Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A method of generating arbitrary uniform fields based on angular spectrum domain and time inversion

An Teng-Yuan Ding Xiao

Citation:

A method of generating arbitrary uniform fields based on angular spectrum domain and time inversion

An Teng-Yuan, Ding Xiao
PDF
HTML
Get Citation
  • Existing uniform fields are usually based on the special arrangement of the array antenna. The uniform fields generated by flat-top beam shaping in angular far-field area or by point focusing in near-field area are directly subject to the array configuration and cannot be flexibly controlled. This paper presents a method of generating uniform field based on the combination of angular spectral domain and improved time reversal technique. This method is not limited by the array arrangement. It can generate a uniform field of specified size, shape and deflection angle in the same array arrangement at any position, including the near-field region. In this work, the reason why this method is not limited by array arrangement is explained theoretically. Secondly, the ability of the fixed array configuration to generate multiple uniform fields is validated numerically. Finally, the time-reversal technique of reversal signal amplitude reciprocal weighting is introduced. The problem of deterioration of uniform field flatness, caused by amplitude decay and phase delay during the generation of uniform field, is solved through this technology. The results show that the quality of the synthesized field is related to the main lobe and sidelobe information of its corresponding angular spectrum domain envelope, and the generated any uniform field must contain at least half of the angular spectrum domain main lobe information and half of the sidelobe information. This method can flexibly control the position, size, shape and deflection angle of one-dimensional and two-dimensional uniform field, which provides a new way to flexibly generating uniform fields.
      Corresponding author: Ding Xiao, xding@uestc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62171093).
    [1]

    Qi Y H, Yang G, Liu L, Fan J, Antonio O, Kong H W, Yu W, Yang Z P 2017 IEEE Trans. Electromagn. Compat. 59 1661Google Scholar

    [2]

    毕欣, 黄林, 杜劲松, 齐伟智, 高扬, 荣健, 蒋华北 2015 物理学报 64 014301Google Scholar

    Bi X, Huang L, Du J S, Qi W Z, Gao Y, Rong J, Jiang H B 2015 Acta Phys. Sin. 64 014301Google Scholar

    [3]

    Seong H A, Chang H J, Dong M L, Wang S L 2020 IEEE Trans. Microwave Theory Tech. 68 2867Google Scholar

    [4]

    Yang Y, Fan Z P, Hong T, Chen M S, Tang X W, He J B, Chen X, Liu C J, Zhu H C, Huang K 2020 IEEE Trans. Microwave. Theory Tech. 68 4896Google Scholar

    [5]

    Giulio M B, Sara A, Gaetano M 2020 IEEE Trans. Antennas Propag. 68 6906Google Scholar

    [6]

    Wang J, Zheng Y N, He Z Y 2015 Antenna Array Theory and Engineering Applications (Vol. 1) (Beijing: Publishing House of Electronics Industry) pp93–101 (in Chines) [王建, 郑一农, 何子远 2015 阵列天线理论与工程应用 (北京: 电子工业出版社) 第93—101页

    Wang J, Zheng Y N, He Z Y 2015 Antenna Array Theory and Engineering Applications (Vol. 1) (Beijing: Publishing House of Electronics Industry) pp93–101 (in Chines)

    [7]

    Li J Y, Qi Y X, Zhou S G 2017 IEEE Trans. Antennas Propag. 65 6157Google Scholar

    [8]

    Rao K S, Chakraborty A, Das B 1986 Antennas & Propagation Society International Symposium Philadelphia, PA, USA, June 08–13, 1986 p387

    [9]

    Liu Y H, Liu Q H, Nie Z P 2010 IEEE Trans. Antennas Propag. 58 604Google Scholar

    [10]

    Shen H O, Wang B H, Li X 2017 IEEE Trans. Antennas Propag. 16 1098Google Scholar

    [11]

    Gu P F, Wang G, Fan Z H, Chen R S 2019 IEEE Trans. Antennas Propag. 67 7320Google Scholar

    [12]

