Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Methodology of improving sensitivity of silicon vacancy spin-based sensors based on double spiral coil RF resonance structure

Zhang Wen-Jie Liu Yu-Song Guo Hao Han Xing-Cheng Cai An-Jiang Li Sheng-Kun Zhao Peng-Fei Liu Jun

Citation:

Methodology of improving sensitivity of silicon vacancy spin-based sensors based on double spiral coil RF resonance structure

Zhang Wen-Jie, Liu Yu-Song, Guo Hao, Han Xing-Cheng, Cai An-Jiang, Li Sheng-Kun, Zhao Peng-Fei, Liu Jun
PDF
HTML
Get Citation
  • Due to the power instability and field non-uniformity of radio frequency (RF), microwave (MW) and laser signals, inhomogeneous broadening of spin magnetic resonance line causes the absorption to decrease in a nuclear resonance system, which can reduce the sensitivity of spin-based sensing and testing technology. In this paper, we propose and design a double solenoid coil RF resonance antenna structure. The nearly uniform RF field density is produced by the two solenoid coil antenna structures that are parallel to the symmetry axis. The size of the uniformity in the center region of double solenoid coil RF resonance antenna structure is about π×375 mm2 × 10 mm. And the non-uniformity is less than 0.9%. Comparing with a single straight wire antenna and the single solenoid coil RF resonance antenna structure, the uniformity is improved by about 56.889 times and 42.889 times, respectively. At the same time, based on the near-field mutual inductance coupled resonance effect, the intensities of RF field in the center region of the two-solenoid coil antenna structure is enhanced. Comparing with the single solenoid coil antenna structures, it is enhanced by about 1.587 times. And the equivalent sensitivity of the silicon vacancy color center spin based sensor is enhanced by about 4.833 times. In the experiment, an optical detection magnetic resonance measurement system based on the spin magnetic resonance effect of silicon vacancy color center in single crystal SiC is built. Comparing with the single straight wire antenna and the single solenoid coil RF resonance antenna structure, the contrast of the silicon vacancy color center spin magnetic resonance signals of the double solenoid coil RF resonance antenna structure increases about 6 times and 2.4 times, respectively. The sensitivity of the spin-based sensor is increased by 4.833 times and 2.071 times through using the modulation and demodulation method, and the noise decreases by 8 times and twice. Hence, based on this double solenoid coil RF resonance antenna structure, the sensitivity of the silicon vacancy spin sensor can be improved. Combined with chip manufacturing technology of SiC wafer, it proves to be a potential approach to developing the high precision, chip scale spin sensor devices and measurement technology.
      Corresponding author: Guo Hao, guohao@nuc.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2017YFB0503100), the China Postdoctoral Innovative Talents Support Program (Grant No. BX20180276), the National Natural Science Foundation of China (Grant Nos. 51805493, 51922009, 51727808, 51775522), the China Postdoctoral Science Foundation (Grant No. 2018M641684), the Applied Basic Research Program in Shanxi Province, China (Grant Nos. 201801D221202, 201901D111011(ZD), 201801D121164), the Key R&D Program in Shanxi Province, China (Grant No. 201803D121067), the Key Laboratory Project Fund (Grant Nos. 6142001180410, 6142001180409), the Key Laboratory of Shanxi Province, China (Grant No. 201905D121001), the Foundation for Young Academic Leaders of North University of China (Grant No. QX201901), and the Shanxi “1331Project”, China.
    [1]

    Seo H, Falk A L, Klimov P V, Miao K C, Galli G, Awschalom D D 2016 Nat. Commun. 7 12935Google Scholar

    [2]

    van der Heijden J, Kobayashi T, House M G, Salfi J, Barraud S, Lavieville R, Simmons M Y, Rogge S 2018 Sci. Adv. 4 aat9199Google Scholar

    [3]

    Widmann M, Niethammer M, Fedyanin D Y, Khramtsov I A, Rendler T, Booker I D, Hassan J U, Morioka N, Chen Y C, Ivanov I G, Nguyen Tien S, Ohshima T, Bockstedte M, Gali A, Bonato C, Lee S Y, Wrachtrup J 2019 Nano Lett. 19 7173Google Scholar

    [4]

