Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Prediction of ferromagnetic materials with high Curie temperature based on material composition information

Sun Jing-Qi Wu Xu-Cai Que Zhi-Xiong Zhang Wei-Bing

Citation:

Prediction of ferromagnetic materials with high Curie temperature based on material composition information

Sun Jing-Qi, Wu Xu-Cai, Que Zhi-Xiong, Zhang Wei-Bing
PDF
HTML
Get Citation
  • The search for ferromagnetic materials with high Curie temperature (Tc) is a hot issue in condensed matter physics. In this work, an effective machine learning model of Curie temperature based on material component information is established to predict a variety of ferromagnetic materials with high Curie temperature. Based on the collected data of 1568 ferromagnetic materials, and taking the component information of ferromagnetic materials as descriptors, in this work four efficient machine learning models are constructed, namely support vector regression, kernel ridge regression, random forest and extremely randomized trees, through hyperparameter optimization and ten-break cross-validation. Of them, extremely randomized tree model has the best prediction performance, and its cross-validation R2 score can reach 81.48%. At the same time, the extremely randomized tree model is also used to predict 36949 materials in the materials project database, and 338 ferromagnetic materials with Tc greater than 600 K are found in this work. The method proposed in this paper can help obtain ferromagnetic materials with high Curie temperature and accelerate the process of ferromagnetic material design.
      Corresponding author: Zhang Wei-Bing, zhangwb@csust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11874092), the Fok Ying-Tong Education Foundation, China (Grant No. 161005), and the Science Fund for Distinguished Young Scholars of Hunan Province, China (Grant No. 2021JJ10039).
    [1]

    Sanvito S, Oses C, Xue J, Tiwari A, Zic M, Archer T, Tozman P, Venkatesan M, Coey M, Curtarolo S 2017 Sci. Adv. 3 e1602241Google Scholar

    [2]

    Jiang Z, Wang P, Jiang X, Zhao J 2018 Nanoscale Horiz. 3 335Google Scholar

    [3]

    Lu X, Fei R, Yang L 2019 Phys. Rev. B 100 205409Google Scholar

    [4]

    Claussen N, Bernevig B A 2020 Phys. Rev. B 101 245117Google Scholar

    [5]

    Jiang Z, Wang P, Xing J, Jiang X, Zhao J 2018 ACS Appl. Mater. Interfaces 10 39032Google Scholar

    [6]

    Kabiraj A, Kumar M, Mahapatra S 2020 npj Comput. Mater. 6 35Google Scholar

    [7]

    Lu S H, Zhou Q H, Guo Y, Wang J L 2022 Chem 8 769Google Scholar

    [8]

    Lu S H, Zhou Q H, Guo Y L, Zhang Y H, Wu Y L, Wang J L 2020 Adv. Mater. 32 2002658.Google Scholar

    [9]

    Nelson J, Sanvito S 2019 Phys. Rev. Mater. 3 104405Google Scholar

    [10]

    Xue Y F, Shen Z, Wu Z B, Song C S 2022 J. Appl. Phys. 132 053901Google Scholar

    [11]

    Zhang B, Zheng X Q, Zhao T Y, Hu F X, Sun J R, Shen B G 2018 Chin. Phys. B 27 067503Google Scholar

    [12]

    Vishina A, Vekilova O Y, BJörkman T, Bergman A, Herper H C, Eriksson O 2020 Phys. Rev. B 101 094407Google Scholar

    [13]

    Kwon H Y, Kim N J, Lee C K, Won C 2019 Phys. Rev. B 99 024423Google Scholar

    [14]

    Choudhary K, Garrity K F, Ghimire N J, Anand N, Tavazza F 2021 Phys. Rev. B 103 155131Google Scholar

    [15]

    Coey J M D 2011 IEEE Trans. Magn. 47 4671Google Scholar

    [16]

    Buschow K J 2003 Handbook of Magnetic Materials (Amsterdam: Elsevier) pp293–456

    [17]

    Connolly T F 2012 Bibliography of Magnetic Materials and Tabulation of Magnetic Transition Temperatures (New York: Springer Science & Business Media) pp1–30

    [18]

    Long T, Fortunato N M, Zhang Y, Gutfleisch O 2021 Mater. Res. Lett. 9 169Google Scholar

    [19]

    Zhai X, Chen M, Lu W 2018 Comput. Mater. Sci. 151 41Google Scholar

    [20]