    张金玲, 万文钢, 郑占奇, 甘曦, 朱兴宇 2015 物理学报 64 110504Google Scholar

    Zhang J L, Wen W G, Zheng Z Q, Gan X, Zhu X Y 2015 Acta Phys. Sin. 64 110504Google Scholar

    [13]

    Francisco J A P, Juan A R G, Emilio V L, S R R 1999 IEEE Trans. Antennas Propag. 47 506Google Scholar

    [14]

    Bitan M, G K Mahanti 2021 6th International Conference on Communication and Electronics Systems (ICCES) Coimbatre, India, July 8–10, 2021 p447

    [15]

    Guo S, Zhao D S, Wang B Z 2022 IEEE Trans. Antennas Propag. 21 908Google Scholar

    [16]

    Elsa D T, Juan M C, Alejandro D M 2007 IEEE Trans. Microwave Theory Tech. 55 85Google Scholar

    [17]

    Kumari V, Ahmed A, Kanumuri T, Shakher C, Sheoran G 2020 Int. J. Imaging Syst. Technol. 30 391Google Scholar

    [18]

    安腾远, 丁霄, 王秉中 2023 物理学报 72 030401Google Scholar

    An T Y, Ding X, Wang B Z 2023 Acta Phys. Sin. 72 030401Google Scholar

    [19]

    Zhao D S, Zhu M 2016 IEEE Antennas Wireless Propag. Lett. 15 1739Google Scholar

    [20]

    王秉中, 王任 2020 时间反演电磁学 (北京: 科学出版社 第165—179页

    Wang B Z, Wang R 2020 Time Reversal Electromagnetism (Beijing: Science Press) pp165–179

    [21]

    臧锐, 王秉中, 丁帅, 龚志双 2016 物理学报 65 204102Google Scholar

    Zang R, Wang B Z, Ding S, Gong Z S 2016 Acta Phys. Sin. 65 204102Google Scholar

    [22]

    张知原, 李冰, 刘仕奇, 张洪林, 胡斌杰, 赵德双, 王楚楠 2022 物理学报 71 014101Google Scholar

    Zhang Z Y, Li B, Liu S Q, Zhang H L, Hu B J, Zhao D S, Wang C N 2022 Acta Phys. Sin. 71 014101Google Scholar

    [23]

    Guo S, Zhao D S, Wang B Z, Cao W P 2020 IEEE Trans. Antennas Propag. 68 8249Google Scholar

    [24]

    Chen Z W, Liang F, Zhang Q L, Li B, Ge G D, Zhao D S 2021 IEEE Trans. Antennas Propag. 69 7011Google Scholar

  • 图 1  三种不同的阵列排布方式

    Figure 1.  Three different array arrangements.

    图 2  三种不同阵列排布对应的角谱域采样图和合成场分布图 (a)归一化角谱域采样图; (b)归一化电场分布图

    Figure 2.  Angular spectrum domain sampling diagram and synthetic field distribution diagram of three different array configurations: (a) Normalized angular spectrum domain sampling diagram; (b) normalized electric field distribution diagram.

    图 3  改变阵元数量后的角谱域和合成场 (a)阵元间距为0.5λ的角谱域采样结果; (b)不同阵元数量的阵列在目标位置的合成场

    Figure 3.  Angular spectrum domain and generated field after changing number of array elements: (a) Angular spectrum domain sampling results with a spacing of 0.5λ between array elements; (b) composite field of arrays with different number of array elements at target position.

    图 4  两阵列和目标均匀场的空间分布 (a)等空域直线阵列 (b)非均匀直线阵列

    Figure 4.  Spatial distribution of two arrays and target uniform field: (a) Isospatial linear array; (b) non-uniform linear array.

