Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fabrication and characterization of high-tunability, low-loss Ba0.6Sr0.4TiO3 thin films by pulsed laser deposition

Yu Chenxi Jiang Haolin Xiao Zhifeng Bao Xiaoqing Wang Dan Deng Gongxun Wang Aiji

Citation:

Fabrication and characterization of high-tunability, low-loss Ba0.6Sr0.4TiO3 thin films by pulsed laser deposition

Yu Chenxi, Jiang Haolin, Xiao Zhifeng, Bao Xiaoqing, Wang Dan, Deng Gongxun, Wang Aiji
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • Microwave tunable devices are critical components in phased array antennas and RF front-ends, and essential for the precisely control of frequency, phase and amplitude. Although bulk dielectric ceramic materials are widely used in these devices, they pose challenges for integration. In contrast, dielectric thin films offer significant advantages, including ease of integration, low cost, high tuning speed, low power consumption, compact size and continuous tunability, making them more compatible with modern integrated circuit fabrication processes. Currently, a key prerequisite for designing devices based on dielectric thin films is the use of low-permittivity, low-loss substrates to mitigate their impact on the overall dielectric performance, while simultaneously enhancing the crystalline quality of the films themselves. However, suitable substrates for epitaxial growth, such as MgO and Si, exhibit a significant lattice mismatch (>5%) with dielectric thin films. This poses a substantial challenge to achieving high-quality epitaxial growth, making it difficult to obtain dielectric thin films with both high tunability and low loss.
    To address this challenge, we employed Pulsed Laser Deposition (PLD) to provide high-energy, non-equilibrium growth conditions. Through the precise control of parameters such as substrate temperature and growth oxygen pressure, we identified a suitable growth window that induces the Domain Matching Epitaxy (DME) mechanism which effectively accommodates the mismatch strain, enabling the successful fabrication of high-performance Ba0.6Sr0.4TiO3 (BSTO) epitaxial thin films on MgO(001) substrates. To investigate the effect of substrate temperature on the properties of the BSTO thin films, a series of films were prepared on MgO(001) substrates at temperatures of 680 ℃, 700 ℃, 730 ℃, 760 ℃ and 780 ℃, while other growth conditions were held constant. The study reveals that as the substrate temperature increases, the crystallinity, tunability, and figure of merit (FOM) of the films are significantly improved. The film grown at 780 ℃ exhibited a high tunability of 67.2%, a quality (Q) factor of 49, and a FOM of 32.93. Compared to previously reported results, the Ba0.6Sr0.4TiO3 thin films prepared in this study demonstrate superior dielectric tunability and lower dielectric loss.
    To explore the thermal stability of the Ba0.6Sr0.4TiO3 thin film, its performance was characterized using Raman spectroscopy and Capacitance-Voltage measurements over a temperature range of 25 ℃ to 225 ℃. Raman spectra indicated that the lattice vibrational modes of the Ba0.6Sr0.4TiO3 film changed with increasing temperature. Between 175 ℃ and 225 ℃, the film completely transformed from the tetragonal phase to the Raman-inactive cubic phase. Concurrently, the nonlinear "butterfly" characteristic of the C-V curves vanished due to the disappearance of ferroelectric domains. The dielectric constant and tunability reached their maximum values at approximately 60 ℃ before decreasing, whereas the Q-factor peaked at around 205 ℃. The motion of domain walls within the film is constrained not only by internal stress fields and defects but also by strong pinning effects at the film-substrate interface and the free surface of the film. This research systematically analyzes the influence of factors such as surface morphology, crystal structure, and temperature on the dielectric properties of Ba0.6Sr0.4TiO3 epitaxial thin films. It lays a foundation for elucidating the broadband structure-property relationships in Ba1-xSrxTiO3 thin films and highlights their significant potential for applications in tunable microwave devices.
  • [1]

    Emadi F, Nemati A, Hinterstein M, Adabiroozjaei E 2019 Ceram. Int. 45 5503

    [2]

    Borderon C, Ginestar S, Gundel H W, Haskou A, Nadaud K, Renoud R, Sharaiha A 2020 IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 67 1733

    [3]

    Ma H, Lou J, Wang J, Dong B W, Feng M D, Li Z Q, Qu S B 2019 J. Air Force Eng. Univ. 20 53 (in Chinese) [马华,娄菁,王军,董博文,冯明德,李智强,屈绍波 2019 空军工程大学学报 20 53]

    [4]

    Johnson K M 1962 J. Appl. Phys. 33 2826

    [5]

    Dong H T, Jian J, Li H F, Jin D R, Chen J G, Cheng J R 2017 J. Alloys Compd. 725 54

