Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research progress of preparation of large-scale two-dimensional magnetic materials and manipulation of Curie temperature

Wang Hai-Yu Liu Ying-Jie Xun Lu-Lu Li Jing Yang Qing Tian Qi-Yun Nie Tian-Xiao Zhao Wei-Sheng

Citation:

Research progress of preparation of large-scale two-dimensional magnetic materials and manipulation of Curie temperature

Wang Hai-Yu, Liu Ying-Jie, Xun Lu-Lu, Li Jing, Yang Qing, Tian Qi-Yun, Nie Tian-Xiao, Zhao Wei-Sheng
PDF
HTML
Get Citation
  • To date, despite the continuous improvement of integrated circuit manufacturing technology, it has been limited by quantum effects and the shrinking of device size has caused the industry to encounter bottlenecks such as low reliability and high power consumption. The “Moore’s Law” that has lasted for nearly 50 years in the microelectronics industry will not be sustainable. In 2004, the advent of graphene, a two-dimensional (2D) material, brought new opportunities to break through the power consumption bottleneck of integrated circuits. Due to the low dimensionality, 2D materials exhibit a variety of fasinatingly electrical, ferromagnetic, mechanical, and optical properties at an atomic level. Among them, ferromagnetism has a wide range of applications in information processing, magnetic memory and other technologies. However, only a few 2D ferromagnetic materials are successfully synthesized. Meanwhile, the magnetic long-range order will be strongly suppressed within a limited temperature range due to thermal fluctuations, and thus bringing non-ignorable limitations and challenges to subsequent work. Therefore, the realization and control of room-temperature ferromagnetism in 2D magnetic materials is the major concern at this stage. In light of the above, this review first introduces the development process, preparation methods and superior properties of 2D magnetic materials in detail, and then focuses on the methods of manipulating the Curie temperature of 2D magnetic material. Finally, we briefly give an outlook of the application prospects in the future.
      Corresponding author: Nie Tian-Xiao, nietianxiao@buaa.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61774013), the National Key R&D Program of China (Grant No. 2018YFB0407602), and the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 2017ZX01032101)
    [1]

    Sato N, Xue F, White R M, Bi C, Wang S X 2018 Nat. Electron. 1 508Google Scholar

    [2]

    Chappert C, Fert A, Van Dau F N 2007 Nat. Mater. 6 813Google Scholar

    [3]

    Zhang D, Hou Y, Zeng L, Zhao W S 2019 IEEE Trans. Nanotechnol. 18 518Google Scholar

    [4]

    Mennel L, Symonowicz J, Wachter S, Polyushkin D K, Molina-Mendoza A J, Mueller T 2020 Nature 579 62Google Scholar

    [5]

    Zhu J 2008 Proc. IEEE 96 1786Google Scholar

    [6]

    Liu L, Moriyama T, Ralph D C, Buhrman R A 2011 Phys. Rev. Lett. 106 036601

    [7]

    Sun J Z, Brown S L, Chen W, Delenia E A, Gaidis M C, Harms J, Hu G, Jiang X, Kilaru R, Kula W, Lauer G, Liu L Q, Murthy S, Nowak J, O’Sullivan E J, Parkin S S P, Robertazzi R P, Rice P M, Sandhu G, Topuria T, Worledge D C 2013 Phys. Rev. B 88 104426Google Scholar

    [8]

    Parkin S S P, Kaiser C, Panchula A, Rice P M, Hughes B, Samant M, Yang S H 2004 Nat. Mater. 3 862Google Scholar

    [9]

    Wolf S A, Lu J, Stan M R, Chen E, Treger D M 2010 Proc. IEEE 98 2155Google Scholar

    [10]

    Van Den Brink A, Vermijs G, Solignac A, Koo J, Kohlhepp J T, Swagten H J M, Koopmans B 2016 Nat. Commun. 7 1

    [11]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197Google Scholar

    [12]

    Hashimoto A, Suenaga K, Gloter A, Urita K, Iijima S 2004 Nature 430 870Google Scholar

    [13]

    Schedin F, Geim A K, Morozov S V, Hill E W, Blake P, Katsnelson M I, Novoselov K S 2007 Nat. Mater. 6 652Google Scholar

    [14]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183Google Scholar

    [15]

    Mas-Ballesté R, Gómez-Navarro C, Gómez-Herrero J, Zamora F 2011 Nanoscale 3 20Google Scholar

    [16]

    Dirac P A M, Fowler R H 1926 Proc. R. Soc. London, Ser. A 112 661Google Scholar

    [17]

    Gong C, Zhang X 2019 Science 363 6428

    [18]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [19]

    Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V, Geim A K 2005 Proc. Natl. Acad. Sci. U.S.A. 102 10451Google Scholar

    [20]

    Mermin N D, Wagner H 1966 Phys. Rev. Lett. 17 1133Google Scholar

    [21]

    Mounet N, Gibertini M, Schwaller P, Campi D, Merkys A, Marrazzo A, Sohier T, Castelli I E, Cepellotti A, Pizzi G, Marzari N 2018 Nat. Nanotechnol. 13 246Google Scholar

    [22]

    Alghamdi M, Lohmann M, Li J, Jothi P R, Shao Q, Aldosary M, Su T, Fokwa B P T, Shi J 2019 Nano Lett. 19 4400Google Scholar

    [23]

    Wang X, Tang J, Xia X, He C, Zhang J, Liu Y, Wan C, Fang C, Guo C, Yang W, Guang Y, Zhang X, Xu H, Wei J, Liao M, Lu X, Feng J, Li X, Peng Y, Wei H, Yang R, Shi D, Zhang X, Han Z, Zhang Z, Zhang G, Yu G, Han X 2019 Sci. Adv. 5 eaaw8904Google Scholar

    [24]