    图 5  目标均匀场对应的角谱域采样图和合成场分布图 (a)等空域直线阵列归一化角谱域采样图; (b)等空域直线阵列归一化电场分布图; (c)非均匀直线阵列归一化角谱域采样图; (d)非均匀直线阵列归一化电场分布图

    Figure 5.  Angular spectrum domain sampling diagram and composite field distribution diagram of uniform field: (a) Normalized angular spectrum domain sampling diagram for isospatial linear array; (b) normalized electric field distribution diagram for isospatial linear array; (c) normalized angular spectrum domain sampling diagram for non-uniform linear array; (d) normalized electric field distribution diagram for non-uniform linear array.

    图 6  各个阵元对应的归一化角频率 (a)目标均匀场位于(0λ, 0λ); (b) 目标均匀场位于(0λ, –5λ); (c) 目标均匀场位于(–5λ, –5λ)

    Figure 6.  Normalized angular frequency corresponding to each array element: (a) Target uniform field is located at (0λ, 0λ); (b) target uniform field is located at (0λ, –5λ); (c) target uniform field is located at (–5λ, –5λ).

    图 7  幅度归一化合成场 (a)目标均匀场位于(0λ, 0λ); (b) 目标均匀场位于(0λ, –5λ); (c) 目标均匀场位于(–5λ, –5λ)

    Figure 7.  Amplitude normalization field: (a) Target uniform field is located at (0λ, 0λ); (b) target uniform field is located at (0λ, –5λ); (c) target uniform field is located at (–5λ, –5λ).

    图 8  各阵元辐射能量的幅度和初始相位 (a)本文提出的改进时间反演方法; (b)传统的时间反演方法

    Figure 8.  Amplitude and initial phase of radiation energy of each array element: (a) Improved time reversal method proposed in this paper; (b) traditional time reversal method.

    图 9  两种时间反演方法在目标位置的合成场对比

    Figure 9.  Comparison of two time reversal methods in synthetic field of target location.

    图 10  用于合成目标均匀微波场的等空域直线阵列

    Figure 10.  Isospatial linear array for synthesizing uniform microwave field of target.

    图 11  电场分布图 (a)目标场1; (b)目标场2; (c)目标场3; (d)目标场4; (e)目标场5

    Figure 11.  Electric field distributions: (a) Target field 1; (b) target field 2; (c) target field 3; (d) target field 4; (e) target field 5.

    图 12  用于合成目标均匀微波场的均匀栅格平面阵

    Figure 12.  Uniform raster planar array for synthesizing uniform microwave field of target.

    图 13  表2中目标场1近场电场图  (a) z = 10λ对应的xOy平面归一化电场图; (b) y = 0λ对应的xOz平面归一化电场图

    Figure 13.  Near-field electric field diagram of target field 1 in Table 2: (a) xOy plane normalized electric field diagram corresponding to z = 10λ; (b) xOz plane normalized electric field diagram corresponding to y = 0λ.

    图 14  表2中目标场2近场电场图  (a) z = 10λ对应的xOy平面归一化电场图; (b) x = 3λ对应的yOz平面归一化电场图

    Figure 14.  Near-field electric field diagram of target field 2 in Table 2: (a) xOy plane normalized electric field diagram corresponding to z = 10λ; (b) yOz plane normalized electric field diagram corresponding to x = 3λ.

    图 15  表2中目标场3近场电场图 (a) $\sqrt 3 $z = –x+28λ平面归一化电场图; (b) y = 0λ对应的xOz平面归一化电场图

    Figure 15.  Near-field electric field diagram of target field 3 in Table 2: (a) $\sqrt 3 $z = –x+28λ plane normalized electric field diagram; (b) xOz plane normalized electric field diagram corresponding to y = 0λ.

    表 1  5个目标场对应的空域、角谱域表达式以及各阵元的投影夹角

    Table 1.  Five target field expression spatial domain, spatial frequency domain and projection angle of each element.

