Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Multi-parameter control and sensitivity tuning of all-dielectric bound states in the continuum metasurface

LONG Xinlin YANG Weizhi CHEN Zhiquan XU Hui HOU Hailiang ZHANG Xiaojiao DONG Yulan HE Longhui

Citation:

Multi-parameter control and sensitivity tuning of all-dielectric bound states in the continuum metasurface

LONG Xinlin, YANG Weizhi, CHEN Zhiquan, XU Hui, HOU Hailiang, ZHANG Xiaojiao, DONG Yulan, HE Longhui
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • All-dielectric metasurfaces based on bound states in the continuum (BIC) are widely used in the field of micro-nano biosensors due to their ultra-high quality factor (Q), which can effectively enhance the interaction between light and matter. In this paper, a rectangular all-dielectric dimer metasurface based on BIC is proposed. The finite element method is used for simulation, and time-domain coupled mode theory is employed for theoretical analysis. For the parameters of the two rectangular components in the metasurface, such as their angles, refractive indices, widths, and heights, four different symmetry-breaking modes are designed (Fig. 1). All of these modes realize the transformation from symmetry-protected BIC (SP-BIC) to quasi-BIC (QBIC), with the maximum Q factor reaching 1.75 × 104 (Fig. 2). These four breaking methods cover the current common SP-BIC breaking methods and provide choice for designing devices. After introducing the same asymmetric parameters, the QBIC resonance excited by the metasurface under the four control modes is dominated by magnetic dipoles (Fig. 6). The sensitivity of the designed sensor device is almost at the same level, while the difference in figure of merit (FOM) can reach three orders of magnitude (Fig. 7). In addition, under the same control mode, the sensitivity and FOM of the metasurface with positive breaking are higher than those with negative breaking when the absolute values of the breaking parameters are equal (Fig. 8). After optimization and adjustment, the sensitivity and FOM of the metasurface reach 395 nm/RIU and 3502 RIU–1, respectively, and its comprehensive performance index is better than those in most of existing studies (Table 1). The metasurface provides an effective means for sensing detection in the biological and medical fields. At the same time, this research offers a new insight into the design of refractive index sensors based on BIC.
  • 图 1  矩形全介质超表面 (a) 阵列结构示意图; (b) 元胞xy二维平面图; (c) 4种破缺方式下的元胞结构; (d) 时域耦合模式理论模型示意图

    Figure 1.  Rectangular all-dielectric metasurface: (a) Schematic diagram of the array structure; (b) two-dimensional planar graph of the unit cell in the xy-plane; (c) cell structures under four types of breaking modes; (d) schematic diagram of the time-coupled model theory.

    图 2  Mode Ⅰ调谐下超表面的仿真结果与理论分析 (a) 元胞的xy二维平面图; (b) 不同对称破缺角度θ下的仿真透射光谱与拟合曲线; (c) Q因子和共振波长随旋转角度θ的变化关系; (d) Q因子与不对称参数α的关系; (e), (f) θ = 6°, θ = 12°时QBIC共振处硅棒中心xz截面电场分布

    Figure 2.  Simulation results and theoretical analysis of the metasurface tuned by Mode I: (a) Two-dimensional planar graph of the unit cell in the xy-plane; (b) the simulated transmission spectra and fitting curves at different symmetry breaking angles θ; (c) relationship between the Q factor and the resonance wavelength as a function of the rotation angle θ; (d) relationship between the Q factor and the asymmetric parameter α; (e)–(f) when θ = 6° and θ = 12°, the electric field distribution in the xz section at the center of the silicon rod at QBIC resonance.

    图 3  Mode Ⅱ调谐下超表面的仿真结果与理论分析 (a) 元胞的xy二维平面图; (b) 不同对称破缺折射率Δn下的仿真透射光谱与拟合曲线; (c) Q因子和共振波长随折射率Δn的变化关系; (d) Q因子与不对称参数α的关系; (e)—(h) Δn = ±0.3, Δn = ±0.4时QBIC共振处硅棒中心xz截面电场分布

    Figure 3.  Simulation results and theoretical analysis of the metasurface tuned by Mode II: (a) Two-dimensional plane graph of the unit cell in the xy-plane; (b) simulated transmission spectra and fitting curves under different symmetry-breaking refractive index Δn; (c) relationship between the Q factor and the resonance wavelength as a function of the refractive index Δn; (d) relationship between the Q factor and the asymmetric parameter α; (e)–(h) when Δn = ±0.3 and Δn = ±0.4, the electric field distribution in the xz cross section at the center of the silicon rod at QBIC resonance.