    Wang J, Zhou Y, Zhang X, Liu F, Li Y, Li K, Liu Z, Wang G, Gao W 2017 Phys. Rev. Appl. 7 064021Google Scholar

    [5]

    Christle D J, Klimov P V, Casas C F d l, Szasz K, Ivady V, Jokubavicius V, Hassan J U, Syvajarvi M, Koehl W F, Ohshima T, Son N T, Janzen E, Gali A, Awschalom D D 2017 Phys. Rev. X 7 021046

    [6]

    Dubrovkin A M, Qiang B, Salim T, Nam D, Zheludev N I, Wang Q J 2020 Nat. Commun. 11 1863Google Scholar

    [7]

    Niethammer M, Widmann M, Rendler T, Morioka N, Chen Y C, Stoehr R, Ul Hassan J, Onoda S, Ohshima T, Lee S Y, Mukherjee A, Isoya J, Nguyen Tien S, Wrachtrup J 2019 Nat. Commun. 10 5569Google Scholar

    [8]

    Awschalom D D, Hanson R, Wrachtrup J, Zhou B B 2018 Nat. Photonics 12 516Google Scholar

    [9]

    Dzurak A 2011 Nature 479 47Google Scholar

    [10]

    Li Q, Wang J F, Yan F F, Cheng Z D, Liu Z H, Zhou K, Guo L P, Zhou X, Zhang W P, Wang X X, Huang W, Xu J S, Li C F, Guo G C 2019 Nanoscale 11 20554Google Scholar

    [11]

    Kraus H, Simin D, Kasper C, Suda Y, Kawabata S, Kada W, Honda T, Hijikata Y, Ohshima T, Dyakonov V, Astakhov G V 2017 Nano Lett. 17 2865Google Scholar

    [12]

    王磊, 郭浩, 陈宇雷, 伍大锦, 赵锐, 刘文耀, 李春明, 夏美晶, 赵彬彬, 朱强, 唐军, 刘俊 2018 物理学报 67 047601Google Scholar

    Wang L, Guo H, Chen Y L, Wu D J, Zhao R, Liu W Y, Li C M, Xia M J, Zhao B B, Zhu Q, Tang J, Liu J 2018 Acta Phys. Sin. 67 047601Google Scholar

    [13]

    Chen Y C, Salter P S, Niethammer M, Widmann M, Kaiser F, Nagy R, Morioka N, Babin C, Erlekampf J, Berwian P, Booth M J, Wrachtrup J 2019 Nano Lett. 19 2377Google Scholar

    [14]

    Soltamov V A, Kasper C, Poshakinskiy A V, Anisimov A N, Mokhov E N, Sperlich A, Tarasenko S A, Baranov P G, Astakhov G V, Dyakonov V 2019 Nat. Commun. 10 1678Google Scholar

    [15]

    Scheuer J, Schwartz I, Mueller S, Chen Q, Dhand I, Plenio M B, Naydenov B, Jelezko F 2017 Phys. Rev. B 96 174436Google Scholar

    [16]

    Glenn D R, Bucher D B, Lee J, Lukin M D, Park H, Walsworth R L 2018 Nature 555 351Google Scholar

    [17]

    Laucht A, Kalra R, Simmons S, Dehollain J P, Muhonen J T, Mohiyaddin F A, Freer S, Hudson F E, Itoh K M, Jamieson D N, McCallum J C, Dzurak A S, Morello A 2017 Nat. Nanotechnol. 12 61Google Scholar

    [18]

    Whiteley S J, Wolfowicz G, Anderson C P, Bourassa A, Ma H, Ye M, Koolstra G, Satzinger K J, Holt M V, Heremans F J, Cleland A N, Schuster D I, Galli G, Awschalom D D 2019 Nat. Phys. 15 490Google Scholar

    [19]

    Nagy R, Niethammer M, Widmann M, Chen Y C, Udvarhelyi P, Bonato C, Hassan J U, Karhu R, Ivanov I G, Son N T, Maze J R, Ohshima T, Soykal Ö O, Gali Á, Lee S Y, Kaiser F, Wrachtrup J 2019 Nat. Commun. 10 1954Google Scholar

    [20]

