controlling of two-dimensional magnetic materials. Acta Physica Sinica, 2021, 70(12): 127801. doi: 10.7498/aps.70.20202146
    [13] Hao Zhi-Hong,  Wang Hai-Ying,  Zhang Quan,  Mo Zhao-Jun. Magnetic and magnetocaloric effects of Eu0.9M0.1TiO3 (M=Ca, Sr, Ba, La, Ce, Sm) compounds. Acta Physica Sinica, 2018, 67(24): 247502. doi: 10.7498/aps.67.20181750
    [14] Yang Jing-Jie, Zhao Jin-Liang, Xu Lei, Zhang Hong-Guo, Yue Ming, Liu Dan-Min, Jiang Yi-Jian. Influences of interstitial atoms H, B and C on magnetic properties and magnetocaloric effect in LaFe11.5Al1.5 compound. Acta Physica Sinica, 2018, 67(7): 077501. doi: 10.7498/aps.67.20172250
    [15] Qi Wei-Hua, Li Zhuang-Zhi, Ma Li, Tang Gui-De, Wu Guang-Heng, Hu Feng-Xia. Molecular field origin for magnetic ordering of magnetic materials. Acta Physica Sinica, 2017, 66(6): 067501. doi: 10.7498/aps.66.067501
    [16] Zhang Zhi-Dong. Magnetic structures, magnetic domains and topological magnetic textures of magnetic materials. Acta Physica Sinica, 2015, 64(6): 067503. doi: 10.7498/aps.64.067503
    [17] Ding Lei, Wang Cong, Chu Li-Hua, Na Yuan-Yuan, Yan Jun. Comprehensive Survey for the Frontier Disciplines Progress in lattice, magnetic and electronic transport properties of antiperovskite Mn3AX. Acta Physica Sinica, 2011, 60(9): 097507. doi: 10.7498/aps.60.097507
    [18] Zhang Li-Gang, Chen Jing, Zhu Bo-Quan, Li Ya-Wei, Wang Ru-Wu, Li Yun-Bao, Zhang Guo-Hong, Li Yu. Study on the magnetic entropy change and magnetic phase transition of NaZn13-type LaFe13-xAlxCy compounds. Acta Physica Sinica, 2006, 55(10): 5506-5510. doi: 10.7498/aps.55.5506
    [19] GUO GUANG-HUA, R.Z.LEVITIN. SPONTANEOUS AND FIELD-INDUCED MAGNETIC PHASE TRANSITIONS IN THE INTERMETALLIC COMPOUND DyMn2Ge2. Acta Physica Sinica, 2001, 50(2): 313-318. doi: 10.7498/aps.50.313
    [20] GUO GUANG-HUA, R.Z.LEVITIN. SPONTANEOUS MAGNETIC PHASE TRANSITION AND MAGNETOELASTIC ANOMALIES AT TRANSITION S IN INTERMETALLIC COMPOUNDS RMn2Ge2 (R=La,Pr,Nd,Sm,Gd,Tb, Y). Acta Physica Sinica, 2000, 49(9): 1838-1845. doi: 10.7498/aps.49.1838
Metrics
  • Abstract views:  4227
  • PDF Downloads:  274
  • Cited By: 0
Publishing process
  • Received Date:  24 December 2023
  • Accepted Date:  06 February 2024
  • Available Online:  19 February 2024
  • Published Online:  05 March 2024

/

返回文章
返回