    图 4  Mode Ⅲ调谐下超表面的仿真结果与理论分析 (a) 元胞的xy二维平面图; (b) 不同对称破缺宽度Δw下的仿真透射光谱与拟合曲线; (c) Q因子和共振波长随宽度Δw的变化关系; (d) Q因子与不对称参数α的关系; (e)—(h) Δw = ±30 nm, Δw = ±40 nm时QBIC共振处硅棒中心xz截面电场分布

    Figure 4.  Simulation results and theoretical analysis of the metasurface tuned by Mode III: (a) Two-dimensional planar graph of the unit cell in the xy-plane; (b) simulated transmission spectra and fitting curves under different symmetry-breaking widths Δw; (c) relationship between the Q factor and the resonance wavelength as a function of the width Δw; (d) relationship between the Q factor and the asymmetric parameter α; (e)–(h) when Δw = ±30 nm and Δw = ±40 nm, the electric field distribution in the xz cross section at the center of the silicon rod at QBIC resonance.

    图 5  Mode Ⅳ调控下超表面的仿真结果与理论分析 (a) 元胞的xy二维平面图; (b) 不同对称破缺高度Δh下的仿真透射光谱与拟合曲线; (c) Q因子和共振波长随宽度Δh的变化关系; (d) Q因子与不对称参数α的关系; (e)—(h) Δh = ±30 nm, Δh = ±40 nm时QBIC共振处硅棒中心xz截面电场分布

    Figure 5.  Simulation results and theoretical analysis of the metasurface under the control of Mode IV: (a) Two-dimensional planar graph of the unit cell in the xy-plane; (b) simulated transmission spectra and fitting curves at different symmetry-breaking heights Δh; (c) variation of the Q factor and the resonance wavelength as a function of the width Δh; (d) relationship between the Q factor and the asymmetric parameter α; (e)–(h) when Δh = ±30 nm and Δh = ±40 nm, the electric field distribution in the xz section at the center of the silicon rod at QBIC resonance.

    图 6  多极子分解对QBIC机理的分析. Mode Ⅰ调控 (a) 不同极矩散射功率; (b) 元胞内部xy截面下电场分布情况; (c) 不对称参数为0.1时, 4种破缺方式下的多极矩贡献情况

    Figure 6.  Multipole decomposition analysis of the QBIC mechanism. Mode I control: (a) Different polar scattering powers; (b) the electric field distribution in the xy section of the cell; (c) when the asymmetry parameter is 0.1, the multipole moment contributions under the four breaking modes.

    图 7  α = 0.1时, 对4种破缺方式下超表面的传感性能进行研究 (a) 4种破缺方式下QBIC共振的透射光谱; (b) Mode Ⅰ破缺模式下, 超表面在不同折射率传感介质中的透射谱; (c) 4种破缺模式下的QBIC共振波长与环境折射率的关系; (d) 4种破缺模式下的灵敏度; (e) 4种破缺模式下的FOM

    Figure 7.  When the asymmetry parameter α = 0.1, the sensing performance of the metasurface under four damage modes is studied: (a) Transmission spectra of QBIC resonance under four different breaking modes; (b) transmission spectra of the metasurface in different refractive index sensing media in Mode I broken mode; (c) relationship between the QBIC resonance wavelength and the ambient refractive index in four broken modes; (d) sensitivity under four breaking modes; (e) FOM values under four breaking modes.