    Novoselov K S, Mishchenko A, Carvalho A, Castro Neto A H 2016 Science 353 6298

    [25]

    Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J, Zhang X 2017 Nature 546 265Google Scholar

    [26]

    Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, Xu X D 2017 Nature 546 270Google Scholar

    [27]

    Si C, Zhou J, Sun Z 2015 ACS Appl. Mater. Interfaces 7 17510Google Scholar

    [28]

    Zhu Y, Kong X, Rhone T D, Guo H 2018 Phys. Rev. Mater. 2 81001Google Scholar

    [29]

    Du J, Xia C, Xiong W, Wang T, Jia Y, Li J 2017 Nanoscale 9 17585Google Scholar

    [30]

    He J, Li X, Lyu P, Nachtigall P 2017 Nanoscale 9 2246Google Scholar

    [31]

    Wang H, Liu Y, Wu P, Hou W, Jiang Y, Li X, Pandey C, Chen D, Yang Q, Wang H, Wei D, Lei N, Kang W, Wen L, Nie T X, Zhao W S, Wang K L 2020 ACS Nano 14 10045Google Scholar

    [32]

    Dong X J, You J Y, Gu B, Su G 2019 Phys. Rev. Appl. 12 14020Google Scholar

    [33]

    Deng Y, Yu Y, Song Y, Zhang J, Wang N Z, Sun Z, Yi Y, Wu Y Z, Wu S, Zhu J, Wang J, Chen X H, Zhang Y B 2018 Nature 563 94Google Scholar

    [34]

    Wen Y, Liu Z, Zhang Y, Xia C, Zhai B, Zhang X, Zhai G, Shen C, He P, Cheng R, Yin L, Yao Y, Getaye Sendeku M, Wang Z, Ye X, Liu C, Jiang C, Shan C, Long Y, He J 2020 Nano Lett. 20 3130Google Scholar

    [35]

    Cai X, Luo Y, Liu B, Cheng H M 2018 Chem. Soc. Rev. 47 6224Google Scholar

    [36]

    Yi M, Shen Z 2015 J. Mater. Chem. A 3 11700Google Scholar

    [37]

    Zhang Y, Zhang L, Zhou C 2013 Acc. Chem. Res. 46 2329Google Scholar

    [38]

    Ji Q, Zhang Y, Zhang Y, Liu Z 2015 Chem. Soc. Rev. 44 2587Google Scholar

    [39]

    Mattevi C, Kim H, Chhowalla M 2011 J. Mater. Chem. 21 3324Google Scholar

    [40]

    Ago H, Ito Y, Mizuta N, Yoshida K, Hu B, Orofeo C M, Tsuji M, Ikeda K, Mizuno S 2010 ACS Nano 4 7407Google Scholar

    [41]

    Vo-Van C, Kimouche A, Reserbat-Plantey A, Fruchart O, Bayle-Guillemaud P, Bendiab N, Coraux J 2011 Appl. Phys. Lett. 98 181903Google Scholar

    [42]

    Coleman J N 2009 Adv. Funct. Mater. 19 3680Google Scholar

    [43]

    Coleman J N 2013 Acc. Chem. Res. 46 14Google Scholar

    [44]

    Cui X, Zhang C, Hao R, Hou Y 2011 Nanoscale 3 2118Google Scholar

    [45]

    Ojrzynska M, Wroblewska A, Judek J, Malolepszy A, Duzynska A, Zdrojek M 2020 Opt. Express 28 7274Google Scholar

    [46]

    Ciesielski A, Samorì P 2014 Chem. Soc. Rev. 43 381Google Scholar

    [47]

    Neave J H, Dobson P J, Joyce B A, Zhang J 1985 Appl. Phys. Lett. 47 100Google Scholar

    [48]

    May A F, Ovchinnikov D, Zheng Q, Hermann R, Calder S, Huang B, Fei Z, Liu Y, Xu X, McGuire M A 2019 ACS Nano 13 4436Google Scholar

    [49]

    Dalitz R H, Peierls R E 1997 Selected Scientific Papers of Sir Rudolf Peierls (Vol. 1) (Singapore: World Scientific Publishing Co. Pte. Ltd) pp 9–225

    [50]

    Joyce G S 1969 J. Phys. C: Solid State Phys. 2 1531Google Scholar

    [51]

    Hohenberg P C 1967 Phys. Rev. 158 383Google Scholar

    [52]

    Ising E 1925 Z. Phys. 31 253Google Scholar

    [53]

    Kosterlitz J M, Thouless D J 1973 J. Phys. C: Solid State Phys. 6 1181Google Scholar

    [54]

    Berezinsky V L 1971 Sov. Phys. JETP 32 493

    [55]

    Liu S, Yuan X, Zou Y, Sheng Y, Huang C, Zhang E, Ling J, Liu Y, Wang W, Zhang C, Zou J, Wang K, Xiu F X 2017 npj 2D Mater. Appl. 1 30Google Scholar

    [56]

    Tan C, Lee J, Jung S G, Park T, Albarakati S, Partridge J, Field M R, McCulloch D G, Wang L, Lee C 2018 Nat. Commun. 9 1554

    [57]

    Fei Z, Huang B, Malinowski P, Wang W, Song T, Sanchez J, Yao W, Xiao D, Zhu X, May A F, Wu W, Cobden D H, Chu J H, Xu X D 2018 Nat. Mater. 17 778Google Scholar

    [58]

    Kim D, Park S, Lee J, Yoon J, Joo S, Kim T, Min K, Park S Y, Kim C, Moon K W, Lee C, Hong J, Hwang C 2019 Nanotechnology 30 245701Google Scholar

    [59]

    Xu J, Phelan W A, Chien C L 2019 Nano Lett. 19 8250Google Scholar

    [60]