    目标场 空域表达式 角谱域表达式 θn
    1 $ E(x, 15\lambda ) = \left\{ {\begin{aligned} &{1, \;\;|x| \leqslant 1.5\lambda } \\ &{0, \;\;{\text{others}}}\end{aligned}} \right. $ $\widetilde{E} ({k_x}) = 2\dfrac{{\sin (3{k_x}\lambda /2)}}{{{k_x}}}$ ${\theta _n} = {\rm{arccos}}\left( {\dfrac{{(n - 16)\lambda /2}}{{\sqrt {{{\left[ {(n - 16)\lambda /2} \right]}^2} + {{\left( {15\lambda } \right)}^2}} }}} \right)$
    2 $E(x, 10\lambda ) = \left\{ {\begin{aligned} &{1, \;\;{{ - 3}}\lambda < x < \lambda } \\ &{0, \;\;{\text{others}}}\end{aligned}} \right.$ $\widetilde{E} ({k_x}) = 2\dfrac{{\sin (2{k_x}\lambda /2)}}{{{k_x}}}$ $ {\theta _n} = {\rm{arccos}}\left( {\dfrac{{(n - 16)\lambda /2 + 2\lambda }}{{\sqrt {{{\left[ {(n - 16)\lambda /2 + 2\lambda } \right]}^2} + {{\left( {10\lambda } \right)}^2}} }}} \right) $
    3 $ E(x, 10\lambda ) = \left\{ {\begin{aligned} &1 , \;\;{ - 3\lambda \leqslant x \leqslant - \lambda }\\ &{1, }\;\;{\lambda \leqslant x \leqslant 3\lambda {\text{ }}} \\ &{0, }\;\;{{\text{others }}}\end{aligned}} \right. $ $\widetilde{E} ({k_x}) = 2\dfrac{{\sin (3{k_x}\lambda /2) - \sin ({k_x}\lambda /2)}}{{{k_x}}}$ ${\theta _n} = {\rm{arccos}}\left( {\dfrac{{(n - 16)\lambda /2}}{{\sqrt {{{\left[ {(n - 16)\lambda /2} \right]}^2} + {{\left( {10\lambda } \right)}^2}} }}} \right)$
    4 $ E(x, y) = \left\{ {\begin{aligned} &{1,\;\; y = x + 13\lambda , {\text{ }}} \\ & ~~~- 3 - \dfrac{{\sqrt 2 }}{2} < \dfrac{x}{\lambda} < - 3 + \dfrac{{\sqrt 2 }}{2};\\ &0, \;\;{\text{others}} \end{aligned}} \right. $ $\widetilde{E} ({k_x}) = 2\dfrac{{\sin (2{k_x}\lambda /2)}}{{{k_x}}}$ ${\theta _n} = {\rm{arccos}}\left( {\dfrac{{(n - 16)\lambda /2 + 3\lambda }}{{\sqrt {{{\left[ {(n - 16)\lambda /2 + 3\lambda } \right]}^2} + {{\left( {10\lambda } \right)}^2}} }}} \right) + \dfrac{{\text{π }}}{4}$
    5 $ E(x, y) = \left\{ {\begin{aligned}& 1, \;\; y = x + 17.5\lambda ,\\ & ~~~- 8.5\lambda < x < - 6.5\lambda; \\ &0,\;\; {\text{others}} \end{aligned}} \right. $ $\widetilde{E} ({k_x}) = 2\dfrac{{\sin (2\sqrt 2 {k_x}\lambda /2)}}{{{k_x}}}$ ${\theta _n} = {\rm{arccos}}\left( {\dfrac{{(n - 16)\lambda /2 + 7.5\lambda }}{{\sqrt {{{\left[ {(n - 16)\lambda /2 + 7.5\lambda } \right]}^2} + {{\left( {10\lambda } \right)}^2}} }}} \right) + \dfrac{{\text{π }}}{4}$
    DownLoad: CSV

    表 2  3个目标场对应的空域、角谱域表达式

    Table 2.  Three target field expression spatial domain, spatial frequency domain.

