-
All-dielectric metasurfaces based on bound states in the continuum (BIC) are widely used in the field of micro-nano biosensors due to their ultra-high quality factor (Q), which can effectively enhance the interaction between light and matter. In this paper, a rectangular all-dielectric dimer metasurface based on BIC is proposed. The finite element method is used for simulation, and time-domain coupled mode theory is employed for theoretical analysis. For the parameters of the two rectangular components in the metasurface, such as their angles, refractive indices, widths, and heights, four different symmetry-breaking modes are designed (Fig. 1). All of these modes realize the transformation from symmetry-protected BIC (SP-BIC) to quasi-BIC (QBIC), with the maximum Q factor reaching 1.75×104 (Fig. 2). These four breaking methods cover the current common SP-BIC breaking methods and provide choices for device design. After introducing the same asymmetric parameters, the QBIC resonance excited by the metasurface under the four control modes is dominated by magnetic dipoles (Fig. 6). The sensitivity of the designed sensor device is almost at the same level, while the difference in figure of merit (FOM) can reach three orders of magnitude (Fig. 7). In addition, under the same control mode, the sensitivity and FOM of the metasurface with positive breaking are higher than those with negative breaking when the absolute values of the breaking parameters are equal (Fig. 8). After optimization and adjustment, the sensitivity and FOM of the metasurface reach 395 nm/RIU and 3502 RIU-1, respectively, and its comprehensive performance index is better than most existing studies (Table 1). The metasurface provides an effective means for sensing detection in the biological and medical fields. At the same time, this research provides a new idea for the design of refractive index sensors based on BIC.
-
Keywords:
- all-dielectric metasurface /
- bound states in the continuum (BIC) /
- refractive index sensing /
- sensitivity
-
[1] Liu Z C, Guo T B, Tan Q, Hu Z P, Sun Y W, Fan H X, Zhang Z, Jin Y, He S L 2023 Nano Lett. 23 10441
[2] Chen Z Q, Li P, Zhang S, Chen Y Q, Liu P, Duan H G 2019 Nanotechnology 30 335201
[3] Cheng Y X, Xu H, Yu H F, Huang L Q, Gu Z C, Chen Y F, He L H, Chen Z Q, Hou H L 2025 Acta Phys. Sin. 74 067801 (in Chinese) [成昱轩,许辉,于鸿飞,黄林琴,谷志超,陈玉峰,贺龙辉,陈智全,侯海良 2025 物理学报 74 067801]
[4] Yang H, Peng M Y, He H R, Yu D, Ou K, Wang Q, Luo X H, Hu Y Q, Jing H, Duan H G 2025 Laser Photonics Rev. 19 2401398
[5] He H R, Yu D, Gu Y J, Yang H, Xu J, Peng M Y, Xie Q, Jiang Y T, Zhang S H, Hu Y Q, Jing H, Duan H G 2025 Laser Photonics Rev. e00564
[6] Yang H, Ou K, Liu Q, Peng M Y, Xie Z W, Jiang Y T, Jia H H, Cheng X B, Jing H, Hu Y Q 2025 Light: Sci. Appl. 14 63
[7] Yang H, Ou K, Wan H Y, Hu Y Q, Wei Z Y, Jia H H, Cheng X B, Liu N, Duan H G 2023 Mater. Today 67 424
[8] Marinica D C, Borisov A G, Shabanov S V 2008 Phys. Rev. Lett. 100 183902
[9] Li Z L, Nie G Z, Wang J H, Zhong F, Zhan S P 2024 Phys. Rev. Applied. 21 034039
[10] Sadrieva Z F, Sinev I S, Koshelev K L, Samusev A, Iorsh I V, Takayama O, Malureanu R, Bogdanov A A, Lavrinenko A V 2017 ACS Photonics 4 723
[11] Plotnik Y, Peleg O, Dreisow F, Heinrich M, Nolte S, Szameit A, Segev M 2011 Phys. Rev. Lett. 107 183901