    Riedel D, Fuchs F, Kraus H, Väth S, Sperlich A, Dyakonov V, Soltamova A A, Baranov P G, Ilyin V A, Astakhov G V 2012 Phys. Rev. Lett. 109 226402Google Scholar

    [21]

    彭世杰, 刘颖, 马文超, 石发展, 杜江峰 2018 物理学报 67 167601Google Scholar

    Peng S J, Liu Y, Ma W C, Shi F Z, Du J F 2018 Acta Phys. Sin. 67 167601Google Scholar

    [22]

    Clevenson H, Trusheim M E, Teale C, Schroeder T, Braje D, Englund D 2015 Nat. Phys. 11 393Google Scholar

    [23]

    Childress L, Dutt M V G, Taylor J M, Zibrov A S, Jelezko F, Wrachtrup J, Hemmer P R, Lukin M D 2006 Science 314 281Google Scholar

    [24]

    Sasaki K, Monnai Y, Saijo S, Fujita R, Watanabe H, Ishi-Hayase J, Itoh K M, Abe E 2016 Rev. Sci. Instrum. 87 053904Google Scholar

    [25]

    Kim D J, Jo E S, Cho Y K, Hur J, Kim C K, Kim C H, Park B, Kim D, Choi Y K 2018 Sci. Rep. 8 14996Google Scholar

    [26]

    Tang L, Kocabas S E, Latif S, Okyay A K, Ly Gagnon D S, Saraswat K C, Miller D A B 2008 Nat. Photonics 2 226Google Scholar

    [27]

    Frank M, Thorsell M, Enoksson P 2018 IEEE Trans. Microwave Theory Tech. 66 2141Google Scholar

    [28]

    Liu C R, Guo Y X, Xiao S Q 2014 IEEE Trans. Antennas Propag. 62 6027Google Scholar

    [29]

    Morlaas C, Souny B, Chabory A 2015 IEEE Trans. Antennas Propag. 63 4693Google Scholar

    [30]

    Rondin L, Tetienne J P, Hingant T, Roch J F, Maletinsky P, Jacques V 2014 Rep. Prog. Phys. 77 056503Google Scholar

    [31]

    Blank A, Shapiro G, Fischer R, London P, Gershoni D 2015 Appl. Phys. Lett. 106 034102Google Scholar

    [32]

    Bauch E, Hart C A, Schloss J M, Turner M J, Barry J F, Kehayias P, Singh S, Walsworth R L 2018 Phys. Rev. X 8 031025

    [33]

    El-Ella H A R, Ahmadi S, Wojciechowski A M, Huck A, Andersen U L 2017 Opt. Express 25 14809Google Scholar

    [34]

    Rugar D, Budakian R, Mamin H J, Chui B W 2004 Nature 430 329Google Scholar

    [35]

    Payne A, Ambal K, Boehme C, Williams C C 2015 Phys. Rev. B 91 195433Google Scholar

  • 图 1  (a) DHCRA结构示意图, 红色部分为碳化硅样品, 黄色部分为天线, 绿色部分为碳化硅硅空位色心激发用的红光730 nm激光器, 色心发出的光为红外890—1000 nm; (b) DHCRA设计参数: 天线铜线线宽d = 0.4 mm, 天线铜线线间距w = 0.73 mm, 天线铜线厚度t = 0.035 mm, 双天线之间的距离s = 10 mm, 输入接口线宽d1 = 0.67 mm, d2 = 1.2 mm

    Figure 1.  (a) Schematic diagram of double helical coil resonant antenna, the red part is the silicon carbide sample, the yellow part is the antenna, the green part is the red light 730 nm laser used for the excitation of the vacancy color center of silicon carbide silicon, the light emitted by the color center is infrared 890−1000 nm; (b) spiral antenna design parameters: antenna copper wire width d = 0.4 mm, antenna copper wire spacing w = 0.73 mm, antenna copper wire thickness t = 0.035 mm, distance between dual antennas s = 10 mm, input interface line width d1 = 0.67 mm, d2 = 1.2 mm.

    图 2  (a)本文设计的天线结构的X-Z平面磁场分布图; (b) DHCRA结构的S11仿真结果与测试结果. 插图为DHCRA的实物照片

    Figure 2.  (a) Magnetic field distribution in the X-Z plane of our antenna structure; (b) simulation results and measurement results of the parameter S11 of the DHCRA structure. The inset shows the physical photograph of DHCRA.