    Park S Y, Kim D S, Liu Y, Hwang J, Kim Y, Kim W, Kim J Y, Petrovic C, Hwang C, Mo S K, Kim H, Min B C, Koo H C, Chang J, Jang C, Choi J W, Ryu H 2020 Nano Lett. 20 95Google Scholar

    [61]

    Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P 2018 Nature 556 43Google Scholar

    [62]

    Gibertini M, Koperski M, Morpurgo A F, Novoselov K S 2019 Nat. Nanotechnol. 14 408Google Scholar

    [63]

    Huang B, Clark G, Klein D R, MacNeill D, Navarro-Moratalla E, Seyler K L, Wilson N, McGuire M A, Cobden D H, Xiao D, Yao W, Jarillo-Herrero P, Xu X D 2018 Nat. Nanotechnol. 13 544Google Scholar

    [64]

    Jiang S, Li L, Wang Z, Mak K F, Shan J 2018 Nat. Nanotechnol. 13 549Google Scholar

    [65]

    Lin X, Yang W, Wang K L, Zhao W 2019 Nat. Electron. 2 274Google Scholar

    [66]

    Bonilla M, Kolekar S, Ma Y, Diaz H C, Kalappattil V, Das R, Eggers T, Gutierrez H R, Phan M H, Batzill M 2018 Nat. Nanotechnol. 13 289Google Scholar

    [67]

    O’Hara D J, Zhu T, Trout A H, Ahmed A S, Luo Y K, Lee C H, Brenner M R, Rajan S, Gupta J A, McComb D W, Kawakami R K 2018 Nano Lett. 18 3125Google Scholar

    [68]

    Wang Z, Zhang T, Ding M, Dong B, Li Y, Chen M, Li X, Huang J, Wang H, Zhao X, Li Y, Li D, Jia C, Sun L, Guo H, Ye Y, Sun D, Chen Y, Yang T, Zhang J, Ono S, Han Z, Zhang Z D 2018 Nat. Nanotechnol. 13 554Google Scholar

    [69]

    Verzhbitskiy I A, Kurebayashi H, Cheng H, Zhou J, Khan S, Feng Y P, Eda G 2020 Nat. Electron. 3 460Google Scholar

    [70]

    Seo J, Kim D Y, An E S, Kim K, Kim G Y, Hwang S Y, Kim D W, Jang B G, Kim H, Eom G, Seo S Y, Stania R, Muntwiler M, Lee J, Watanabe K, Taniguchi T, Jo Y J, Lee J, Min B Il, Jo M H, Yeom H W, Choi S Y, Shim J H, Kim J S 2020 Sci. Adv. 6 eaay8912Google Scholar

    [71]

    Yang M, Li Q, Chopdekar R V, Stan C, Cabrini S, Choi J W, Wang S, Wang T, Gao N, Scholl A, Tamura N, Hwang C, Wang F, Qiu Z Q 2020 Adv. Quantum Technol. 3 2000017Google Scholar

    [72]

    Li Q, Yang M, Gong C, Chopdekar R V, N’Diaye A T, Turner J, Chen G, Scholl A, Shafer P, Arenholz E, Schmid A K, Wang S, Liu K, Gao N, Admasu A S, Cheong S W, Hwang C, Li J, Wang F, Zhang X, Qiu Z Q 2018 Nano Lett. 18 5974Google Scholar

    [73]

    Liu S, Yang K, Liu W, Zhang E, Li Z, Zhang X, Liao Z, Zhang W, Sun J, Yang Y, Gao H, Huang C, Ai L, Wong P K J, Wee A T S, N’Diaye A T, Morton S A, Kou X, Zou J, Xu Y, Wu H, Xiu F X 2019 Natl. Sci. Rev. 7 745

    [74]

    Dong X J, You J Y, Zhang Z, Gu B, Su G 2020 Phys. Rev. B 102 144443Google Scholar

    [75]

    Kou X, Fan Y, Wang K L 2019 J. Phys. Chem. Solids 128 2Google Scholar

    [76]

    Yu J, Wu W, Wang Y, Zhu K, Zeng X, Chen Y, Liu Y, Yin C, Cheng S, Lai Y, He K, Xue Q 2020 Appl. Phys. Lett. 116 141603Google Scholar

    [77]

    Katmis F, Lauter V, Nogueira F S, Assaf B A, Jamer M E, Wei P, Satpati B, Freeland J W, Eremin I, Heiman D, Jarillo-Herrero P, Moodera J S 2016 Nature 533 513Google Scholar

    [78]

    Wang Z, Sapkota D, Taniguchi T, Watanabe K, Mandrus D, Morpurgo A F 2018 Nano Lett. 18 4303Google Scholar

    [79]

    Albarakati S, Tan C, Chen Z J, Partridge J G, Zheng G, Farrar L, Mayes E L H, Field M R, Lee C, Wang Y, Xiong Y, Tian M, Xiang F, Hamilton A R, Tretiakov O A, Culcer D, Zhao Y J, Wang L 2019 Sci. Adv. 5 eaaw0409Google Scholar

  • 图 1  单层石墨烯机械剥离流程[36]

    Figure 1.  Mechanical peeling process of single-layer graphene[36].

    图 2  (a) 分子束外延生长腔示意图; (b) 薄膜生长过程示意图

    Figure 2.  (a) Schematic diagram of molecular beam epitaxial growth cavity; (b) schematic diagram of film growth process.

    图 3  (a) Cr2Ge2Te6的原子结构视图[25], 其中蓝色、黄色和橘色的球分别代表Cr, Ge和 Te原子. (b) 单层CrI3的平面内原子结构视图, 其中灰色和紫色的球分别代表Cr和I原子[26]. (c) Fe3GeTe2的面内和面外原子结构视图, 其中黄色、紫色和绿色的球分别代表Fe, Ge和 Te原子[55]

    Figure 3.  (a) Atomic structure view of Cr2Ge2Te6. The blue, yellow, and orange balls represent Cr, Ge, and Te atoms, respectively[25]. (b) In-plane atomic structure view of a single layer of CrI3. The gray and purple balls represent Cr and I atoms, respectively[26]. (c) In-plane and out-of-plane atomic structure views of Fe3GeTe2. The yellow, purple and green balls represent Fe, Ge and Te atoms, respectively[55].