    图 8  正、负向破缺对超表面传感性能的影响. Mode Ⅲ调控 (a) 传感性能与破缺程度Δw的关系; (b)—(e) Δw = ±40 nm时, QBIC共振处柱体内部的xy平面和表面的xz端面的电场分布. Mode Ⅳ调控 (f) 传感性能与破缺程度Δh的关系; (g)—(j) Δh = ±40 nm时, QBIC共振处柱体内部的xy平面和表面的xz端面的电场分布

    Figure 8.  Effect of positive and negative breaks on the sensing performance of the metasurface. Mode III regulation: (a) Relationship between sensing performance and Δw; (b)—(e) when Δw = ±40 nm, the electric field distribution in the xy plane inside the cylinder and on the xz end face of the surface at QBIC resonance. Mode IV regulation: (f) Relationship between sensing performance and Δh; (g)—(j) when Δh = ±40 nm, the electric field distribution in the xy plane inside the cylinder and on the xz end face of the surface at QBIC resonance.

    表 1  矩形全介质双聚体超表面传感性能与前期研究的对比

    Table 1.  Comparison of sensing performance of the rectangular all-dielectric dimer metasurface with previous studies.

    Sensitivity
    /(nm·RIU–1)
    Q factor FOM/RIU–1 Ref.
    305 1.78×102 68 [13]
    160 8.43×103 575 [14]
    122 4.15×102 [15]
    262 1.01×104 2183 [16]
    136 4.16×103 145 [23]
    395 1.75×104 3502 This work
    DownLoad: CSV
  • [1]

    Liu Z C, Guo T B, Tan Q, Hu Z P, Sun Y W, Fan H X, Zhang Z, Jin Y, He S L 2023 Nano Lett. 23 10441Google Scholar

    [2]

    Chen Z Q, Li P, Zhang S, Chen Y Q, Liu P, Duan H G 2019 Nanotechnology 30 335201Google Scholar

    [3]

    成昱轩, 许辉, 于鸿飞, 黄林琴, 谷志超, 陈玉峰, 贺龙辉, 陈智全, 侯海良 2025 物理学报 74 067801Google Scholar

    Cheng Y X, Xu H, Yu H F, Huang L Q, Gu Z C, Chen Y F, He L H, Chen Z Q, Hou H L 2025 Acta Phys. Sin. 74 067801Google Scholar

    [4]

    Yang H, Peng M Y, He H R, Yu D, Ou K, Wang Q, Luo X H, Hu Y Q, Jing H, Duan H G 2025 Laser Photonics Rev. 19 2401398Google Scholar

    [5]

    He H R, Yu D, Gu Y J, Yang H, Xu J, Peng M Y, Xie Q, Jiang Y T, Zhang S H, Hu Y Q, Jing H, Duan H G 2025 Laser Photonics Rev. e00564

    [6]

    Yang H, Ou K, Liu Q, Peng M Y, Xie Z W, Jiang Y T, Jia H H, Cheng X B, Jing H, Hu Y Q 2025 Light: Sci. Appl. 14 63Google Scholar

    [7]

    Yang H, Ou K, Wan H Y, Hu Y Q, Wei Z Y, Jia H H, Cheng X B, Liu N, Duan H G 2023 Mater. Today 67 424Google Scholar

    [8]

    Marinica D C, Borisov A G, Shabanov S V 2008 Phys. Rev. Lett. 100 183902Google Scholar

    [9]

    Li Z L, Nie G Z, Wang J H, Zhong F, Zhan S P 2024 Phys. Rev. Appl. 21 034039Google Scholar

    [10]

    Sadrieva Z F, Sinev I S, Koshelev K L, Samusev A, Iorsh I V, Takayama O, Malureanu R, Bogdanov A A, Lavrinenko A V 2017 ACS Photonics 4 723Google Scholar

    [11]

    Plotnik Y, Peleg O, Dreisow F, Heinrich M, Nolte S, Szameit A, Segev M 2011 Phys. Rev. Lett. 107 183901Google Scholar

    [12]

    Cong L Q, Singh R 2019 Adv. Opt. Mater. 7 1900383Google Scholar

    [13]

    Jahani Y, Arvelo E R, Yesilkoy F, Koshelev K, Cianciaruso C, De Palma M, Kivshar Y, Altug H 2021 Nat. Commun. 12 3246Google Scholar

    [14]

    Song S Z, Yu S L, Li H, Zhao T G 2022 Laser Phys. 32 025403Google Scholar

    [15]