    图 3  (a) 70 MHz下X-Z平面的场强仿真分布图(图中的$\varepsilon $为非均匀度); (b) 70 MHz下的X-Y平面的场强仿真分布图; (c) 70 MHz下的均匀区(X = 14.86 mm)Z轴方向场强仿真曲线图; (d) 70 MHz下X轴方向的场强仿真曲线图

    Figure 3.  (a) Simulated distribution of the magnetic field in the X-Z plane at 70 MHz (In the figure $\varepsilon $is the non-uniformity); (b) simulated distribution of magnetic field in the X-Y plane at 70 MHz; (c) simulation curve of magnetic field in the X-axis direction at 70 MHz; (d) simulation curve of magnetic field in the Z-axis direction of the uniform zone (X = 14.68 mm) at 70 MHz.

    图 4  (a)未加入样品时X-Z平面磁场仿真分布图; (b)加入碳化硅样品后X-Z磁场仿真分布图

    Figure 4.  (a) Simulation distribution of X-Z plane magnetic field without adding samples; (b) X-Z magnetic field simulation distribution after adding silicon carbide sample.

    图 5  (a) SCA, SLA与DHCRA的三维结构示意图; (b)三种结构磁场强度仿真分析图与非均匀度参数示意图

    Figure 5.  (a) Three-dimensional structure diagram of SCA, SLA and DHCRA; (b) three kinds of structure magnetic field strength simulation analysis diagram and non-uniformity parameter diagram.

    图 6  (a)光学检测共振光路与频率调制系统; (b)三种结构的光学检测共振谱分布; (c) 70 MHz共振频率下三种结构的噪声波动图; (d) 三种结构的解调测试结果图

    Figure 6.  (a) Optical detection resonance light path and signal modulation system; (b) resonance spectrum distribution of three structures for optical detection; (c) noise fluctuation graphs of three structures at 70 MHz resonance frequency; (d) demodulation test results of three structures.

  • [1]

    Seo H, Falk A L, Klimov P V, Miao K C, Galli G, Awschalom D D 2016 Nat. Commun. 7 12935Google Scholar

    [2]

    van der Heijden J, Kobayashi T, House M G, Salfi J, Barraud S, Lavieville R, Simmons M Y, Rogge S 2018 Sci. Adv. 4 aat9199Google Scholar

    [3]

    Widmann M, Niethammer M, Fedyanin D Y, Khramtsov I A, Rendler T, Booker I D, Hassan J U, Morioka N, Chen Y C, Ivanov I G, Nguyen Tien S, Ohshima T, Bockstedte M, Gali A, Bonato C, Lee S Y, Wrachtrup J 2019 Nano Lett. 19 7173Google Scholar

    [4]

    Wang J, Zhou Y, Zhang X, Liu F, Li Y, Li K, Liu Z, Wang G, Gao W 2017 Phys. Rev. Appl. 7 064021Google Scholar

    [5]

    Christle D J, Klimov P V, Casas C F d l, Szasz K, Ivady V, Jokubavicius V, Hassan J U, Syvajarvi M, Koehl W F, Ohshima T, Son N T, Janzen E, Gali A, Awschalom D D 2017 Phys. Rev. X 7 021046

    [6]

    Dubrovkin A M, Qiang B, Salim T, Nam D, Zheludev N I, Wang Q J 2020 Nat. Commun. 11 1863Google Scholar

    [7]

    Niethammer M, Widmann M, Rendler T, Morioka N, Chen Y C, Stoehr R, Ul Hassan J, Onoda S, Ohshima T, Lee S Y, Mukherjee A, Isoya J, Nguyen Tien S, Wrachtrup J 2019 Nat. Commun. 10 5569Google Scholar

    [8]

    Awschalom D D, Hanson R, Wrachtrup J, Zhou B B 2018 Nat. Photonics 12 516Google Scholar

    [9]

    Dzurak A 2011 Nature 479 47Google Scholar

    [10]