[12] Cong L Q, Singh R 2019 Adv. Opt. Mater. 7 1900383
[13] Jahani Y, Arvelo E R, Yesilkoy F, Koshelev K, Cianciaruso C, De Palma M, Kivshar Y, Altug H 2021 Nat. Commun. 12 3246
[14] Song S Z, Yu S L, Li H, Zhao T G 2022 Laser Phys. 32 025403
[15] Chen W J, Li M, Zhang W H, Chen Y H 2023 Nanophotonics 12 1147
[16] Zhao J J, Fan X Y, Fang W J, Xiao W X, Sun F X, Li C C, Wei X, Tao J F, Wang Y L, Kumar S 2024 Sensors 24 3943
[17] Li Z L, Xie M X, Nie G Z, Wang J H, Huang L J 2023 J. Phys. Chem. Lett. 14 10762
[18] Zhang T, Huo Y P, Xu C M, Li J M, Zhang Z L 2024 J. Opt. Soc. Am. B 42 50
[19] Liu H G, Zhang X Y, Nan X Y, Zhao E G, Liu H T 2024 Acta Phys. Sin. 73 047802 (in Chinese) [刘会刚,张翔宇,南雪莹,赵二刚,刘海涛 2024 物理学报 73 047802]
[20] Li N, Chen H, Zhao Y X, Wang Y T, Su Z X, Liu Y, Huang L L 2025 Nanophotonics 14 485
[21] Xu Y L, Yang Y Y, Li H X, Ren L R 2025 J. Mater. Chem. C 13 1747
[22] Yang N N, Lang T T, Cen W Y, Yu Z Y, Xiao M Y, Zhang J H, Qiu Y Q 2023 J. Opt. Soc. Am. B 40 366
[23] Liu J K, Dai H X, Ju J Q, Cheng K 2024 Phys. Chem. Chem. Phys. 26 9462
[24] Liu J K, Lu Z N, Dai H X, Ju J Q, Zhao H W, Cao K Q 2024 J. Opt. 27 015001
[25] Liu W J, Liang Z Z, Qin Z, Shi X Y, Yang F M, Meng D J 2022 Results Phys. 32 105125
[26] Yu S L, Wang Y S, Gao Z, Li H, Song S Z, Yu J G, Zhao T G 2022 Opt. Express 30 4084
[27] Gao J Y, Liu J, Yang H M, Liu H S, Zeng G H, Huang B 2023 Opt. Express 31 44703
[28] Wu Q H, Wang J, Wang W, Lin J, Jin P, Liu S T, Zhou K Y 2024 Opt. Lett. 49 4186
[29] Chen Z Q, Yang H L, Long X L, Xiao Y P, He L H, Nie G Z, Hou H L, Lu X, Xu H 2025 Sci. China-Phys. Mech. Astron. 55 264212 (in Chinese) [陈智全,阳弘黎,龙鑫琳,肖云鹏,贺龙辉,聂国政,侯海良,鲁潇,许辉 2025 中国科学:物理学 力学 天文学 55 264212]
[30] Wang P F, He F Y, Liu J J, Shu F Z, Fang B, Lang T T, Jing X F, Hong Z 2022 Photonics Res. 10 2743
[31] Fan S, Suh W, Joannopoulos J D 2003 J. Opt. Soc. Am. A 20 569
[32] Yu J B, Yao W Z, Qiu M, Li Q 2025 Light: Sci. Appl. 14 174
[33] Koshelev K, Lepeshov S, Liu M K, Bogdanov A, Kivshar Y 2018 Phys. Rev. Lett. 121 193903
[34] Chen W J, Chen Y T, Liu W 2019 Phys. Rev. Lett. 122 153907
[35] Chen W J, Chen Y T, Liu W 2019 Laser Photonics Rev. 13 1900067
[36] Koshelev K, Favraud G, Bogdanov A, Kivshar Y, Fratalocchi A 2019 Nanophotonics 8 725
[37] Papasimakis N, Fedotov V A, Marinov K, Zheludev N I 2009 Phys. Rev. Lett. 103 093901
[38] Kaelberer T, Fedotov V A, Papasimakis N, Tsai D P, Zheludev N I 2010 Science 330 1510
[39] Huang Y W, Chen W T, Wu P C, Fedotov V, Savinov V, Ho Y Z, Chau Y F, Zheludev N I, Tsai D P 2012 Opt. Express 20 1760
[40] Long X L, Chen Z Q, Yang H L, Xiao Y P, He L H, Nie G Z, Zhang X J, Lu X, Hou H L, Xu H 2025 Acta Opt. Sin. 45 1023001 (in Chinese) [龙鑫琳,陈智全,阳弘黎,肖云鹏,贺龙辉,聂国政,张小姣,鲁潇,侯海良,许辉 2025 光学学报 45 1023001]
[41] Wiersig J 2014 Phys. Rev. Lett. 112 203901
[42] Hodaei H, Hassan A U, Wittek S, Garcia-Gracia H, El-Ganainy R, Christodoulides D N, Khajavikhan M 2017 Nature 548 187
[43] Yan D, Shalin A S, Wang Y, Lai Y, Xu Y D, Hang Z H, Cao F, Gao L, Luo J 2025 Phys. Rev. Lett. 134 243802
[44] Fan H Y, Luo J 2022 Acta Phys. Sin. 71 247802 (in Chinese) [范辉颖,罗杰 2022 物理学报 71 247802]
[45] Özdemir Ş K, Rotter S, Nori F, Yang L 2019 Nat. Mater. 18 783
Metrics
- Abstract views: 78
- PDF Downloads: 8
- Cited By: 0