Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Tunable continuous domain bound states based on Fabry-Perot cavities and their applications

Ren Yang Li Zhen-Xiong Zhang Lei Cui Wei Wu Xiong-Xiong Huo Ya-Shan He Zhi-Hui

Citation:

Tunable continuous domain bound states based on Fabry-Perot cavities and their applications

Ren Yang, Li Zhen-Xiong, Zhang Lei, Cui Wei, Wu Xiong-Xiong, Huo Ya-Shan, He Zhi-Hui
PDF
HTML
Get Citation
  • Excellent optical absorbers are always characterized by high quality factors and perfect absorption; however, these absorbers usually encounter the ohmic losses due to traditional surface plasmon resonance, which limits their absorption performance in practical applications. To address the problem, a tunable bound state in the continuum (BIC) based on Fabry-Perot cavity is proposed in this work. Figure (a) shows the structural model of the designed Fabry-Perot cavity absorber, which consists of Ag as a substrate, a layer of the dielectric material Al2O3 above the Ag substrate, and a high-refractive-index grating as the top dielectric layer Si ridge. By adjusting the thickness parameter d of Al2O3, the transformation of BIC into q-BIC is achieved. Specifically, when d is increased from 273 nm to 298 nm, the BIC can be transformed into quasi-BIC, and the perfect absorption of the absorber in the continuum spectrum can be increased to 100%. In this work, the factors affecting the perfect absorption are explored by using the interference theory; theoretical calculations of the quasi-BIC are carried out by using the coupled mode theory and impedance matching theory; the physical mechanism of the BIC is explained by using the electric and magnetic field theory. The BIC is caused by the electric and magnetic dipole modes as well as the mirror image of the base Ag, which causes the interferential phase cancellation effect. Compared with the conventional absorber, the proposed absorber has excellent structural parameter robustness and a wide range of BIC modulation. More importantly, the absorber has excellent sensing performance with a maximum sensitivity of up to 34 nm/RIU and a maximum quality factor of 9.5. Last but not least, the absorber also achieves dual-frequency open-light performance, the maximum modulation depth and the minimum insertion loss of the dual-frequency switch reach 99.4% and 0.0004 dB, respectively. These findings have significant implications in the fields of photonics, optical communication, and sensor technology.
      Corresponding author: He Zhi-Hui, hezh@yau.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62065017, 12004327, 52303352), the Key Research and Development Program of Shaanxi Province, China (Grant No. 2024GX-YBXM-097), the Startup Foundation for Doctors of Yan’an University, China (Grant No. YAU202313801), the China Postdoctoral Science Foundation (Grant No. 2020M680317), and the Natural Science Foundation of Shaanxi Province, China (Grant No. 2021JM-414).
    [1]

    Ali A, Mitra A, Aïssa B 2022 Nanomaterials 12 1027Google Scholar

    [2]

    Chen Y, Ai B, Wong Z J 2020 Nano Converg. 7 18Google Scholar

    [3]

    Martinez F, Maldovan M 2022 Mater. Today Phys. 27 100819Google Scholar

    [4]

    Padilla W J, Fan K 2022 Metamaterial Eectromagnetic Wave Absorbers (Springer Nature) p12

    [5]

    Nie G, Shi Q, Zhu Z, Shi J 2014 Appl. Phys. Lett. 105 201909Google Scholar

    [6]

    Luo X, Liu Z, Wang L, Liu J, Lin Q 2018 Appl. Phys. Express 11 105102Google Scholar

    [7]

    Lavchiev V M, Jakoby B, Hedenig U, Grille T, Irsigler P, Ritchie G, Kirkbride J, Lendl B SENSORS 2014 IEEE, Valencia, November 2–5, 2014 p645

    [8]

    Ren Y, Cui W, Yang Z, Xiong B, Zhang L, Li Z, Lu S, Huo Y, Wu X, Li G 2024 Opt. Mater. 149 115073Google Scholar