    Li Q, Wang J F, Yan F F, Cheng Z D, Liu Z H, Zhou K, Guo L P, Zhou X, Zhang W P, Wang X X, Huang W, Xu J S, Li C F, Guo G C 2019 Nanoscale 11 20554Google Scholar

    [11]

    Kraus H, Simin D, Kasper C, Suda Y, Kawabata S, Kada W, Honda T, Hijikata Y, Ohshima T, Dyakonov V, Astakhov G V 2017 Nano Lett. 17 2865Google Scholar

    [12]

    王磊, 郭浩, 陈宇雷, 伍大锦, 赵锐, 刘文耀, 李春明, 夏美晶, 赵彬彬, 朱强, 唐军, 刘俊 2018 物理学报 67 047601Google Scholar

    Wang L, Guo H, Chen Y L, Wu D J, Zhao R, Liu W Y, Li C M, Xia M J, Zhao B B, Zhu Q, Tang J, Liu J 2018 Acta Phys. Sin. 67 047601Google Scholar

    [13]

    Chen Y C, Salter P S, Niethammer M, Widmann M, Kaiser F, Nagy R, Morioka N, Babin C, Erlekampf J, Berwian P, Booth M J, Wrachtrup J 2019 Nano Lett. 19 2377Google Scholar

    [14]

    Soltamov V A, Kasper C, Poshakinskiy A V, Anisimov A N, Mokhov E N, Sperlich A, Tarasenko S A, Baranov P G, Astakhov G V, Dyakonov V 2019 Nat. Commun. 10 1678Google Scholar

    [15]

    Scheuer J, Schwartz I, Mueller S, Chen Q, Dhand I, Plenio M B, Naydenov B, Jelezko F 2017 Phys. Rev. B 96 174436Google Scholar

    [16]

    Glenn D R, Bucher D B, Lee J, Lukin M D, Park H, Walsworth R L 2018 Nature 555 351Google Scholar

    [17]

    Laucht A, Kalra R, Simmons S, Dehollain J P, Muhonen J T, Mohiyaddin F A, Freer S, Hudson F E, Itoh K M, Jamieson D N, McCallum J C, Dzurak A S, Morello A 2017 Nat. Nanotechnol. 12 61Google Scholar

    [18]

    Whiteley S J, Wolfowicz G, Anderson C P, Bourassa A, Ma H, Ye M, Koolstra G, Satzinger K J, Holt M V, Heremans F J, Cleland A N, Schuster D I, Galli G, Awschalom D D 2019 Nat. Phys. 15 490Google Scholar

    [19]

    Nagy R, Niethammer M, Widmann M, Chen Y C, Udvarhelyi P, Bonato C, Hassan J U, Karhu R, Ivanov I G, Son N T, Maze J R, Ohshima T, Soykal Ö O, Gali Á, Lee S Y, Kaiser F, Wrachtrup J 2019 Nat. Commun. 10 1954Google Scholar

    [20]

    Riedel D, Fuchs F, Kraus H, Väth S, Sperlich A, Dyakonov V, Soltamova A A, Baranov P G, Ilyin V A, Astakhov G V 2012 Phys. Rev. Lett. 109 226402Google Scholar

    [21]

    彭世杰, 刘颖, 马文超, 石发展, 杜江峰 2018 物理学报 67 167601Google Scholar

    Peng S J, Liu Y, Ma W C, Shi F Z, Du J F 2018 Acta Phys. Sin. 67 167601Google Scholar

    [22]

    Clevenson H, Trusheim M E, Teale C, Schroeder T, Braje D, Englund D 2015 Nat. Phys. 11 393Google Scholar

    [23]

    Childress L, Dutt M V G, Taylor J M, Zibrov A S, Jelezko F, Wrachtrup J, Hemmer P R, Lukin M D 2006 Science 314 281Google Scholar

    [24]

    Sasaki K, Monnai Y, Saijo S, Fujita R, Watanabe H, Ishi-Hayase J, Itoh K M, Abe E 2016 Rev. Sci. Instrum. 87 053904Google Scholar

    [25]

    Kim D J, Jo E S, Cho Y K, Hur J, Kim C K, Kim C H, Park B, Kim D, Choi Y K 2018 Sci. Rep. 8 14996Google Scholar

    [26]