    目标场 空域表达式 角谱域表达式
    1 $ E(x, y, 10\lambda ) = \left\{ \begin{aligned} &{1, }\;\;{\left| x \right| \leqslant \lambda , \left| y \right| \leqslant \lambda } \\ & {0, }\;\;{{\text{others }}} \end{aligned} \right. $ $\widetilde E ({k_x}, {k_y}) = 4\dfrac{{\sin (2{k_x}\lambda /2)}}{{{k_x}}} \cdot \dfrac{{\sin (2{k_y}\lambda /2)}}{{{k_y}}}$
    2 $ E(x, y, 10\lambda ) = \left\{ {\begin{aligned} &{1, }\;\;{\begin{aligned} &{2\lambda \leqslant x \leqslant 4\lambda {\text{ }}} \\ &{ - 0.5\lambda \leqslant y \leqslant 2.5\lambda } \end{aligned}} \\ & {0, }\;\;{{\text{others }}} \end{aligned}} \right. $ $\widetilde E ({k_x}, {k_y}) = 4\dfrac{{\sin (2{k_x}\lambda /2)}}{{{k_x}}} \cdot \dfrac{{\sin (3{k_y}\lambda /2)}}{{{k_y}}}$
    3 $ E(x, y, z) = \left\{ \begin{aligned} &{1, }\;\;{\begin{aligned} &{\sqrt 3 z = - x + 28\lambda } \\ &{6\lambda \leqslant x \leqslant 8\lambda } \\ & { - \lambda \leqslant y \leqslant \lambda {\text{ }}} \end{aligned}} \\ & {0, }\;\;{{\text{others }}} \end{aligned} \right.$ $\widetilde E ({k_x}, {k_y}) = 4\dfrac{{\sin (2{k_x}\lambda /2)}}{{{k_x}}} \cdot \dfrac{{\sin (2{k_y}\lambda /2)}}{{{k_y}}}$
    DownLoad: CSV

    表 3  3个目标场对应的各阵元的投影夹角

    Table 3.  Three target field projection angle of each element.

    目标场 θn φn
    1 $ {\rm{ arcsin}}\left( {\dfrac{{\sqrt {{{[({n_x} - 11)\lambda /2]}^2} + {{[({n_y} - 11)\lambda /2]}^2}} }}{{\sqrt {{{[({n_x} - 11)\lambda /2]}^2} + {{[({n_y} - 11)\lambda /2]}^2} + {{\left( {10\lambda } \right)}^2}} }}} \right) $ ${\rm{ arctan}}\left( {\dfrac{{({n_x} - 6)\lambda /2}}{{({n_y} - 6)\lambda /2}}} \right)$
    2 $ {\rm{ arcsin}}\left( {\dfrac{{\sqrt {{{\left[ {({n_x} - 6)\lambda /2 - 3\lambda } \right]}^2} + {{\left[ {({n_y} - 6)\lambda /2 - \lambda } \right]}^2}} }}{{\sqrt {{{\left[ {({n_x} - 6)\lambda /2 - 3\lambda } \right]}^2} + {{\left[ {({n_y} - 6)\lambda /2 - \lambda } \right]}^2} + {{\left( {10\lambda } \right)}^2}} }}} \right) $ $ {\rm{ arctan}}\left( {\dfrac{{({n_x} - 11)\lambda /2 - 3\lambda }}{{({n_y} - 11)\lambda /2 - \lambda }}} \right) $
    3 ${\rm{ arcsin}}\left( {\dfrac{{\sqrt {{\text{d}}{x_n^2} + {{\left[ {({n_y} - 11)\lambda /2} \right]}^2}} }}{{\sqrt {{\text{d}}{x_n^2} + {{\left[ {({n_y} - 11)\lambda /2} \right]}^2} + {\text{d}}{z_n^2}} }}} \right) ^*$ ${\rm{ arctan}}\left( {\dfrac{{{\text{d}}{x_n}}}{{({n_y} - 11)\lambda /2}}} \right) ^*$
    注: *其中 $ {\text{d}}{x_n} = \dfrac{{{{\left[ {\dfrac{{\left( {{n_x} - 11} \right)\lambda /2}}{{\cos ({\text{π }}/6)}}} \right]}^2} + \bigg\{ {{\left( {7\sqrt 3 \lambda } \right)}^2} + {{\left[ {\left( {{n_x} - 11} \right)\lambda /2} \right]}^2} \bigg\} - \left[ {7\sqrt 3 \lambda + \left( {{n_x} - 11} \right)\lambda /2\tan ({\text{π }}/6)} \right]}}{{\dfrac{{\left( {{n_x} - 11} \right)\lambda }}{{\cos ({\text{π }}/6)}}}} $,
    ${\text{d}}{z_n} = \sqrt {{{\left( {7\sqrt 3 \lambda } \right)}^2} + {{\left[ {\left( {{n_x} - 11} \right)\lambda /2} \right]}^2} - {\text{d}}{x_n^2}} $.
    DownLoad: CSV
  • [1]