    [9]

    Jiang H, Sabarinathan J, Manifar T, Mittler S 2009 J. Lightwave Technol. 27 2264Google Scholar

    [10]

    Tarumaraja K A, Menon P S, Said F A, Jamil N A, Ehsan A A, Shaari S, Majlis B Y, Jalar A 2016 IEEE International Conference on Semiconductor Electronicsp, Kuala Lumpur Malaysia, August 17–19, 2016 p79

    [11]

    Lin H, Lin K T, Yang T, Jia B 2021 Adv. Mater. Technol. 6 2000963Google Scholar

    [12]

    Boardman A D, Grimalsky V V, Kivshar Y S, Koshevaya S V, Lapine M, Litchinitser N M, Malnev V N, Noginov M, Rapoport Y G, Shalaev V M 2011 Laser Photonics Rev. 5 287Google Scholar

    [13]

    Kowerdziej R, Ferraro A, Zografopoulos D C, Caputo R 2022 Adv. Opt. Mater. 10 2200750Google Scholar

    [14]

    Jin R, Huang L J, Zhou C B, Guo J, Fu Z, Chen J, Wang J, Li X, Yu F, Chen J 2023 Nano Lett. 23 9105Google Scholar

    [15]

    Zhou C B, Huang L J, Jin R, Xu L, Li G H, Rahmani M, Chen X S, Lu W, Miroshnichenko A E 2023 Laser Photonics Rev. 17 2200564Google Scholar

    [16]

    Koshelev K, Bogdanov A, Kivshar Y 2019 Sci. Bull. 64 836Google Scholar

    [17]

    Masoudian Saadabad R, Huang L J, Miroshnichenko A E 2021 Phys. Rev. B 104 235405Google Scholar

    [18]

    Yuan L, Lu Y Y 2017 Opt. Lett. 42 4490Google Scholar

    [19]

    Jordan P, Von Neumann J, Wigner E P 1993 The Collected Works of Eugene Paul Wigner: Part A: The Scientific Papers (Springer Berlin Heidelberg) p298

    [20]

    Xie P, Liang Z C, Jia T T, Li D M, Chen Y X, Chang P J, Zhang H, Wang W 2021 Phys. Rev. B 104 125446Google Scholar

    [21]

    Huang L J, Jin R, Zhou C B, Li G H, Xu L, Overvig A, Deng F, Chen X H, Lu W, Alù A, Miroshnichenko A E 2023 Nat. Commun. 14 3433Google Scholar

    [22]

    Wan S, Qin C H, Wang K D, Li Y C, Guan C Y, Lv B, Li W J, Shi J H 2022 J. Appl. Phys. 131 213104Google Scholar

    [23]

    Wu F, Qi X, Qin M B, Luo M, Long Y, Wu J J, Sun Y, Jiang H T, Liu T T, Xiao S Y, Chen H 2024 Phys. Rev. B 109 085436Google Scholar

    [24]

    Wu F, Wu J J, Guo Z W, Jiang H T, Sun Y, Li Y H, Ren J, Chen H 2019 Phys. Rev. Appl. 12 014028Google Scholar

    [25]

    Gao E D, Li H J, Liu C, Ruan B X, Li M, Zhang B H, Zhang Z 2022 Phys. Chem. Chem. Phys. 24 20125Google Scholar

    [26]

    Moriasa K, Hasebe H, Sugimoto H, Fujii M 2023 J. Appl. Phys. 133 173102Google Scholar

    [27]

    Wang Y X, Cui W, Ren Y, Li Z X, Zhang L, Lei W L, Huo Y S, He Z H 2024 Infrared Phys. Technol. 136 105091Google Scholar

    [28]

    Ki Y G, Jeon H W, Kim S J 2024 Electronics 13 753Google Scholar

    [29]

    Johnson P B, Christy R W 1972 Phys. Rev. B 6 4370Google Scholar

    [30]