    图 4  (a), (b) FGT薄膜的居里温度随厚度的依赖关系[56,57]; (c)不同温度下30 nm FGT/O-FGT薄膜器件的反常霍尔电阻与垂直磁场的关系, 其中在90 K温度下出现负的剩磁[58]; (d) FGT薄膜的能斯特信号横向电压与垂直磁场的关系, 温度梯度分别为$\nabla {T_x} = 1.3\;{\rm{K}} \cdot {{\text{μ} }}{{\rm{m}}^{ - 1}}$$\nabla {T_x} = - 1.1\;{\rm{K}} \cdot {\text{μ} }{{\rm{m}}^{ - 1}}$[59]; (e) Fe3–xGeTe2薄膜的磁晶各向异性能与磁化强度随掺杂浓度变化的关系[60]

    Figure 4.  (a), (b) Thickness-dependent Curie temperature of FGT films for critical analysis[56,57]; (c) relationship between the anomalous Hall resistance of 30 nm thick FGT/O-FGT device and the perpendicular magnetic field under different temperatures, where the negative remanence magnetization appears at 90 K[58]; (d) relationship between the transverse voltage of the Nernst signal of FGT film and the perpendicular magnetic field with temperature gradient of $\nabla {T_x} = 1.3\;{\rm{K}} \cdot {\text{μ} }{{\rm{m}}^{ - 1}}$ and $\nabla {T_x} = - 1.1\;{\rm{K}} \cdot {\text{μ} }{{\rm{m}}^{ - 1}}$, respectively[59]; (e) change of the magnetocrystalline anisotropy of Fe3–xGeTe2 film and the magnetization with doping concentration[60]

    图 5  (a) 在μ0H = 0.78 T时, RMCD强度与顶栅电压和背栅电压的关系, 可以看出在双层CrI3中利用静电门控制的磁性转变[63]; (b) 4 K时双层CrI3中栅极电压-掺杂密度-磁场相位图, 可以看出双层CrI3中利用电子掺杂控制的磁性转变[64]

    Figure 5.  (a) RMCD signals under the top gate and back gate voltage at μ0H = 0.78 T. Magnetic transition can be controlled by electrostatic gate in double-layer CrI3[63]. (b) Gate voltage-electron doping density-magnetic field phase diagram in double layer CrI3 at 4 K. Magnetic transition can be controlled by electron doping in double-layer CrI3[64].

    图 6  (a) HOPG上单层VSe2在300 K处的面内和面外磁滞回线[66]; (b) MnSex在300 K处的面外磁滞回线[67]

    Figure 6.  (a) In-plane and out-of-plane hysteresis loops of a single layer of VSe2 on HOPG at 300 K[66]; (b) out-of-plane hysteresis loops of MnSex at 300 K[67].

    图 7  (a) CGT薄膜在不同栅电压下的场效应曲线[68]; (b)静电掺杂的CGT薄膜器件在不同栅电压下居里温度的变化[69]; (c)栅电压调控的四层FGT薄膜的霍尔曲线[33]

    Figure 7.  (a) Field-effect Ids curves of CGT film[68]; (b) variation of Curie temperature of CGT device with electron doping under different voltages[69]; (c) gate-voltage controlled Hall curves of four-layer FGT flake[33].

    图 8  (a), (b), (c) 改变Fe的浓度调控FGT薄膜居里温度的变化[55,48,70]; (d) 改变Ga的曝光时间调控FGT薄膜居里温度的变化[71]

    Figure 8.  (a), (b), (c) Changing the concentration of Fe to regulate Curie temperature of FGT films[55,48,70]; (d) exposure time of Ga-controlled Curie temperature of FGT film[71].

    图 9  (a) 图形诱导FGT薄膜铁磁性的变化[72]; (b) 应变诱导CGT薄膜居里温度的变化[32]

    Figure 9.  (a) Pattern induces the variation of ferromagnetism of FGT film[72]; (b) strain induces the variation of Curie temperature of CGT film[32].

    图 10  (a) 反铁磁MnTe增强Fe3GeTe2铁磁性[55]; (b) 反铁磁CrSb近邻效应诱导居里温度的变化[73]; (c) EuS/Bi2Se3界面增强居里温度[77]

    Figure 10.  (a) Antiferromagnetic MnTe induced Fe3GeTe2 ferromagnetism enhancement[55]; (b) antiferromagnetic CrSb proximity-induced Curie temperature increase[73]; (c) EuS/Bi2Se3 interfacial-enhanced Curie temperature[77].

    图 11  (a) Bi2Te3(8)/FGT(5)异质结构随温度变化的电阻率; (b), (c) 不同温度下的面外反常霍尔曲线; (d) 不同温度下的面内反常霍尔曲线; (e) 阿罗特图来精准表征居里温度; (f) 300 K下异质结构的磁光克尔信号; (g), (h), (i) 不同厚度下异质结构的居里温度表征[31]

    Figure 11.  (a) Resistivity of Bi2Te3(8)/FGT(5) heterostructure with the variation of temperature; (b), (c) out-of-plane anomalous Hall curves under different temperatures; (d) in-plane anomalous Hall curves under different temperatures; (e) Arrott plot for characterizing the Curie temperature; (f) magneto-optical Kerr signal of the heterostructure at 300 K; (g), (h), (i) thickness-dependent Curie temperature[31].

    表 1  部分二维磁性材料的汇总[65]

    Table 1.  Summary of some two-dimensional (2D) magnetic materials[65].