    Qi Y H, Yang G, Liu L, Fan J, Antonio O, Kong H W, Yu W, Yang Z P 2017 IEEE Trans. Electromagn. Compat. 59 1661Google Scholar

    [2]

    毕欣, 黄林, 杜劲松, 齐伟智, 高扬, 荣健, 蒋华北 2015 物理学报 64 014301Google Scholar

    Bi X, Huang L, Du J S, Qi W Z, Gao Y, Rong J, Jiang H B 2015 Acta Phys. Sin. 64 014301Google Scholar

    [3]

    Seong H A, Chang H J, Dong M L, Wang S L 2020 IEEE Trans. Microwave Theory Tech. 68 2867Google Scholar

    [4]

    Yang Y, Fan Z P, Hong T, Chen M S, Tang X W, He J B, Chen X, Liu C J, Zhu H C, Huang K 2020 IEEE Trans. Microwave. Theory Tech. 68 4896Google Scholar

    [5]

    Giulio M B, Sara A, Gaetano M 2020 IEEE Trans. Antennas Propag. 68 6906Google Scholar

    [6]

    Wang J, Zheng Y N, He Z Y 2015 Antenna Array Theory and Engineering Applications (Vol. 1) (Beijing: Publishing House of Electronics Industry) pp93–101 (in Chines) [王建, 郑一农, 何子远 2015 阵列天线理论与工程应用 (北京: 电子工业出版社) 第93—101页

    Wang J, Zheng Y N, He Z Y 2015 Antenna Array Theory and Engineering Applications (Vol. 1) (Beijing: Publishing House of Electronics Industry) pp93–101 (in Chines)

    [7]

    Li J Y, Qi Y X, Zhou S G 2017 IEEE Trans. Antennas Propag. 65 6157Google Scholar

    [8]

    Rao K S, Chakraborty A, Das B 1986 Antennas & Propagation Society International Symposium Philadelphia, PA, USA, June 08–13, 1986 p387

    [9]

    Liu Y H, Liu Q H, Nie Z P 2010 IEEE Trans. Antennas Propag. 58 604Google Scholar

    [10]

    Shen H O, Wang B H, Li X 2017 IEEE Trans. Antennas Propag. 16 1098Google Scholar

    [11]

    Gu P F, Wang G, Fan Z H, Chen R S 2019 IEEE Trans. Antennas Propag. 67 7320Google Scholar

    [12]

    张金玲, 万文钢, 郑占奇, 甘曦, 朱兴宇 2015 物理学报 64 110504Google Scholar

    Zhang J L, Wen W G, Zheng Z Q, Gan X, Zhu X Y 2015 Acta Phys. Sin. 64 110504Google Scholar

    [13]

    Francisco J A P, Juan A R G, Emilio V L, S R R 1999 IEEE Trans. Antennas Propag. 47 506Google Scholar

    [14]

    Bitan M, G K Mahanti 2021 6th International Conference on Communication and Electronics Systems (ICCES) Coimbatre, India, July 8–10, 2021 p447

    [15]

    Guo S, Zhao D S, Wang B Z 2022 IEEE Trans. Antennas Propag. 21 908Google Scholar

    [16]