    [6]

    Bayrak T, Ozgit-Akgun C, Goldenberg E 2017 J. Non-Cryst. Solids 475 76

    [7]

    Subramanyam G, Cole M W, Sun N X, Kalkur T S, Sbrockey N M, Tompa G S, Guo X M, Chen C L, Alpay S P, Rossetti G A Jr, Dayal K, Chen L Q, Schlom D G 2013 J. Appl. Phys. 114 191301

    [8]

    Liu H G, Avrutin V, Zhu C Y, Özgür Ü, Yang J, Lu C Z, Morkoç H 2013 J. Appl. Phys. 113 044108

    [9]

    Luo W, Chen X, Fan J, Hu Y, Zheng Z, Fu Q 2016 Ceram. Int. 42 17229

    [10]

    Jiao T J, You C, Tian N, Ma L, Duan Z F, Yan F X, Ren P R, Zhao G Y 2022 Appl. Surf. Sci. 590 153112

    [11]

    Wang J, Zhang T, Xia H, Xiang J, Li W, Duo S 2008 J. Sol-Gel Sci. Technol. 47 102

    [12]

    Wander A, Bush I J, Harrison N M 2003 Phys. Rev. B 68 233405

    [13]

    Misirlioglu I B, Alpay S P, He F, Wells B O 2006 J. Appl. Phys. 99 104103

    [14]

    Peng L S J, Xi X X, Moeckly B H, Alpay S P 2003 Appl. Phys. Lett. 83 4592

    [15]

    Tagantsev A K, Sherman V O, Astafev K F, Venkatesh J, Setter N 2003 J. Electroceram. 11 5

    [16]

    Acikel B 2002 High Performance Barium Strontium Titanate Varactor Technology for Low Cost Circuit Applications Ph.D. Dissertation (Santa Barbara: University of California)

    [17]

    Su H T, Lancaster M J, Huang F, Wellhofer F 2000 Microwave Opt. Technol. Lett. 24 155

    [18]

    Gao L, Guan Z, Huang S, Liang K, Chen H, Zhang J 2019 J. Mater. Sci.: Mater. Electron. 30 12821

    [19]

    J. Schultheiß, H. Kungl, J. Koruza 2019 J. Appl. Phys. 125 174101

    [20]

    Damjanovic D 1998 Rep. Prog. Phys. 61 1267

    [21]

    Xiong P Y, Ni Z, Lin Z F, Bai X B, Liu T X, Zhang X Y, Yuan J, Wang X, Shi J, Jin K 2023 Acta Phys. Sin. 72 097701 (in Chinese)[熊沛雨, 倪壮, 林泽丰, 柏欣博, 刘天想, 张翔宇, 袁洁, 王旭, 石兢, 金魁 2023 物理学报 72 097701]

    [22]

    Shen D K, Yang Z H, Guo P Y, Zhao M L, Ge J, Deng G X, Wang A J 2024 J. Chin. Ceram. Soc. 52 229 (in Chinese)[沈德坤, 杨淄涵, 郭沛源, 赵梦玲, 葛健, 邓功勋, 王爱记 2024 硅酸盐学报 52 229]

    [23]

    Kim H S, Kim H G, Kim I D, Kim K B, Lee J C 2005 Appl. Phys. Lett. 87 212903

    [24]

    Zhang J, Zhai J, Chou X, Shao J, Lu X, Yao X 2009 Acta Mater. 57 4491

    [25]

    Chung U, Elissalde C, Maglione M, Estournès C, Pate M, Ganne J P 2008 Appl. Phys. Lett. 92 042902

    [26]

    Zhu X H, Zheng D N, Peng W, Li J, Chen Y F 2006 Mater. Lett. 60 1224

    [27]

    Goux L, Gervais M, Gervais F, Catherinot A, Champeaux C, Sabary F 2002 Mater. Sci. Semicond. Process. 5 189

    [28]

    Wang S X, Hao J H, Wu Z P, Wang D Y, Zhuo Y, Zhao X Z 2007 Appl. Phys. Lett. 91 252908

    [29]

    Zhi Y, Liu D, Qu W, Luan Z, Liu L 2007 Appl. Phys. Lett. 90 042904

    [30]

    Feng Z, Chen W, Tan O K 2009 Mater. Res. Bull. 44 1709

    [31]

    Qin W F, Zhu J, Xiong J, Tang J L, Feng X 2007 J. Electron. Sci. Technol. 5 303

    [32]