    2D材料/异质结构$ {T_{\rm{c}}}/K $计算/制造方法
    VSe2/MoS2和VSe2/HOPE
    vdW heterostructure
    > 300MBE
    VS2/WS2 vdW heterostructure487DFT
    VS2/MoS2 vdW heterostructure485DFT
    VTe2128DFT
    MnSe2/GaSe和MnSe2/SnSe2
    vdW heterostructure
    > 300MBE
    MnSe2286DFT
    MnS2253DFT
    MnI215DFT
    NiI263DFT
    CrSCI150DFT
    CrSBr160DFT
    CrSI170DFT
    CrI345机械剥离法
    CrI3161DFT
    CrI395DFT
    CrCl349DFT
    CrBr373DFT
    CrF341DFT
    CrTe371DFT
    NiCl3400DFT
    CrGeTe330机械剥离法
    CrGeTe3314DFT
    CrGeTe3130DFT
    CrSiTe3214DFT
    CrSiTe390DFT
    CrSiTe3170DFT
    Cr3Te42057DFT
    Fe3GeTe220—300机械剥离法
    Fe3GeTe2270—300机械剥离法
    Cr3C > 300DFT
    DownLoad: CSV

    表 2  FGT和Bi2Te3/FGT磁性相互交换作用

    Table 2.  Magnetic interaction of FGT and Bi2Te3/FGT.

    E0EFM
    /eV
    EAFM-In
    /eV
    EAFM-L
    /eV
    J1
    /meV
    J2
    /meV
    J3
    /meV
    Pure FGT0–11.441–10.703–11.2723.675–1.8170.663
    Bi2Te3/FGT0–16.400–15.196–15.7425.906–2.9231.064
    DownLoad: CSV
  • [1]

    Sato N, Xue F, White R M, Bi C, Wang S X 2018 Nat. Electron. 1 508Google Scholar

    [2]

    Chappert C, Fert A, Van Dau F N 2007 Nat. Mater. 6 813Google Scholar

    [3]

    Zhang D, Hou Y, Zeng L, Zhao W S 2019 IEEE Trans. Nanotechnol. 18 518Google Scholar

    [4]

    Mennel L, Symonowicz J, Wachter S, Polyushkin D K, Molina-Mendoza A J, Mueller T 2020 Nature 579 62Google Scholar

    [5]

    Zhu J 2008 Proc. IEEE 96 1786Google Scholar

    [6]

    Liu L, Moriyama T, Ralph D C, Buhrman R A 2011 Phys. Rev. Lett. 106 036601

    [7]

    Sun J Z, Brown S L, Chen W, Delenia E A, Gaidis M C, Harms J, Hu G, Jiang X, Kilaru R, Kula W, Lauer G, Liu L Q, Murthy S, Nowak J, O’Sullivan E J, Parkin S S P, Robertazzi R P, Rice P M, Sandhu G, Topuria T, Worledge D C 2013 Phys. Rev. B 88 104426Google Scholar

    [8]

    Parkin S S P, Kaiser C, Panchula A, Rice P M, Hughes B, Samant M, Yang S H 2004 Nat. Mater. 3 862Google Scholar

    [9]

    Wolf S A, Lu J, Stan M R, Chen E, Treger D M 2010 Proc. IEEE 98 2155Google Scholar

    [10]

    Van Den Brink A, Vermijs G, Solignac A, Koo J, Kohlhepp J T, Swagten H J M, Koopmans B 2016 Nat. Commun. 7 1

    [11]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197Google Scholar

    [12]

    Hashimoto A, Suenaga K, Gloter A, Urita K, Iijima S 2004 Nature 430 870Google Scholar

    [13]

    Schedin F, Geim A K, Morozov S V, Hill E W, Blake P, Katsnelson M I, Novoselov K S 2007 Nat. Mater. 6 652Google Scholar

    [14]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183Google Scholar

    [15]

    Mas-Ballesté R, Gómez-Navarro C, Gómez-Herrero J, Zamora F 2011 Nanoscale 3 20Google Scholar

    [16]

    Dirac P A M, Fowler R H 1926 Proc. R. Soc. London, Ser. A 112 661Google Scholar

    [17]

    Gong C, Zhang X 2019 Science 363 6428

    [18]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [19]

    Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V, Geim A K 2005 Proc. Natl. Acad. Sci. U.S.A. 102 10451Google Scholar

    [20]

    Mermin N D, Wagner H 1966 Phys. Rev. Lett. 17 1133Google Scholar

    [21]

    Mounet N, Gibertini M, Schwaller P, Campi D, Merkys A, Marrazzo A, Sohier T, Castelli I E, Cepellotti A, Pizzi G, Marzari N 2018 Nat. Nanotechnol. 13 246Google Scholar

    [22]

    Alghamdi M, Lohmann M, Li J, Jothi P R, Shao Q, Aldosary M, Su T, Fokwa B P T, Shi J 2019 Nano Lett. 19 4400Google Scholar

    [23]

    Wang X, Tang J, Xia X, He C, Zhang J, Liu Y, Wan C, Fang C, Guo C, Yang W, Guang Y, Zhang X, Xu H, Wei J, Liao M, Lu X, Feng J, Li X, Peng Y, Wei H, Yang R, Shi D, Zhang X, Han Z, Zhang Z, Zhang G, Yu G, Han X 2019 Sci. Adv. 5 eaaw8904Google Scholar

    [24]

    Novoselov K S, Mishchenko A, Carvalho A, Castro Neto A H 2016 Science 353 6298

    [25]

    Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J, Zhang X 2017 Nature 546 265Google Scholar

    [26]

    Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, Xu X D 2017 Nature 546 270Google Scholar

    [27]

    Si C, Zhou J, Sun Z 2015 ACS Appl. Mater. Interfaces 7 17510Google Scholar

    [28]