    Elsa D T, Juan M C, Alejandro D M 2007 IEEE Trans. Microwave Theory Tech. 55 85Google Scholar

    [17]

    Kumari V, Ahmed A, Kanumuri T, Shakher C, Sheoran G 2020 Int. J. Imaging Syst. Technol. 30 391Google Scholar

    [18]

    安腾远, 丁霄, 王秉中 2023 物理学报 72 030401Google Scholar

    An T Y, Ding X, Wang B Z 2023 Acta Phys. Sin. 72 030401Google Scholar

    [19]

    Zhao D S, Zhu M 2016 IEEE Antennas Wireless Propag. Lett. 15 1739Google Scholar

    [20]

    王秉中, 王任 2020 时间反演电磁学 (北京: 科学出版社 第165—179页

    Wang B Z, Wang R 2020 Time Reversal Electromagnetism (Beijing: Science Press) pp165–179

    [21]

    臧锐, 王秉中, 丁帅, 龚志双 2016 物理学报 65 204102Google Scholar

    Zang R, Wang B Z, Ding S, Gong Z S 2016 Acta Phys. Sin. 65 204102Google Scholar

    [22]

    张知原, 李冰, 刘仕奇, 张洪林, 胡斌杰, 赵德双, 王楚楠 2022 物理学报 71 014101Google Scholar

    Zhang Z Y, Li B, Liu S Q, Zhang H L, Hu B J, Zhao D S, Wang C N 2022 Acta Phys. Sin. 71 014101Google Scholar

    [23]

    Guo S, Zhao D S, Wang B Z, Cao W P 2020 IEEE Trans. Antennas Propag. 68 8249Google Scholar

    [24]

    Chen Z W, Liang F, Zhang Q L, Li B, Ge G D, Zhao D S 2021 IEEE Trans. Antennas Propag. 69 7011Google Scholar