    Schinke C, Christian Peest P, Schmidt J, Brendel R, Bothe K, Vogt M R, Kröger I, Winter S, Schirmacher A, Lim S 2015 Aip Adv. 5 067168Google Scholar

    [31]

    Malitson I H, Dodge M J 1972 J. Opt. Soc. Am 62 1405

    [32]

    Alaee R, Farhat M, Rockstuhl C, Lederer F 2012 Opt. Express 20 28017Google Scholar

    [33]

    Xie Y D, Liu Z M, Zhou F Q, Luo X, Cheng Z Q, Yang R H, Cheng J, Yang G X 2023 Diamond Relat. Mater. 137 110100Google Scholar

    [34]

    Qing Y M, Ma H F, Cui T J 2018 Opt. Express 26 32442Google Scholar

    [35]

    Li H J, Wang L L, Zhai X 2016 Sci. Rep. 6 36651Google Scholar

    [36]

    Smith D, Vier D, Koschny T, Soukoulis C 2005 Phys. Rev. E 71 036617Google Scholar

    [37]

    Wang Y X, Cui W, Wang X J, Lei W L, Li L Q, Cao X L, He H, He Z H 2022 Vacuum 206 111515Google Scholar

    [38]

    Gao E D, Cao G T, Deng Y, Li H J, Chen X S, Li G H 2024 Opt. Laser Technol. 168 109840Google Scholar

    [39]

    Li M, Li H J, Xu H, Xiong C X, Zhao M Z, Liu C, Ruan B X, Zhang B H, Wu K 2020 New J. Phys. 22 103030Google Scholar

    [40]

    Kim M, Kim S, Kim S 2022 Sci. Rep. 12 1445Google Scholar

    [41]

    Gao E D, Jin R, Fu Z C, Cao G T, Deng Y, Chen J, Li G H, Chen X S, Li H J 2023 Photonics Res. 11 456Google Scholar

  • 图 1  (a)基于连续谱中束缚态实现的可谐调完美吸收器的结构图; (b)吸收器的单元结构图; (c)吸收器单元结构的侧视图

    Figure 1.  (a) Structural diagram of a harmonic perfect absorber based on the realization of bound states in the continuous spectrum; (b) diagram of the unit structure of the absorber; (c) side view of the unit structure of the absorber.

    图 2  非对称FP谐振腔的干涉原理图

    Figure 2.  Interference schematic of an asymmetric FP resonant cavity.

    图 3  (a) Si/Al2O3/Ag超材料吸收器的吸收光谱和透射光谱; (b)参数d变化对吸收光谱的影响; (c) BIC和q-BIC与参数d的关系; (d) BIC的磁场分布; (e)BIC的电场分布

    Figure 3.  (a) Absorption and transmission spectra of Si/Al2O3/Ag metamaterial absorber; (b) effect of parameter d variation on the absorption spectra; (c) BIC and q-BIC versus parameter d; (d) magnetic field distribution of BIC; (e) electric field distribution of BIC.

    图 4  (a) CMT计算和FDTD仿真的吸收光谱; (b)吸收光谱的有效阻抗Zr的虚部和实部

    Figure 4.  (a) Absorption spectra for CMT calculation and FDTD simulation; (b) absorption spectra of the effective impedance of Zr in the imaginary and real parts.

    图 5  (a) Si/Al2O3/Ag超材料在不同d下的吸收光谱和磁场分布; (b) Si/Al2O3/Ag超材料在不同w下的吸收光谱和磁场分布

    Figure 5.  (a) Absorption spectra and magnetic field distribution of Si/Al2O3/Ag metamaterials at different d; (b) absorption spectra and magnetic field distribution of Si/Al2O3/Ag metamaterials at different w.

    图 6  (a) 4种不同结构吸收器的吸收光谱; (b)—(d) 4种不同结构吸收器的结构图

    Figure 6.  (a) Absorption spectra of four different structural absorbers; (b)–(d) structural diagrams of four different structural absorbers.