    Fabian P, Gaël V, Alexandre G, Vincent M, Bertrand T, Olivier G, Mathieu B, Peter P, Ron W, Vincent D, Jake V, Alexandre P, David C, Matthieu B, Matthieu P, Duchesnay É 2011 J. Mach. Learn. Res. 12 2825

    [21]

    Mirjalili 2019 Enetic Algorithm (Berlin: Springer) pp43–55

    [22]

    Syarif I, Prugel A, Wills G 2016 Telecommun. Comput. Electron. Control 14 1502Google Scholar

    [23]

    杨自欣, 高章然, 孙晓帆, 蔡宏灵, 张凤鸣, 吴小山 2019 物理学报 68 210502Google Scholar

    Yang Z X, Gao Z R, Sun X F, Cai H L, Zhang F M, Wu X S 2019 Acta Phys. Sin. 68 210502Google Scholar

    [24]

    Benesty J, Chen J, Huang Y, Cohen I 2009 Pearson Correlation Coefficient (Berlin: Springer) pp1–4

    [25]

    Jain A, Ong S P, Hautie G, Chen W, Richards W D, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G 2013 APL Mater. 1 011002Google Scholar

    [26]

    Popoel E, Tuszynski M, Zarek W, Rendecki T 1989 J. Less-Common Met. 146 127Google Scholar

    [27]

    Li J G, Pan M X, Sun J R, Zhang F X, Li S P, Zhao D Q, Yu X H, Zhao S X, Chen X C 1996 Solid State Commun. 97 pp1047Google Scholar

    [28]

    Dang M Z, Rancourt D G 1996 Phys. Rev. B 53 2291Google Scholar

    [29]

    Miyata N, Kamimori T, Goto M 1986 J. Phys. Soc. Jpn. 55 2037Google Scholar

    [30]

    Trumpy G, Both E, Djéga-Mariadassou C, Lecocq P 1970 Phys. Rev. B 2 3477Google Scholar

    [31]

    Meinert M 2016 J. Phys. Condens. Matter 28 056006Google Scholar

  • 图 1  1568个铁磁材料数据集Tc的分布情况

    Figure 1.  Distribution of Tc in 1568 ferromagnetic material data sets.

    图 2  数据集中铁磁材料的元素分布情况 (a) Tc大于300 K时元素分布; (b) Tc大于600 K时元素分布

    Figure 2.  Element distribution of ferromagnetic materials in data set: (a) Element distribution when Tc is greater than 300 K; (b) element distribution when Tc is greater than 600 K.

    图 3  均匀网格搜索 (a) 随机森林参数优化图; (b) 极端随机树参数优化图

    Figure 3.  Uniform grid search: (a) Random forest parameter optimization map; (b) extreme random tree parameter optimization map

    图 4  四种机器学习模型实验值和预测值对比的二维散点图 (a) 核岭回归; (b) 支持向量机; (c) 随机森林; (d) 极端随机树

    Figure 4.  Two-dimensional scatter plots comparing experimental and predicted values of four machine learning models: (a) Kernel ridge regression; (b) support vector machine; (c) random forests; (d) extremely random tree.

    图 5  基于极端随机数模型的特征重要性排序图

    Figure 5.  Feature importance ranking graph based on extreme random number model.

    图 6  预测集中铁磁材料元素分布情况 (a) 2531个Tc大于300 K数据的元素分布图; (b) 338个Tc大于600 K数据的元素分布图

    Figure 6.  Element distribution of ferromagnetic materials in prediction set: (a) Element distribution of 2531 data with Tc greater than 300 K; (b) element distribution of 338 data with Tc greater than 600 K.

    图 7  预测集中338个Tc > 600 K的铁磁材料的Tc分布情况

    Figure 7.  Curie temperature distribution of 338 ferromagnetic materials with Tc >600 K in prediction set.

    表 1  本研究中四种机器学习模型的超参数

    Table 1.  Hyperparameters of four machine learning models in this study.

    模型 超参数
    KRR alpha = 0.00567165, kernel = “rbf”
    SVR kernel = “rbf”, C = 181.8797945, gamma = 0.18646131
    RF n_estimators = 170, max_features = 0.30, min_samples_leaf = 0.001
    EXT n_estimators = 180, max_features = 0.58, min_samples_leaf = 0.001
    DownLoad: CSV

    表 2  基于特征筛选获得的化学参数描述符

    Table 2.  Chemical parameter descriptors obtained based on feature screening.