    Chen W J, Li M, Zhang W H, Chen Y H 2023 Nanophotonics 12 1147Google Scholar

    [16]

    Zhao J J, Fan X Y, Fang W J, Xiao W X, Sun F X, Li C C, Wei X, Tao J F, Wang Y L, Kumar S 2024 Sensors 24 3943Google Scholar

    [17]

    Li Z L, Xie M X, Nie G Z, Wang J H, Huang L J 2023 J. Phys. Chem. Lett. 14 10762Google Scholar

    [18]

    Zhang T, Huo Y P, Xu C M, Li J M, Zhang Z L 2024 J. Opt. Soc. Am. B: Opt. Phys. 42 50

    [19]

    刘会刚, 张翔宇, 南雪莹, 赵二刚, 刘海涛 2024 物理学报 73 047802Google Scholar

    Liu H G, Zhang X Y, Nan X Y, Zhao E G, Liu H T 2024 Acta Phys. Sin. 73 047802Google Scholar

    [20]

    Li N, Chen H, Zhao Y X, Wang Y T, Su Z X, Liu Y, Huang L L 2025 Nanophotonics 14 485Google Scholar

    [21]

    Xu Y L, Yang Y Y, Li H X, Ren L R 2025 J. Mater. Chem. C 13 1747Google Scholar

    [22]

    Yang N N, Lang T T, Cen W Y, Yu Z Y, Xiao M Y, Zhang J H, Qiu Y Q 2023 J. Opt. Soc. Am. B: Opt. Phys. 40 366Google Scholar

    [23]

    Liu J K, Dai H X, Ju J Q, Cheng K 2024 Phys. Chem. Chem. Phys. 26 9462Google Scholar

    [24]

    Liu J K, Lu Z N, Dai H X, Ju J Q, Zhao H W, Cao K Q 2024 J. Opt. 27 015001

    [25]

    Liu W J, Liang Z Z, Qin Z, Shi X Y, Yang F M, Meng D J 2022 Results Phys. 32 105125Google Scholar

    [26]

    Yu S L, Wang Y S, Gao Z, Li H, Song S Z, Yu J G, Zhao T G 2022 Opt. Express 30 4084Google Scholar

    [27]

    Gao J Y, Liu J, Yang H M, Liu H S, Zeng G H, Huang B 2023 Opt. Express 31 44703Google Scholar

    [28]

    Wu Q H, Wang J, Wang W, Lin J, Jin P, Liu S T, Zhou K Y 2024 Opt. Lett. 49 4186Google Scholar

    [29]

    陈智全, 阳弘黎, 龙鑫琳, 肖云鹏, 贺龙辉, 聂国政, 侯海良, 鲁潇, 许辉 2025 中国科学: 物理学 力学 天文学 55 264212Google Scholar

    Chen Z Q, Yang H L, Long X L, Xiao Y P, He L H, Nie G Z, Hou H L, Lu X, Xu H 2025 Sci. China-Phys. Mech. Astron. 55 264212Google Scholar

    [30]

    Wang P F, He F Y, Liu J J, Shu F Z, Fang B, Lang T T, Jing X F, Hong Z 2022 Photonics Res. 10 2743Google Scholar

    [31]

    Fan S, Suh W, Joannopoulos J D 2003 J. Opt. Soc. Am. A: 20 569Google Scholar

    [32]

    Yu J B, Yao W Z, Qiu M, Li Q 2025 Light: Sci. Appl. 14 174Google Scholar

    [33]

    Koshelev K, Lepeshov S, Liu M K, Bogdanov A, Kivshar Y 2018 Phys. Rev. Lett. 121 193903Google Scholar

    [34]

    Chen W J, Chen Y T, Liu W 2019 Phys. Rev. Lett. 122 153907Google Scholar

    [35]

    Chen W J, Chen Y T, Liu W 2019 Laser Photonics Rev. 13 1900067Google Scholar

    [36]

    Koshelev K, Favraud G, Bogdanov A, Kivshar Y, Fratalocchi A 2019 Nanophotonics 8 725Google Scholar

    [37]

    Papasimakis N, Fedotov V A, Marinov K, Zheludev N I 2009 Phys. Rev. Lett. 103 093901Google Scholar