    Zhu Y, Kong X, Rhone T D, Guo H 2018 Phys. Rev. Mater. 2 81001Google Scholar

    [29]

    Du J, Xia C, Xiong W, Wang T, Jia Y, Li J 2017 Nanoscale 9 17585Google Scholar

    [30]

    He J, Li X, Lyu P, Nachtigall P 2017 Nanoscale 9 2246Google Scholar

    [31]

    Wang H, Liu Y, Wu P, Hou W, Jiang Y, Li X, Pandey C, Chen D, Yang Q, Wang H, Wei D, Lei N, Kang W, Wen L, Nie T X, Zhao W S, Wang K L 2020 ACS Nano 14 10045Google Scholar

    [32]

    Dong X J, You J Y, Gu B, Su G 2019 Phys. Rev. Appl. 12 14020Google Scholar

    [33]

    Deng Y, Yu Y, Song Y, Zhang J, Wang N Z, Sun Z, Yi Y, Wu Y Z, Wu S, Zhu J, Wang J, Chen X H, Zhang Y B 2018 Nature 563 94Google Scholar

    [34]

    Wen Y, Liu Z, Zhang Y, Xia C, Zhai B, Zhang X, Zhai G, Shen C, He P, Cheng R, Yin L, Yao Y, Getaye Sendeku M, Wang Z, Ye X, Liu C, Jiang C, Shan C, Long Y, He J 2020 Nano Lett. 20 3130Google Scholar

    [35]

    Cai X, Luo Y, Liu B, Cheng H M 2018 Chem. Soc. Rev. 47 6224Google Scholar

    [36]

    Yi M, Shen Z 2015 J. Mater. Chem. A 3 11700Google Scholar

    [37]

    Zhang Y, Zhang L, Zhou C 2013 Acc. Chem. Res. 46 2329Google Scholar

    [38]

    Ji Q, Zhang Y, Zhang Y, Liu Z 2015 Chem. Soc. Rev. 44 2587Google Scholar

    [39]

    Mattevi C, Kim H, Chhowalla M 2011 J. Mater. Chem. 21 3324Google Scholar

    [40]

    Ago H, Ito Y, Mizuta N, Yoshida K, Hu B, Orofeo C M, Tsuji M, Ikeda K, Mizuno S 2010 ACS Nano 4 7407Google Scholar

    [41]

    Vo-Van C, Kimouche A, Reserbat-Plantey A, Fruchart O, Bayle-Guillemaud P, Bendiab N, Coraux J 2011 Appl. Phys. Lett. 98 181903Google Scholar

    [42]

    Coleman J N 2009 Adv. Funct. Mater. 19 3680Google Scholar

    [43]

    Coleman J N 2013 Acc. Chem. Res. 46 14Google Scholar

    [44]

    Cui X, Zhang C, Hao R, Hou Y 2011 Nanoscale 3 2118Google Scholar

    [45]

    Ojrzynska M, Wroblewska A, Judek J, Malolepszy A, Duzynska A, Zdrojek M 2020 Opt. Express 28 7274Google Scholar

    [46]

    Ciesielski A, Samorì P 2014 Chem. Soc. Rev. 43 381Google Scholar

    [47]

    Neave J H, Dobson P J, Joyce B A, Zhang J 1985 Appl. Phys. Lett. 47 100Google Scholar

    [48]

    May A F, Ovchinnikov D, Zheng Q, Hermann R, Calder S, Huang B, Fei Z, Liu Y, Xu X, McGuire M A 2019 ACS Nano 13 4436Google Scholar

    [49]

    Dalitz R H, Peierls R E 1997 Selected Scientific Papers of Sir Rudolf Peierls (Vol. 1) (Singapore: World Scientific Publishing Co. Pte. Ltd) pp 9–225

    [50]

    Joyce G S 1969 J. Phys. C: Solid State Phys. 2 1531Google Scholar

    [51]

    Hohenberg P C 1967 Phys. Rev. 158 383Google Scholar

    [52]

    Ising E 1925 Z. Phys. 31 253Google Scholar

    [53]

    Kosterlitz J M, Thouless D J 1973 J. Phys. C: Solid State Phys. 6 1181Google Scholar

    [54]

    Berezinsky V L 1971 Sov. Phys. JETP 32 493

    [55]

    Liu S, Yuan X, Zou Y, Sheng Y, Huang C, Zhang E, Ling J, Liu Y, Wang W, Zhang C, Zou J, Wang K, Xiu F X 2017 npj 2D Mater. Appl. 1 30Google Scholar

    [56]

    Tan C, Lee J, Jung S G, Park T, Albarakati S, Partridge J, Field M R, McCulloch D G, Wang L, Lee C 2018 Nat. Commun. 9 1554

    [57]

    Fei Z, Huang B, Malinowski P, Wang W, Song T, Sanchez J, Yao W, Xiao D, Zhu X, May A F, Wu W, Cobden D H, Chu J H, Xu X D 2018 Nat. Mater. 17 778Google Scholar

    [58]

    Kim D, Park S, Lee J, Yoon J, Joo S, Kim T, Min K, Park S Y, Kim C, Moon K W, Lee C, Hong J, Hwang C 2019 Nanotechnology 30 245701Google Scholar

    [59]

    Xu J, Phelan W A, Chien C L 2019 Nano Lett. 19 8250Google Scholar

    [60]

    Park S Y, Kim D S, Liu Y, Hwang J, Kim Y, Kim W, Kim J Y, Petrovic C, Hwang C, Mo S K, Kim H, Min B C, Koo H C, Chang J, Jang C, Choi J W, Ryu H 2020 Nano Lett. 20 95Google Scholar

    [61]

    Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P 2018 Nature 556 43Google Scholar

    [62]