    No. Meanings Features
    1 Mean atomic number MAN
    2 Mean IonicRadius MIR
    3 Mean Modulus of Elasticity MME
    4 Mean melting point MMP
    5 Mean GSmagmom MGSM
    6 Mean covalentradius MCR
    7 Mean IonizationEnergy MIE
    8 Mean ElectronAffinity MEA
    9 Mean AtomicVolume MAV
    10 Mean MendeleevNumber MMN
    11 Composition of Mn CMn
    12 Composition of Fe CFe
    13 Composition of Co CCo
    14 Composition of Ni CNi
    15 range AtomicRadius RAR
    16 range Electronegativity REE
    17 avg p valence electrons ApV
    18 avg d valence electrons AdV
    19 frac f valence electrons FfV
    20 transition metal fraction TMF
    21 2-norm 2N
    DownLoad: CSV

    表 3  本研究中四种机器学习模型的最终评估结果

    Table 3.  Final evaluation results of four machine learning models in this study.

    KRR SVR RF EXT
    MAE 89.43 83.21 76.52 70.86
    RMSE 125.50 125.77 114.71 109.32
    R2/% 80.75 80.67 83.92 85.39
    CS MAE 95.41 88.64 81.18 74.04
    CS RMSE 141.21 137.62 124.13 117.98
    CS R2/% 73.70 74.92 79.45 81.48
    DownLoad: CSV
  • [1]

    Sanvito S, Oses C, Xue J, Tiwari A, Zic M, Archer T, Tozman P, Venkatesan M, Coey M, Curtarolo S 2017 Sci. Adv. 3 e1602241Google Scholar

    [2]

    Jiang Z, Wang P, Jiang X, Zhao J 2018 Nanoscale Horiz. 3 335Google Scholar

    [3]

    Lu X, Fei R, Yang L 2019 Phys. Rev. B 100 205409Google Scholar

    [4]

    Claussen N, Bernevig B A 2020 Phys. Rev. B 101 245117Google Scholar

    [5]

    Jiang Z, Wang P, Xing J, Jiang X, Zhao J 2018 ACS Appl. Mater. Interfaces 10 39032Google Scholar

    [6]

    Kabiraj A, Kumar M, Mahapatra S 2020 npj Comput. Mater. 6 35Google Scholar

    [7]

    Lu S H, Zhou Q H, Guo Y, Wang J L 2022 Chem 8 769Google Scholar

    [8]

    Lu S H, Zhou Q H, Guo Y L, Zhang Y H, Wu Y L, Wang J L 2020 Adv. Mater. 32 2002658.Google Scholar

    [9]

    Nelson J, Sanvito S 2019 Phys. Rev. Mater. 3 104405Google Scholar

    [10]

    Xue Y F, Shen Z, Wu Z B, Song C S 2022 J. Appl. Phys. 132 053901Google Scholar

    [11]

    Zhang B, Zheng X Q, Zhao T Y, Hu F X, Sun J R, Shen B G 2018 Chin. Phys. B 27 067503Google Scholar

    [12]

    Vishina A, Vekilova O Y, BJörkman T, Bergman A, Herper H C, Eriksson O 2020 Phys. Rev. B 101 094407Google Scholar

    [13]

    Kwon H Y, Kim N J, Lee C K, Won C 2019 Phys. Rev. B 99 024423Google Scholar

    [14]

    Choudhary K, Garrity K F, Ghimire N J, Anand N, Tavazza F 2021 Phys. Rev. B 103 155131Google Scholar

    [15]

    Coey J M D 2011 IEEE Trans. Magn. 47 4671Google Scholar

    [16]

    Buschow K J 2003 Handbook of Magnetic Materials (Amsterdam: Elsevier) pp293–456

    [17]

    Connolly T F 2012 Bibliography of Magnetic Materials and Tabulation of Magnetic Transition Temperatures (New York: Springer Science & Business Media) pp1–30

    [18]

    Long T, Fortunato N M, Zhang Y, Gutfleisch O 2021 Mater. Res. Lett. 9 169Google Scholar

    [19]

    Zhai X, Chen M, Lu W 2018 Comput. Mater. Sci. 151 41Google Scholar

    [20]