    Qin Y X, Li Z, Liang W X, Liu N, Zhao P 2018 Piezoelectr. Acoustoopt. 40 95 (in Chinese) [秦杨晓,李卓,梁文学,刘娜,赵鹏 2018 压电与声光 40 95]

    [33]

    Xu Q, Zhang X F, Huang Y H, Chen W, Liu H X, Chen M, Kim B H 2009 J. Alloys Compd. 488 448

    [34]

    Qi W H, Wang Z, Li X F, Yu R C, Wang H H 2022 Acta Phys. Sin. 71 178103 (in Chinese)[戚炜恒,王震,李翔飞,禹日成,王焕华 2022 物理学报 71 17 178103]

    [35]

    Zhang Q W, Zhai J W, Yue Z X 2013 Acta Phys. Sin. 62 237702 (in Chinese)[张奇伟,翟继卫,岳振星 2013 物理学报 62 23 237702]

    [36]

    Zhang Q W, Zhai J W, Kong L B, Yao X 2012 J. Appl. Phys. 112 124112

    [37]

    Zhang J J, Zhai J W, Chou X J, Shao J, Lu X, Yao X 2009 Acta Mater. 57 4491

    [38]

    Verma A, Raghavan S, Stemmer S, Jena D 2015 Appl. Phys. Lett. 107 192908

    [39]

    Chen Y, Zhou H J, Xie S X, Xu Q, Zhu J G, Wang Q Y 2021 Adv. Mech. 51 755 [陈渝,周华将,谢少雄,徐倩,朱建国,王清远 2021 力学进展 51 755]

    [40]

    Chen J H, Su X, Yuan T, Tang W B, Ding S C, Shi Y, Li F M, Chen K, Yu Y, Zhang H C, Zhu S Y, Yuan G L, Lu J 2025 Adv. Mater. Interfaces 12 2400949

    [41]

    Tang Q W, Shen M R, Fang L 2006 Acta Phys. Sin. 55 1346 (in Chinese)[唐秋文,沈明荣,方亮 2006 物理学报 55 1346]

    [42]

    Zhu X H, Chong N, Chan H L, Choy C, Wong K, Liu Z G, Ming N B 2002 Appl. Phys. Lett. 80 3376

    [43]

    Lu X M, Huang F Z, Zhu J S 2020 Acta Phys. Sin. 69 127704 (in Chinese)[吕笑梅,黄凤珍,朱劲松 2020 物理学报 69 127704]

    [44]

    Alema F, Pokhodnya K 2015 J. Adv. Dielectr. 5 1550030

    [45]

    Sahoo S K, Misra D, Sahoo M, MacDonald C A, Bakhru H, Agrawal D C, Mohapatra Y N, Majumder S B, Katiyar R S 2011 J. Appl. Phys. 109 064108

    [46]

    Zhang J R, Chen C, Xiang S Q, Zhang J C, Qi Q, Huang R, Yu Y, Chen K, Han Z D, Yuan G L, Liu J M, Zhu J S 2022 Mater. Res. Express 9 106303