  • [1] Yan Yi-Zhu, Ding Shuai, Han Xu, Wang Bing-Zhong. Channel processing-based time-reversal method for multi-target tunable focusing. Acta Physica Sinica, 2023, 72(16): 164101. doi: 10.7498/aps.72.20230547
    [2] An Teng-Yuan, Ding Xiao, Wang Bing-Zhong. Time-inversion technique based correction of complex radome radiation beam distortion. Acta Physica Sinica, 2023, 72(3): 030401. doi: 10.7498/aps.72.20221767
    [3] Chen Chuan-Sheng, Wang Bing-Zhong, Wang Ren. Conversion method between port field and internal field of electromagnetic device based on time-reversal technique. Acta Physica Sinica, 2021, 70(7): 070201. doi: 10.7498/aps.70.20201682
    [4] Zhang Wen-Jie, Liu Yu-Song, Guo Hao, Han Xing-Cheng, Cai An-Jiang, Li Sheng-Kun, Zhao Peng-Fei, Liu Jun. Methodology of improving sensitivity of silicon vacancy spin-based sensors based on double spiral coil RF resonance structure. Acta Physica Sinica, 2020, 69(23): 234206. doi: 10.7498/aps.69.20200765
    [5] The Analysis on Acoustic field distribution of angle dimension in deep ocean bottom bounce area and the application on sonar vertical beam pitch. Acta Physica Sinica, 2020, (): 004300. doi: 10.7498/aps.69.20191652
    [6] Han Zhi-Bin, Peng Zhao-Hui, Liu Xiong-Hou. Analysis of sound field distribution of angle dimension in deep ocean bottom bounce area and its application to active sonar vertical beam pitch. Acta Physica Sinica, 2020, 69(11): 114301. doi: 10.7498/aps.69.20201652
    [7] Yuan Lin, Yang Xue-Song, Wang Bing-Zhong. Prediction of time reversal channel with neural network optimized by empirical knowledge based genetic algorithm. Acta Physica Sinica, 2019, 68(17): 170503. doi: 10.7498/aps.68.20190327
    [8] Zhang Hong-Bo, Zhang Xi-Ren. Coherence of digital phase conjugation for implementing time reversal in scattering media. Acta Physica Sinica, 2018, 67(5): 054201. doi: 10.7498/aps.67.20172308
    [9] Zhu Jiang, Wang Yan, Yang Tian. Secure transmission mechanism based on time reversal over wireless multipath channels. Acta Physica Sinica, 2018, 67(5): 050201. doi: 10.7498/aps.67.20172134
    [10] Gong Zhi-Shuang, Wang Bing-Zhong, Wang Ren, Zang Rui, Wang Xiao-Hua. Far-field time reversal subwavelength imaging of sources based on grating structure. Acta Physica Sinica, 2017, 66(4): 044101. doi: 10.7498/aps.66.044101
    [11] Zang Rui, Wang Bing-Zhong, Ding Shuai, Gong Zhi-Shuang. Time reversal multi-target imaging technique based on eliminating the diffusion of the time reversal field. Acta Physica Sinica, 2016, 65(20): 204102. doi: 10.7498/aps.65.204102
    [12] Chen Qiu-Ju, Jiang Qiu-Xi, Zeng Fang-Ling, Song Chang-Bao. Single frequency spatial power combining using sparse array based on time reversal of electromagnetic wave. Acta Physica Sinica, 2015, 64(20): 204101. doi: 10.7498/aps.64.204101
    [13] Feng Ju, Liao Cheng, Zhang Qing-Hong, Sheng Nan, Zhou Hai-Jing. A time reversal parabolic equation based localization method in evaporation duct. Acta Physica Sinica, 2014, 63(13): 134101. doi: 10.7498/aps.63.134101
    [14] Zhou Hong-Cheng, Wang Bing-Zhong, Ding Shuai, Ou Hai-Yan. Super-resolution focusing of time reversal electromagnetic waves in metal wire array medium. Acta Physica Sinica, 2013, 62(11): 114101. doi: 10.7498/aps.62.114101
    [15] Liang Mu-Sheng, Wang Bing-Zhong, Zhang Zhi-Min, Ding Shuai, Zang Rui. Subwavelength antenna array based on far-field time reversal. Acta Physica Sinica, 2013, 62(5): 058401. doi: 10.7498/aps.62.058401
    [16] Zhao De-Shuang, Yue Wen-Jun, Yu Min, Zhang Sheng-Xue. Propagation characteristics of time reversal pulsed electromagnetic waves in double negative materials. Acta Physica Sinica, 2012, 61(7): 074102. doi: 10.7498/aps.61.074102
    [17] Chen Ying-Ming, Wang Bing-Zhong, Ge Guang-Ding. Mechanism of spatial super-resolution of time-reversed microwave system. Acta Physica Sinica, 2012, 61(2): 024101. doi: 10.7498/aps.61.024101
    [18] Zhang Zhi-Min, Wang Bing-Zhong, Ge Guang-Ding, Liang Mu-Sheng, Ding Shuai. Research on the focusing mechanism of one dimensional time reversal EM wave in sub-wavelength metal wire array. Acta Physica Sinica, 2012, 61(9): 098401. doi: 10.7498/aps.61.098401
    [19] Zhang Zhi-Min, Wang Bing-Zhong, Ge Guang-Ding. A subwavelength antenna array design for time reversal communication. Acta Physica Sinica, 2012, 61(5): 058402. doi: 10.7498/aps.61.058402
    [20] Ding Shuai, Wang Bing-Zhong, Ge Guang-Ding, Wang Duo, Zhao De-Shuang. Realization of microwave wave signal time reversal based on time lens theory. Acta Physica Sinica, 2012, 61(6): 064101. doi: 10.7498/aps.61.064101
Metrics
  • Abstract views:  4074
  • PDF Downloads:  97
  • Cited By: 0
Publishing process
  • Received Date:  20 March 2023
  • Accepted Date:  05 June 2023
  • Available Online:  13 July 2023
  • Published Online:  20 September 2023

/

返回文章
返回