    Gibertini M, Koperski M, Morpurgo A F, Novoselov K S 2019 Nat. Nanotechnol. 14 408Google Scholar

    [63]

    Huang B, Clark G, Klein D R, MacNeill D, Navarro-Moratalla E, Seyler K L, Wilson N, McGuire M A, Cobden D H, Xiao D, Yao W, Jarillo-Herrero P, Xu X D 2018 Nat. Nanotechnol. 13 544Google Scholar

    [64]

    Jiang S, Li L, Wang Z, Mak K F, Shan J 2018 Nat. Nanotechnol. 13 549Google Scholar

    [65]

    Lin X, Yang W, Wang K L, Zhao W 2019 Nat. Electron. 2 274Google Scholar

    [66]

    Bonilla M, Kolekar S, Ma Y, Diaz H C, Kalappattil V, Das R, Eggers T, Gutierrez H R, Phan M H, Batzill M 2018 Nat. Nanotechnol. 13 289Google Scholar

    [67]

    O’Hara D J, Zhu T, Trout A H, Ahmed A S, Luo Y K, Lee C H, Brenner M R, Rajan S, Gupta J A, McComb D W, Kawakami R K 2018 Nano Lett. 18 3125Google Scholar

    [68]

    Wang Z, Zhang T, Ding M, Dong B, Li Y, Chen M, Li X, Huang J, Wang H, Zhao X, Li Y, Li D, Jia C, Sun L, Guo H, Ye Y, Sun D, Chen Y, Yang T, Zhang J, Ono S, Han Z, Zhang Z D 2018 Nat. Nanotechnol. 13 554Google Scholar

    [69]

    Verzhbitskiy I A, Kurebayashi H, Cheng H, Zhou J, Khan S, Feng Y P, Eda G 2020 Nat. Electron. 3 460Google Scholar

    [70]

    Seo J, Kim D Y, An E S, Kim K, Kim G Y, Hwang S Y, Kim D W, Jang B G, Kim H, Eom G, Seo S Y, Stania R, Muntwiler M, Lee J, Watanabe K, Taniguchi T, Jo Y J, Lee J, Min B Il, Jo M H, Yeom H W, Choi S Y, Shim J H, Kim J S 2020 Sci. Adv. 6 eaay8912Google Scholar

    [71]

    Yang M, Li Q, Chopdekar R V, Stan C, Cabrini S, Choi J W, Wang S, Wang T, Gao N, Scholl A, Tamura N, Hwang C, Wang F, Qiu Z Q 2020 Adv. Quantum Technol. 3 2000017Google Scholar

    [72]

    Li Q, Yang M, Gong C, Chopdekar R V, N’Diaye A T, Turner J, Chen G, Scholl A, Shafer P, Arenholz E, Schmid A K, Wang S, Liu K, Gao N, Admasu A S, Cheong S W, Hwang C, Li J, Wang F, Zhang X, Qiu Z Q 2018 Nano Lett. 18 5974Google Scholar

    [73]

    Liu S, Yang K, Liu W, Zhang E, Li Z, Zhang X, Liao Z, Zhang W, Sun J, Yang Y, Gao H, Huang C, Ai L, Wong P K J, Wee A T S, N’Diaye A T, Morton S A, Kou X, Zou J, Xu Y, Wu H, Xiu F X 2019 Natl. Sci. Rev. 7 745

    [74]

    Dong X J, You J Y, Zhang Z, Gu B, Su G 2020 Phys. Rev. B 102 144443Google Scholar

    [75]

    Kou X, Fan Y, Wang K L 2019 J. Phys. Chem. Solids 128 2Google Scholar

    [76]

    Yu J, Wu W, Wang Y, Zhu K, Zeng X, Chen Y, Liu Y, Yin C, Cheng S, Lai Y, He K, Xue Q 2020 Appl. Phys. Lett. 116 141603Google Scholar

    [77]

    Katmis F, Lauter V, Nogueira F S, Assaf B A, Jamer M E, Wei P, Satpati B, Freeland J W, Eremin I, Heiman D, Jarillo-Herrero P, Moodera J S 2016 Nature 533 513Google Scholar

    [78]

    Wang Z, Sapkota D, Taniguchi T, Watanabe K, Mandrus D, Morpurgo A F 2018 Nano Lett. 18 4303Google Scholar

    [79]

    Albarakati S, Tan C, Chen Z J, Partridge J G, Zheng G, Farrar L, Mayes E L H, Field M R, Lee C, Wang Y, Xiong Y, Tian M, Xiang F, Hamilton A R, Tretiakov O A, Culcer D, Zhao Y J, Wang L 2019 Sci. Adv. 5 eaaw0409Google Scholar