    Fabian P, Gaël V, Alexandre G, Vincent M, Bertrand T, Olivier G, Mathieu B, Peter P, Ron W, Vincent D, Jake V, Alexandre P, David C, Matthieu B, Matthieu P, Duchesnay É 2011 J. Mach. Learn. Res. 12 2825

    [21]

    Mirjalili 2019 Enetic Algorithm (Berlin: Springer) pp43–55

    [22]

    Syarif I, Prugel A, Wills G 2016 Telecommun. Comput. Electron. Control 14 1502Google Scholar

    [23]

    杨自欣, 高章然, 孙晓帆, 蔡宏灵, 张凤鸣, 吴小山 2019 物理学报 68 210502Google Scholar

    Yang Z X, Gao Z R, Sun X F, Cai H L, Zhang F M, Wu X S 2019 Acta Phys. Sin. 68 210502Google Scholar

    [24]

    Benesty J, Chen J, Huang Y, Cohen I 2009 Pearson Correlation Coefficient (Berlin: Springer) pp1–4

    [25]

    Jain A, Ong S P, Hautie G, Chen W, Richards W D, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G 2013 APL Mater. 1 011002Google Scholar

    [26]

    Popoel E, Tuszynski M, Zarek W, Rendecki T 1989 J. Less-Common Met. 146 127Google Scholar

    [27]

    Li J G, Pan M X, Sun J R, Zhang F X, Li S P, Zhao D Q, Yu X H, Zhao S X, Chen X C 1996 Solid State Commun. 97 pp1047Google Scholar

    [28]

    Dang M Z, Rancourt D G 1996 Phys. Rev. B 53 2291Google Scholar

    [29]

    Miyata N, Kamimori T, Goto M 1986 J. Phys. Soc. Jpn. 55 2037Google Scholar

    [30]

    Trumpy G, Both E, Djéga-Mariadassou C, Lecocq P 1970 Phys. Rev. B 2 3477Google Scholar

    [31]