    图 7  (a)参数w随波长变化的吸收光谱; (b)参数h随波长变化的吸收光谱; (d)参数p随波长变化的吸收光谱

    Figure 7.  (a) Absorption spectra of parameter w varying with wavelength; (b) absorption spectra of parameter h as a function of wavelength; (c) absorption spectra of parameter p as a function of wavelength.

    图 8  (a)吸收器Δw的单元结构图; (b)吸收器Δh的单元结构图; (c)吸收器Δy的单元结构图; (d)参数Δw随波长变化的吸收光谱; (e)参数Δh随波长变化的吸收光谱; (f)参数Δy随波长变化的吸收光谱

    Figure 8.  (a) Unit structure diagram of absorber Δw; (b) unit structure diagram of absorber Δh; (c) unit structure diagram of absorber Δy; (d) absorption spectra of parameter Δw varying with wavelength; (e) absorption spectra of parameter Δh as a function of wavelength; (f) absorption spectra of parameter Δy as a function of wavelength.

    图 9  w = 155 nm时, (a)光源偏振角α和(b)光源入射角θ对BIC的影响; 分别是w = 140 nm时, (c)光源偏振角α和(d)光源入射角θ对BIC的影响

    Figure 9.  Effects of (a) the light source polarization angle α and (b) incidence angle θ on the BIC at w = 155 nm, respectively; effects of (c) the light source polarization angle α and (d) incidence angle θ on the BIC at w = 140 nm, respectively.

    图 10  (a)不同折射率下吸收器的吸收光谱; (b)不同折射率下吸收峰值和波长的变化; (c)不同折射率下半峰宽度和Q的变化; (d)不同折射率下灵敏度和品质因数的变化

    Figure 10.  (a) Absorption spectra of the absorber at different refractive indices; (b) variation of absorption peak and wavelength at different refractive indices; (c) variation of full width half maximum and Q at different refractive indices; (d) variation of sensitivity and figure of merit at different refractive indices.

    图 11  (a)参数d调控的单频开关; (b)参数d调控的双频异步开关

    Figure 11.  (a) Single-frequency switch regulated by parameter d; (b) dual-frequency asynchronous switch with parameter d modulation.

    表 1  本文吸收器的特性与文献进行比较

    Table 1.  Characterization of the absorber in this paper is compared with other published references.

    文献年份 模型 调制数目 吸收/% MD/% IL/dB
    2020[39] 石墨烯
    超材料
    双频 93.5 0.32
    85.6 0.25
    2022[37] 石墨烯/硅
    超表面
    单频 99.96 99.1 0.0015
    2022[40] 石墨烯
    调制器
    单频 99.7 0.0034
    2023[41] 石墨烯
    光栅
    双频 99.8 94.72 0.012
    99.9 94.98 0.08
    本工作 Si/Al2O3/Ag
    超材料
    双频 99.9 99.4 0.0004
    96.7 98.8 0.015
    DownLoad: CSV
  • [1]

    Ali A, Mitra A, Aïssa B 2022 Nanomaterials 12 1027Google Scholar

    [2]

    Chen Y, Ai B, Wong Z J 2020 Nano Converg. 7 18Google Scholar

    [3]

    Martinez F, Maldovan M 2022 Mater. Today Phys. 27 100819Google Scholar

    [4]

    Padilla W J, Fan K 2022 Metamaterial Eectromagnetic Wave Absorbers (Springer Nature) p12

    [5]

    Nie G, Shi Q, Zhu Z, Shi J 2014 Appl. Phys. Lett. 105 201909Google Scholar

    [6]

    Luo X, Liu Z, Wang L, Liu J, Lin Q 2018 Appl. Phys. Express 11 105102Google Scholar

    [7]

    Lavchiev V M, Jakoby B, Hedenig U, Grille T, Irsigler P, Ritchie G, Kirkbride J, Lendl B SENSORS 2014 IEEE, Valencia, November 2–5, 2014 p645