    [38]

    Kaelberer T, Fedotov V A, Papasimakis N, Tsai D P, Zheludev N I 2010 Science 330 1510Google Scholar

    [39]

    Huang Y W, Chen W T, Wu P C, Fedotov V, Savinov V, Ho Y Z, Chau Y F, Zheludev N I, Tsai D P 2012 Opt. Express 20 1760Google Scholar

    [40]

    龙鑫琳, 陈智全, 阳弘黎, 肖云鹏, 贺龙辉, 聂国政, 张小姣, 鲁潇, 侯海良, 许辉 2025 光学学报 45 1023001Google Scholar

    Long X L, Chen Z Q, Yang H L, Xiao Y P, He L H, Nie G Z, Zhang X J, Lu X, Hou H L, Xu H 2025 Acta Opt. Sin. 45 1023001Google Scholar

    [41]

    Wiersig J 2014 Phys. Rev. Lett. 112 203901Google Scholar

    [42]

    Hodaei H, Hassan A U, Wittek S, Garcia-Gracia H, El-Ganainy R, Christodoulides D N, Khajavikhan M 2017 Nature 548 187Google Scholar

    [43]

    Yan D, Shalin A S, Wang Y, Lai Y, Xu Y D, Hang Z H, Cao F, Gao L, Luo J 2025 Phys. Rev. Lett. 134 243802Google Scholar

    [44]

    范辉颖, 罗杰 2022 物理学报 71 247802Google Scholar

    Fan H Y, Luo J 2022 Acta Phys. Sin. 71 247802Google Scholar

    [45]