    Meinert M 2016 J. Phys. Condens. Matter 28 056006Google Scholar

  • [1] Guo Yan, Lv Heng, Ding Chun-Ling, Yuan Chen-Zhi, Jin Rui-Bo. Fractional-order vortex beam diffraction process recognition using machine learning. Acta Physica Sinica, 2025, 74(1): 1-8. doi: 10.7498/aps.74.20241458
    [2] Kang Yao, Chen Jian, Tong Yi, Wang Xin-peng, Duan Kun, Wang Jia-qi, Wang Xu-dong, Zhou Da-yu, Yao Man. Key Factors of Spontaneous Polarization Magnitude in Wurtzite Materials. Acta Physica Sinica, 2025, 74(2): . doi: 10.7498/aps.74.20241520
    [3] Zhang Xu, Ding Jin-Min, Hou Chen-Yang, Zhao Yi-Ming, Liu Hong-Wei, Liang Sheng. Machine learning based laser homogenization method. Acta Physica Sinica, 2024, 73(16): 164205. doi: 10.7498/aps.73.20240747
    [4] Zhang Jia-Hui. Machine learning for in silico protein research. Acta Physica Sinica, 2024, 73(6): 069301. doi: 10.7498/aps.73.20231618
    [5] Ouyang Xin-Jian, Zhang Yan-Xing, Wang Zhi-Long, Zhang Feng, Chen Wei-Jia, Zhuang Yuan, Jie Xiao, Liu Lai-Jun, Wang Da-Wei. Modeling ferroelectric phase transitions with graph convolutional neural networks. Acta Physica Sinica, 2024, 73(8): 086301. doi: 10.7498/aps.73.20240156
    [6] Liu Bing-Xin, Li Zong-Liang. CrO2 monolayer: a two-dimensional ferromagnet with high Curie temperature and half-metallicity. Acta Physica Sinica, 2024, 73(10): 106102. doi: 10.7498/aps.73.20240246
    [7] Zhang Qiao, Tan Wei, Ning Yong-Qi, Nie Guo-Zheng, Cai Meng-Qiu, Wang Jun-Nian, Zhu Hui-Ping, Zhao Yu-Qing. Prediction of magnetic Janus materials based on machine learning and first-principles calculations. Acta Physica Sinica, 2024, 73(23): 230201. doi: 10.7498/aps.73.20241278
    [8] Liu Ye, Niu He-Ran, Li Bing-Bing, Ma Xin-Hua, Cui Shu-Wang. Application of machine learning in cosmic ray particle identification. Acta Physica Sinica, 2023, 72(14): 140202. doi: 10.7498/aps.72.20230334
    [9] Guan Xing-Yue, Huang Heng-Yan, Peng Hua-Qi, Liu Yan-Hang, Li Wen-Fei, Wang Wei. Machine learning in molecular simulations of biomolecules. Acta Physica Sinica, 2023, 72(24): 248708. doi: 10.7498/aps.72.20231624
    [10] Li Wei, Long Lian-Chun, Liu Jing-Yi, Yang Yang. Classification of magnetic ground states and prediction of magnetic moments of inorganic magnetic materials based on machine learning. Acta Physica Sinica, 2022, 71(6): 060202. doi: 10.7498/aps.71.20211625
    [11] Huang Yu-Hao, Zhang Gui-Tao, Wang Ru-Qian, Chen Qian, Wang Jin-Lan. Electronic structure and stability of two-dimensional bimetallic ferromagnetic semiconductor CrMoI6. Acta Physica Sinica, 2021, 70(20): 207301. doi: 10.7498/aps.70.20210949
    [12] Lin Jian, Ye Meng, Zhu Jia-Wei, Li Xiao-Peng. Machine learning assisted quantum adiabatic algorithm design. Acta Physica Sinica, 2021, 70(14): 140306. doi: 10.7498/aps.70.20210831
    [13] Chen Jiang-Zhi, Yang Chen-Wen, Ren Jie. Machine learning based on wave and diffusion physical systems. Acta Physica Sinica, 2021, 70(14): 144204. doi: 10.7498/aps.70.20210879
    [14] Wang Wei, Jie Quan-Lin. Identifying phase transition point of J1-J2 antiferromagnetic Heisenberg spin chain by machine learning. Acta Physica Sinica, 2021, 70(23): 230701. doi: 10.7498/aps.70.20210711
    [15] Wang Hai-Yu, Liu Ying-Jie, Xun Lu-Lu, Li Jing, Yang Qing, Tian Qi-Yun, Nie Tian-Xiao, Zhao Wei-Sheng. Research progress of preparation of large-scale two-dimensional magnetic materials and manipulation of Curie temperature. Acta Physica Sinica, 2021, 70(12): 127301. doi: 10.7498/aps.70.20210223
    [16] Yang Zi-Xin, Gao Zhang-Ran, Sun Xiao-Fan, Cai Hong-Ling, Zhang Feng-Ming, Wu Xiao-Shan. High critical transition temperature of lead-based perovskite ferroelectric crystals: A machine learning study. Acta Physica Sinica, 2019, 68(21): 210502. doi: 10.7498/aps.68.20190942
    [17] Wang Fang, Wang Jin-Zhi, Feng Tang-Fu, Sun Ren-Bing, Yu Sheng. Curie temperature mechanism in La(Fe, Si)13 compound. Acta Physica Sinica, 2014, 63(12): 127501. doi: 10.7498/aps.63.127501
    [18] Shen Ye, Xing Huai-Zhong, Yu Jian-Guo, Lü Bin, Mao Hui-Bing, Wang Ji-Qing. Curie-temperature modulation by polarization-induced built-in electric fields in Mn δ-doped GaN/AlGaN quantum wells. Acta Physica Sinica, 2007, 56(6): 3453-3457. doi: 10.7498/aps.56.3453
    [19] Zhu Jun, Lu Wang-Ping, Liu Qiu-Chao, Mao Xiang-Yu, Hui Rong, Chen Xiao-Bing. A study on the properties of (Bi, La)4Ti3O12- Sr(Bi, La)4Ti4O15 intergrowth ferroelectrics. Acta Physica Sinica, 2003, 52(10): 2627-2631. doi: 10.7498/aps.52.2627
    [20] CHEN WEI, ZHONG WEI, PAN CHENG, CHANG HONG, DU YOU-WEI. CURIE TEMPERATURE AND MAGNETOCALORIC EFFECT OF POLYCRYSTALLINE La0.8-xCa0.2MnO3. Acta Physica Sinica, 2001, 50(2): 319-323. doi: 10.7498/aps.50.319
Metrics
  • Abstract views:  3207
  • PDF Downloads:  92
  • Cited By: 0
Publishing process
  • Received Date:  12 March 2023
  • Accepted Date:  19 June 2023
  • Available Online:  19 July 2023
  • Published Online:  20 September 2023

/

返回文章
返回