    [8]

    Ren Y, Cui W, Yang Z, Xiong B, Zhang L, Li Z, Lu S, Huo Y, Wu X, Li G 2024 Opt. Mater. 149 115073Google Scholar

    [9]

    Jiang H, Sabarinathan J, Manifar T, Mittler S 2009 J. Lightwave Technol. 27 2264Google Scholar

    [10]

    Tarumaraja K A, Menon P S, Said F A, Jamil N A, Ehsan A A, Shaari S, Majlis B Y, Jalar A 2016 IEEE International Conference on Semiconductor Electronicsp, Kuala Lumpur Malaysia, August 17–19, 2016 p79

    [11]

    Lin H, Lin K T, Yang T, Jia B 2021 Adv. Mater. Technol. 6 2000963Google Scholar

    [12]

    Boardman A D, Grimalsky V V, Kivshar Y S, Koshevaya S V, Lapine M, Litchinitser N M, Malnev V N, Noginov M, Rapoport Y G, Shalaev V M 2011 Laser Photonics Rev. 5 287Google Scholar

    [13]

    Kowerdziej R, Ferraro A, Zografopoulos D C, Caputo R 2022 Adv. Opt. Mater. 10 2200750Google Scholar

    [14]

    Jin R, Huang L J, Zhou C B, Guo J, Fu Z, Chen J, Wang J, Li X, Yu F, Chen J 2023 Nano Lett. 23 9105Google Scholar

    [15]

    Zhou C B, Huang L J, Jin R, Xu L, Li G H, Rahmani M, Chen X S, Lu W, Miroshnichenko A E 2023 Laser Photonics Rev. 17 2200564Google Scholar

    [16]

    Koshelev K, Bogdanov A, Kivshar Y 2019 Sci. Bull. 64 836Google Scholar

    [17]

    Masoudian Saadabad R, Huang L J, Miroshnichenko A E 2021 Phys. Rev. B 104 235405Google Scholar

    [18]

    Yuan L, Lu Y Y 2017 Opt. Lett. 42 4490Google Scholar

    [19]

    Jordan P, Von Neumann J, Wigner E P 1993 The Collected Works of Eugene Paul Wigner: Part A: The Scientific Papers (Springer Berlin Heidelberg) p298

    [20]

    Xie P, Liang Z C, Jia T T, Li D M, Chen Y X, Chang P J, Zhang H, Wang W 2021 Phys. Rev. B 104 125446Google Scholar

    [21]

    Huang L J, Jin R, Zhou C B, Li G H, Xu L, Overvig A, Deng F, Chen X H, Lu W, Alù A, Miroshnichenko A E 2023 Nat. Commun. 14 3433Google Scholar

    [22]

    Wan S, Qin C H, Wang K D, Li Y C, Guan C Y, Lv B, Li W J, Shi J H 2022 J. Appl. Phys. 131 213104Google Scholar

    [23]

    Wu F, Qi X, Qin M B, Luo M, Long Y, Wu J J, Sun Y, Jiang H T, Liu T T, Xiao S Y, Chen H 2024 Phys. Rev. B 109 085436Google Scholar

    [24]

    Wu F, Wu J J, Guo Z W, Jiang H T, Sun Y, Li Y H, Ren J, Chen H 2019 Phys. Rev. Appl. 12 014028Google Scholar

    [25]

    Gao E D, Li H J, Liu C, Ruan B X, Li M, Zhang B H, Zhang Z 2022 Phys. Chem. Chem. Phys. 24 20125Google Scholar

    [26]

    Moriasa K, Hasebe H, Sugimoto H, Fujii M 2023 J. Appl. Phys. 133 173102Google Scholar

    [27]

    Wang Y X, Cui W, Ren Y, Li Z X, Zhang L, Lei W L, Huo Y S, He Z H 2024 Infrared Phys. Technol. 136 105091Google Scholar