    Özdemir Ş K, Rotter S, Nori F, Yang L 2019 Nat. Mater. 18 783Google Scholar

  • [1] ZHANG Yunhao, HE Xiao, YING Jiahe, LIU Donglin, TAO Guangyi, DAI Yuchen, DANG Zhibo, FANG Zheyu. Characterization and control of quasi-bound states in the continuous in Si3N4 photonic crystals. Acta Physica Sinica, doi: 10.7498/aps.74.20250757
    [2] DONG Yaoyong, WU Yi, ZHENG Xuejun, WANG Denglong, ZHAO Peng. Ultrahigh-resolution mass sensing based on bound states in continuum domain in double-cavity optomechanical system. Acta Physica Sinica, doi: 10.7498/aps.74.20250063
    [3] WANG Junhui, LI Deqiong, NIE Guozheng, ZHAN Jie, GAN Longfei, CHEN Zhiquan, LAN Linfeng. Near-infrared high-Q all-dielectric metasurface biosensor based on quasi-bound state in continuum. Acta Physica Sinica, doi: 10.7498/aps.74.20241752
    [4] Ren Yang, Li Zhen-Xiong, Zhang Lei, Cui Wei, Wu Xiong-Xiong, Huo Ya-Shan, He Zhi-Hui. Tunable continuous domain bound states based on Fabry-Perot cavities and their applications. Acta Physica Sinica, doi: 10.7498/aps.73.20240861
    [5] Zhang Xiang, Wang Yue, Zhang Wan-Ying, Zhang Xiao-Ju, Luo Fan, Song Bo-Chen, Zhang Kuang, Shi Wei. Narrow band absorption and sensing properties of the THz metasurface based on single-walled carbon nanotubes. Acta Physica Sinica, doi: 10.7498/aps.73.20231357
    [6] Xia Zhao-Sheng, Liu Yu-Hang, Bao Zheng, Wang Li-Hua, Wu Bo, Wang Gang, Wang Hui, Ren Xin-Gang, Huang Zhi-Xiang. Strong circular dichroism chiral metasurfaces generated by quasi bound state in continuum domain. Acta Physica Sinica, doi: 10.7498/aps.73.20240834
    [7] Wang Yue, Wang Hao-Jie, Cui Zi-Jian, Zhang Da-Chi. Bound states in continuum domain of double resonant ring metal metasurfaces. Acta Physica Sinica, doi: 10.7498/aps.73.20231556
    [8] Liu Hui-Gang, Zhang Xiang-Yu, Nan Xue-Ying, Zhao Er-Gang, Liu Hai-Tao. All-dielectric metasurface two-parameter sensor based on quasi-bound states in continuum. Acta Physica Sinica, doi: 10.7498/aps.73.20231514
    [9] Yan Meng, Sun Ke, Ning Ting-Yin, Zhao Li-Na, Ren Ying-Ying, Huo Yan-Yan. Numerical study of the low- threshold nanolaser based on quasi-bound states in the continuum supported by resonant waveguide grating structures. Acta Physica Sinica, doi: 10.7498/aps.72.20221894
    [10] Zhang Wei, Wan Jing, Meng Lie, Luo Yao-Wei, Guo Ming-Rui. Microfluidic refractive index sensor with D-shape fiber and microtube coupling. Acta Physica Sinica, doi: 10.7498/aps.71.20221137
    [11] Meng Ling-Jun, Wang Meng-Yu, Shen Yuan, Yang Yu, Xu Wen-Bin, Zhang Lei, Wang Ke-Yi. Triple-layer-coated microspheres for refractive index sensor with internally referenced self-compensated thermal effect. Acta Physica Sinica, doi: 10.7498/aps.69.20191265
    [12] Zhang Wen-Jie, Liu Yu-Song, Guo Hao, Han Xing-Cheng, Cai An-Jiang, Li Sheng-Kun, Zhao Peng-Fei, Liu Jun. Methodology of improving sensitivity of silicon vacancy spin-based sensors based on double spiral coil RF resonance structure. Acta Physica Sinica, doi: 10.7498/aps.69.20200765
    [13] Liao Wen-Ying, Fan Wan-De, Li Hai-Peng, Sui Jia-Nan, Cao Xue-Wei. Quasi-crystal photonic fiber surface plasmon resonance sensor. Acta Physica Sinica, doi: 10.7498/aps.64.064213
    [14] Wang Jun-Ping, Qi Su-Yang, Liu Shi-Gang. Net sensitivity for open and short model based on layout optimization. Acta Physica Sinica, doi: 10.7498/aps.63.128503
    [15] Li Hui-Dong, Fu Hai-Wei, Shao Min, Zhao Na, Qiao Xue-Guang, Liu Ying-Gang, Li Yan, Yan Xu. In-fiber Mach-Zehnder interferometer based on fiber core etched air-bubble and core diameter mismatch for liquid refractive index sensing. Acta Physica Sinica, doi: 10.7498/aps.62.214209
    [16] Liu Ying-Gang, Che Fu-Long, Jia Zhen-An, Fu Hai-Wei, Wang Hong-Liang, Shao Min. Investigation on the characteristics of micro/nanofiber Bragg grating for refractive index sensing. Acta Physica Sinica, doi: 10.7498/aps.62.104218
    [17] Jiang Ying, Liang Da-Kai, Zeng Jie, Ni Xiao-Yu. Influence of monitoring point wavelength on axial strain sensitivity of high-birefringence fiber loop mirror. Acta Physica Sinica, doi: 10.7498/aps.62.064216
    [18] Liang Rui-Bing, Sun Qi-Zhen, Wo Jiang-Hai, Liu De-Ming. Theoretical investigation on refractive index sensor basedon Bragg grating in micro/nanofiber. Acta Physica Sinica, doi: 10.7498/aps.60.104221
    [19] Gong Yuan, Guo Yu, Rao Yun-Jiang, Zhao Tian, Wu Yu, Ran Zeng-Ling. Sensitivity analysis of hybrid fiber Fabry-Pérot refractive-index sensor. Acta Physica Sinica, doi: 10.7498/aps.60.064202
    [20] Hou Jian-Ping, Ning Tao, Gai Shuang-Long, Li Peng, Hao Jian-Ping, Zhao Jian-Lin. Sensitivity analysis of refractive index measurement based on intermodal interference in photonic crystal fiber. Acta Physica Sinica, doi: 10.7498/aps.59.4732
Metrics
  • Abstract views:  712
  • PDF Downloads:  30
  • Cited By: 0
Publishing process
  • Received Date:  01 July 2025
  • Accepted Date:  30 July 2025
  • Available Online:  12 August 2025
  • /

    返回文章
    返回