    Tang L, Kocabas S E, Latif S, Okyay A K, Ly Gagnon D S, Saraswat K C, Miller D A B 2008 Nat. Photonics 2 226Google Scholar

    [27]

    Frank M, Thorsell M, Enoksson P 2018 IEEE Trans. Microwave Theory Tech. 66 2141Google Scholar

    [28]

    Liu C R, Guo Y X, Xiao S Q 2014 IEEE Trans. Antennas Propag. 62 6027Google Scholar

    [29]

    Morlaas C, Souny B, Chabory A 2015 IEEE Trans. Antennas Propag. 63 4693Google Scholar

    [30]

    Rondin L, Tetienne J P, Hingant T, Roch J F, Maletinsky P, Jacques V 2014 Rep. Prog. Phys. 77 056503Google Scholar

    [31]

    Blank A, Shapiro G, Fischer R, London P, Gershoni D 2015 Appl. Phys. Lett. 106 034102Google Scholar

    [32]

    Bauch E, Hart C A, Schloss J M, Turner M J, Barry J F, Kehayias P, Singh S, Walsworth R L 2018 Phys. Rev. X 8 031025

    [33]

    El-Ella H A R, Ahmadi S, Wojciechowski A M, Huck A, Andersen U L 2017 Opt. Express 25 14809Google Scholar

    [34]

    Rugar D, Budakian R, Mamin H J, Chui B W 2004 Nature 430 329Google Scholar

    [35]

    Payne A, Ambal K, Boehme C, Williams C C 2015 Phys. Rev. B 91 195433Google Scholar