  • [1] Jin Cheng-Cheng, Ding Ling-Ling, Song Zi-Xin, Tao Hai-Jun. Improvement of performance of perovskite solar cells through BaTiO3 doping regulated built-in electric field. Acta Physica Sinica, doi: 10.7498/aps.73.20231139
    [2] Jin Xin, Tao Lei, Zhang Yu-Yang, Pan Jin-Bo, Du Shi-Xuan. Research progress of novel properties in several van der Waals ferroelectric materials. Acta Physica Sinica, doi: 10.7498/aps.71.20220349
    [3] Yang Ru-Xia, Lu Yu-Ming, Zeng Li-Zhu, Zhang Lu-Jia, Li Guan-Nan. Effect of Gd doping on the structure, dielectric and multiferroic properties of 0.7BiFe0.95Ga0.05O3-0.3BaTiO3 ceramics. Acta Physica Sinica, doi: 10.7498/aps.69.20200175
    [4] Wang Hui, Xu Meng, Zheng Ren-Kui. Research progress and device applications of multifunctional materials based on two-dimensional film/ferroelectrics heterostructures. Acta Physica Sinica, doi: 10.7498/aps.69.20191486
    [5] Gao Rong-Zhen, Wang Jing, Wang Jun-Sheng, Huang Hou-Bing. Investigation into electrocaloric effect of different types of ferroelectric materials by Landau-Devonshire theory. Acta Physica Sinica, doi: 10.7498/aps.69.20201195
    [6] Lu Xiao-Mei, Huang Feng-Zhen, Zhu Jin-Song. Domains in ferroelectrics: formation, structure, mobility and related properties. Acta Physica Sinica, doi: 10.7498/aps.69.20200312
    [7] Tan Cong-Bing, Zhong Xiang-Li, Wang Jin-Bin. Polar topological structures in ferroelectric materials. Acta Physica Sinica, doi: 10.7498/aps.69.20200311
    [8] Zhu Li-Feng, Pan Wen-Yuan, Xie Yan, Zhang Bo-Ping, Yin Yang, Zhao Gao-Lei. Effect of regulation of defect ion on ferroelectric photovoltaic characteristics of BiFeO3-BaTiO3 based perovskite materials. Acta Physica Sinica, doi: 10.7498/aps.68.20190996
    [9] Wu Hua-Ping, Ling Huan, Zhang Zheng, Li Yan-Biao, Liang Li-Hua, Chai Guo-Zhong. Research progress on photocatalytic activity of ferroelectric materials. Acta Physica Sinica, doi: 10.7498/aps.66.167702
    [10] Zhao Xue-Tong, Liao Rui-Jin, Li Jian-Ying, Wang Fei-Peng. Effect of direct current degradation on dielectric property of CaCu3Ti4O12 ceramic. Acta Physica Sinica, doi: 10.7498/aps.64.127701
    [11] Zhang Qi-Wei, Zhai Ji-Wei, Yue Zhen-Xing. Raman spectra studies on (Ba,Sr)TiO3 ceramics under dc electric fields. Acta Physica Sinica, doi: 10.7498/aps.62.237702
    [12] Li Zhi-Min, Shi Jian-Zhang, Wei Xiao-Hei, Li Pei-Xian, Huang Yun-Xia, Li Gui-Fang, Hao Yue. First principles calculation of electronic structure for Al-doped 3C-SiC and its microwave dielectric properties. Acta Physica Sinica, doi: 10.7498/aps.61.237103
    [13] Yu Jian, Liao Jia-Xuan, Jin Long, Wei Xiong-Bang, Wang Peng, Wei Xu-Bo, Xu Zi-Qiang. Preparation and dielectric properties of BST films with high tunability. Acta Physica Sinica, doi: 10.7498/aps.60.077701
    [14] Chen Chao, Jiang Xiang-Ping, Wei Wei, Li Xiao-Hong, Wei Hong-Bin, Song Fu-Sheng. Micro-morphology and dielectric properties for (K0.45Na0.55)NbO3 lead-free piezoelectric crystal. Acta Physica Sinica, doi: 10.7498/aps.60.107704
    [15] Wang Shang-Bao, Dong Ze-Hua, Xu Zhi-Mou, Peng Jing. Metal organic decomposition technique and optical propertiesof amorphous Ba0.7Sr0.3TiO3 thin films. Acta Physica Sinica, doi: 10.7498/aps.60.057702
    [16] Ding Nan, Tang Xin-Gui, Kuang Shu-Juan, Wu Jun-Bo, Liu Qiu-Xiang, He Qin-Yu. Effect of MnO2 additive on the piezoelectric and dielectric properties of Ba(Zr, Ti)O3 ceramics. Acta Physica Sinica, doi: 10.7498/aps.59.6613
    [17] Zeng Tao, Dong Xian-Lin, Mao Chao-Liang, Liang Rui-Hong, Yang Hong. Effects of porosity and grain sizes on the dielectric and piezoelectric properties of porous PZT ceramics and their mechanism. Acta Physica Sinica, doi: 10.7498/aps.55.3073
    [18] Zhang Li-Na, Zhao Su-Chuan, Zheng Liao-Ying, Li Guo-Rong, Yin Qing-Rui. Microstructure, dielectric and piezoelectric properties of mixed-layered Bi7Ti4NbO21 ferroelectric ceramics. Acta Physica Sinica, doi: 10.7498/aps.54.2346
    [19] Hui Rong, Zhu Jun, Lu Wang-Ping, Mao Xiang-Yu, Qiang Feng, Chen Xiao-Bing. Dielectric study on relaxor-like phase transition of lanthanum doped bismuth layer-structured ferroelectrics. Acta Physica Sinica, doi: 10.7498/aps.53.276
    [20] ZHANG LEI, ZHONG WEI-LIE, PENG YI-PING, WANG YU-GUO. A CORRELATION BETWEEN THE FERROELECTRIC PHASE TRANSITION AND THE CELL VOLUME IN BARIUM STRONTIUM TITANATE. Acta Physica Sinica, doi: 10.7498/aps.49.1371
Metrics
  • Abstract views:  103
  • PDF Downloads:  2
  • Cited By: 0
Publishing process
  • Available Online:  14 August 2025
  • /

    返回文章
    返回