  • [1] Mi Meng-Juan, Yu Li-Xuan, Xiao Han, Lü Bing-Bing, Wang Yi-Lin. Tuning magnetic properties of two-dimensional antiferromagnetic MPX3 by organic cations intercalation. Acta Physica Sinica, 2024, 73(5): 057501. doi: 10.7498/aps.73.20232010
    [2] Yang Rui-Long, Zhang Yu-Ying, Yang Ke, Jiang Qi-Tao, Yang Xiao-Ting, Guo Jin-Zhong, Xu Xiao-Hong. Growth and magnetic properties of two-dimensional vanadium-doped Cr2S3 nanosheets. Acta Physica Sinica, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20231229
    [3] Xiong Yi-Nong, Wu Chuang-Wen, Ren Chuan-Tong, Meng De-Quan, Chen Shi-Wei, Liang Shi-Heng. Research progress of spin orbit torque of two-dimensional magnetic materials. Acta Physica Sinica, 2024, 73(1): 017502. doi: 10.7498/aps.73.20231244
    [4] Liu Bing-Xin, Li Zong-Liang. CrO2 monolayer: a two-dimensional ferromagnet with high Curie temperature and half-metallicity. Acta Physica Sinica, 2024, 73(10): 106102. doi: 10.7498/aps.73.20240246
    [5] Sun Jing-Qi, Wu Xu-Cai, Que Zhi-Xiong, Zhang Wei-Bing. Prediction of ferromagnetic materials with high Curie temperature based on material composition information. Acta Physica Sinica, 2023, 72(18): 180202. doi: 10.7498/aps.72.20230382
    [6] Yang Rui-Long, Zhang Yu-Ying, Yang Ke, Jiang Qi-Tao, Yang Xiao-Ting, Guo Jin-Zhong, Xu Xiao-Hong. Growth and magnetic properties of two-dimensional vanadium-doped Cr2S3 nanosheets. Acta Physica Sinica, 2023, 72(24): 247501. doi: 10.7498/aps.72.20231229
    [7] Liu Nan-Shu, Wang Cong, Ji Wei. Recent research advances in two-dimensional magnetic materials. Acta Physica Sinica, 2022, 71(12): 127504. doi: 10.7498/aps.71.20220301
    [8] Zhang Hao-Jie, Zhang Ru-Fei, Fu Li-Cheng, Gu Yi-Lun, Zhi Guo-Xiang, Dong Jin-Ou, Zhao Xue-Qin, Ning Fan-Long. (La1–xSrx)(Zn1–xMnx)SbO: A novel 1111-type diluted magnetic semiconductor. Acta Physica Sinica, 2021, 70(10): 107501. doi: 10.7498/aps.70.20201966
    [9] Huang Yu-Hao, Zhang Gui-Tao, Wang Ru-Qian, Chen Qian, Wang Jin-Lan. Electronic structure and stability of two-dimensional bimetallic ferromagnetic semiconductor CrMoI6. Acta Physica Sinica, 2021, 70(20): 207301. doi: 10.7498/aps.70.20210949
    [10] Zhang Song-Ge, Chen Yu-Tong, Wang Ning, Chai Yang, Long Gen, Zhang Guang-Yu. Probe and manipulation of magnetism of two-dimensional CrI3 crystal. Acta Physica Sinica, 2021, 70(12): 127504. doi: 10.7498/aps.70.20202197
    [11] Xiao Han, Mi Meng-Juan, Wang Yi-Lin. Recent development in two-dimensional magnetic materials and multi-field control of magnetism. Acta Physica Sinica, 2021, 70(12): 127503. doi: 10.7498/aps.70.20202204
    [12] Jiang Xiao-Hong, Qin Si-Chen, Xing Zi-Yue, Zou Xing-Yu, Deng Yi-Fan, Wang Wei, Wang Lin. Study on physical properties and magnetism controlling of two-dimensional magnetic materials. Acta Physica Sinica, 2021, 70(12): 127801. doi: 10.7498/aps.70.20202146
    [13] Wang Fang, Wang Jin-Zhi, Feng Tang-Fu, Sun Ren-Bing, Yu Sheng. Curie temperature mechanism in La(Fe, Si)13 compound. Acta Physica Sinica, 2014, 63(12): 127501. doi: 10.7498/aps.63.127501
    [14] Hao Yan-Ming, Wang Ling-Ling, Yan Da-Li, An Li-Qun. Structure and magnetic properties of Sm2Fe17-xCrxcompound prepared by arc melting. Acta Physica Sinica, 2009, 58(10): 7222-7226. doi: 10.7498/aps.58.7222
    [15] Hao Yan-Ming, Yan Da-Li, Fu Bin, Wang Li-Qun, Hao Xiao-Peng, Wang Bao-Yi. The structure, magnetic properties, and positron annihilation spectra of Tb2AlFe16-xMnx compounds. Acta Physica Sinica, 2009, 58(9): 6494-6499. doi: 10.7498/aps.58.6494
    [16] Wu Wen-Xia, Guo Yong-Quan, Li An-Hua, Li Wei. Analysis of valence electron structures and calculation of magnetic properties of Nd2Fe14B. Acta Physica Sinica, 2008, 57(4): 2486-2492. doi: 10.7498/aps.57.2486
    [17] Zhang Ji-Ye, Luo Jun, Liang Jing-Kui, Ji Li-Na, Liu Yan-Hui, Li Jing-Bo, Rao Guang-Hui. Structure and magnetic properties of the pseudobinary solid solution TbGa1-xGex(0≤x≤0.4). Acta Physica Sinica, 2008, 57(10): 6482-6487. doi: 10.7498/aps.57.6482
    [18] Shen Ye, Xing Huai-Zhong, Yu Jian-Guo, Lü Bin, Mao Hui-Bing, Wang Ji-Qing. Curie-temperature modulation by polarization-induced built-in electric fields in Mn δ-doped GaN/AlGaN quantum wells. Acta Physica Sinica, 2007, 56(6): 3453-3457. doi: 10.7498/aps.56.3453
    [19] Liu Xi-Bin, Shen Bao-Gen. Magnetic properties and magnetocaloric effects of Mn5Ge2.7M0.3 (M=Ga, Al, Sn) compounds. Acta Physica Sinica, 2005, 54(12): 5884-5889. doi: 10.7498/aps.54.5884
    [20] Jiang Kuo, Li He-Fei, Ma Wen, Gong Sheng-Kai. Dependence of magnetoelectric properties of La0.8Ba0.2MnO3 on Mn valence of oxide precursors. Acta Physica Sinica, 2005, 54(9): 4374-4378. doi: 10.7498/aps.54.4374
Metrics
  • Abstract views:  15931
  • PDF Downloads:  1360
  • Cited By: 0
Publishing process
  • Received Date:  29 January 2021
  • Accepted Date:  25 February 2021
  • Available Online:  18 June 2021
  • Published Online:  20 June 2021

/

返回文章
返回