  • [1] Kou Ke, Wang Cuo, Wang Xian, Lian Tian-Hong, Jiao Ming-Xing, Fan Yu-Zhen. Sensitivity enhancement in laser self-mixing nano-particle sizer with linear current tuning based frequency shifting method. Acta Physica Sinica, 2023, 72(16): 169501. doi: 10.7498/aps.72.20230569
    [2] An Teng-Yuan, Ding Xiao. A method of generating arbitrary uniform fields based on angular spectrum domain and time inversion. Acta Physica Sinica, 2023, 72(18): 180201. doi: 10.7498/aps.72.20230418
    [3] Li Jun-Peng, Ren Ze-Yang, Zhang Jin-Feng, Wang Han-Xue, Ma Yuan-Chen, Fei Yi-Fan, Huang Si-Yuan, Ding Sen-Chuan, Zhang Jin-Cheng, Hao Yue. Formation mechanism and regulation of silicon vacancy centers in polycrystalline diamond films. Acta Physica Sinica, 2023, 72(3): 038102. doi: 10.7498/aps.72.20221437
    [4] Ma Yu-Fei. Research progress of quartz-enhanced photoacoustic spectroscopy based gas sensing. Acta Physica Sinica, 2021, 70(16): 160702. doi: 10.7498/aps.70.20210685
    [5] Liu Xu-Yang, Zhang He-Qiu, Li Bing-Bing, Liu Jun, Xue Dong-Yang, Wang Heng-Shan, Liang Hong-Wei, Xia Xiao-Chuan. Characteristics of AlGaN/GaN high electron mobility transistor temperature sensor. Acta Physica Sinica, 2020, 69(4): 047201. doi: 10.7498/aps.69.20190640
    [6] Chen Long, Chen Cheng-Ke, Li Xiao, Hu Xiao-Jun. Effects of oxidation on silicon vacancy photoluminescence and microstructure of separated domain formed nanodiamond films. Acta Physica Sinica, 2019, 68(16): 168101. doi: 10.7498/aps.68.20190422
    [7] Zuo Xiao-Jie, Sun Ying-Rong, Yan Zhi-Hui, Jia Xiao-Jun. High sensitivity quantum Michelson interferometer. Acta Physica Sinica, 2018, 67(13): 134202. doi: 10.7498/aps.67.20172563
    [8] Hu Ze-Hua, Ye Tao, Liu Xiong-Guo, Wang Jia. Uncertainty quantification in the calculation of keff using sensitity and stochastic sampling method. Acta Physica Sinica, 2017, 66(1): 012801. doi: 10.7498/aps.66.012801
    [9] Shi Sheng-Cai, Li Jing, Zhang Wen, Miao Wei. Terahertz high-sensitivity superconducting detectors. Acta Physica Sinica, 2015, 64(22): 228501. doi: 10.7498/aps.64.228501
    [10] Liao Wen-Ying, Fan Wan-De, Li Hai-Peng, Sui Jia-Nan, Cao Xue-Wei. Quasi-crystal photonic fiber surface plasmon resonance sensor. Acta Physica Sinica, 2015, 64(6): 064213. doi: 10.7498/aps.64.064213
    [11] Wang Jun-Ping, Qi Su-Yang, Liu Shi-Gang. Net sensitivity for open and short model based on layout optimization. Acta Physica Sinica, 2014, 63(12): 128503. doi: 10.7498/aps.63.128503
    [12] Jiang Ying, Liang Da-Kai, Zeng Jie, Ni Xiao-Yu. Influence of monitoring point wavelength on axial strain sensitivity of high-birefringence fiber loop mirror. Acta Physica Sinica, 2013, 62(6): 064216. doi: 10.7498/aps.62.064216
    [13] Tian Hui-Juan, Niu Ping-Juan. Sensitivity of delta-P1 approximation model to the reduced scattering parameter. Acta Physica Sinica, 2013, 62(3): 034201. doi: 10.7498/aps.62.034201
    [14] Xu Jin, Xie Pin-Hua, Si Fu-Qi, Li Ang, Zhou Hai-Jin, Wu Feng-Cheng, Wang Yang, Liu Jian-Guo, Liu Wen-Qing. The sensitivity study of NO2 vertical profile retrieval by airborne platform. Acta Physica Sinica, 2013, 62(10): 104214. doi: 10.7498/aps.62.104214
    [15] Chen Guo-Yun, Xin Yong, Huang Fu-Cheng, Wei Zhi-Yong, Lei Sheng-Jie, Huang San-Bo, Zhu Li, Zhao Jing-Wu, Ma Jia-Yi. Performances of a boron-lined ionization chamber used in neutron/-ray mixed field of reactors. Acta Physica Sinica, 2012, 61(8): 082901. doi: 10.7498/aps.61.082901
    [16] Gong Yuan, Guo Yu, Rao Yun-Jiang, Zhao Tian, Wu Yu, Ran Zeng-Ling. Sensitivity analysis of hybrid fiber Fabry-Pérot refractive-index sensor. Acta Physica Sinica, 2011, 60(6): 064202. doi: 10.7498/aps.60.064202
    [17] Hou Jian-Ping, Ning Tao, Gai Shuang-Long, Li Peng, Hao Jian-Ping, Zhao Jian-Lin. Sensitivity analysis of refractive index measurement based on intermodal interference in photonic crystal fiber. Acta Physica Sinica, 2010, 59(7): 4732-4737. doi: 10.7498/aps.59.4732
    [18] Ren Li-Chun, Zhou Lin, Li Run-Bing, Liu Min, Wang Jin, Zhan Ming-Sheng. Dependence of sensitivity of atom interferometer gravimeters on the Raman laser pulse sequences. Acta Physica Sinica, 2009, 58(12): 8230-8235. doi: 10.7498/aps.58.8230
    [19] Zhang Xian-Peng, Ouyang Xiao-Ping, Zhang Zhong-Bing, Tian Geng, Chen Yan-Li, Li Da-Hai, Zhang Xiao-Dong. A composite Si-PIN 14MeV neutron detector. Acta Physica Sinica, 2008, 57(1): 82-87. doi: 10.7498/aps.57.82
    [20] Liu Ying, Wang Li-Jun, Guo Yun-Feng, Zhang Xiao-Juan, Gao Zong-Hui, Tian Hui-Juan. Sensitivity of spatially-resolved diffuse reflectance to high-order optical parameters. Acta Physica Sinica, 2007, 56(4): 2119-2123. doi: 10.7498/aps.56.2119
Metrics
  • Abstract views:  7615
  • PDF Downloads:  94
  • Cited By: 0
Publishing process
  • Received Date:  20 May 2020
  • Accepted Date:  26 June 2020
  • Available Online:  27 November 2020
  • Published Online:  05 December 2020

/

返回文章
返回