    [28]

    Ki Y G, Jeon H W, Kim S J 2024 Electronics 13 753Google Scholar

    [29]

    Johnson P B, Christy R W 1972 Phys. Rev. B 6 4370Google Scholar

    [30]

    Schinke C, Christian Peest P, Schmidt J, Brendel R, Bothe K, Vogt M R, Kröger I, Winter S, Schirmacher A, Lim S 2015 Aip Adv. 5 067168Google Scholar

    [31]

    Malitson I H, Dodge M J 1972 J. Opt. Soc. Am 62 1405

    [32]

    Alaee R, Farhat M, Rockstuhl C, Lederer F 2012 Opt. Express 20 28017Google Scholar

    [33]

    Xie Y D, Liu Z M, Zhou F Q, Luo X, Cheng Z Q, Yang R H, Cheng J, Yang G X 2023 Diamond Relat. Mater. 137 110100Google Scholar

    [34]

    Qing Y M, Ma H F, Cui T J 2018 Opt. Express 26 32442Google Scholar

    [35]

    Li H J, Wang L L, Zhai X 2016 Sci. Rep. 6 36651Google Scholar

    [36]

    Smith D, Vier D, Koschny T, Soukoulis C 2005 Phys. Rev. E 71 036617Google Scholar

    [37]

    Wang Y X, Cui W, Wang X J, Lei W L, Li L Q, Cao X L, He H, He Z H 2022 Vacuum 206 111515Google Scholar

    [38]

    Gao E D, Cao G T, Deng Y, Li H J, Chen X S, Li G H 2024 Opt. Laser Technol. 168 109840Google Scholar

    [39]

    Li M, Li H J, Xu H, Xiong C X, Zhao M Z, Liu C, Ruan B X, Zhang B H, Wu K 2020 New J. Phys. 22 103030Google Scholar

    [40]

    Kim M, Kim S, Kim S 2022 Sci. Rep. 12 1445Google Scholar

    [41]

    Gao E D, Jin R, Fu Z C, Cao G T, Deng Y, Chen J, Li G H, Chen X S, Li H J 2023 Photonics Res. 11 456Google Scholar

  • [1] Yang Xiao-Jie, Xu Hui, Xu Hai-Ye, Li Ming, Yu Hong-Fei, Cheng Yu-Xuan, Hou Hai-Liang, Chen Zhi-Quan. Sensing and slow light applications of graphene plasmonic terahertz structure. Acta Physica Sinica, 2024, 73(15): 157802. doi: 10.7498/aps.73.20240668
    [2] Xia Zhao-Sheng, Liu Yu-Hang, Bao Zheng, Wang Li-Hua, Wu Bo, Wang Gang, Wang Hui, Ren Xin-Gang, Huang Zhi-Xiang. Strong circular dichroism chiral metasurfaces generated by quasi bound state in continuum domain. Acta Physica Sinica, 2024, 73(17): 178102. doi: 10.7498/aps.73.20240834
    [3] Wang Yue, Wang Hao-Jie, Cui Zi-Jian, Zhang Da-Chi. Bound states in continuum domain of double resonant ring metal metasurfaces. Acta Physica Sinica, 2024, 73(5): 057801. doi: 10.7498/aps.73.20231556
    [4] Yan Meng, Sun Ke, Ning Ting-Yin, Zhao Li-Na, Ren Ying-Ying, Huo Yan-Yan. Numerical study of the low- threshold nanolaser based on quasi-bound states in the continuum supported by resonant waveguide grating structures. Acta Physica Sinica, 2023, 72(4): 044202. doi: 10.7498/aps.72.20221894
    [5] Wang Zheng-Yu, Huang Fei, Xue Run-Yu, Wang Zheng-Ling. Perfect absorption of symmetric grating structure based on the continuous metal film. Acta Physica Sinica, 2023, 72(5): 054201. doi: 10.7498/aps.72.20221701
    [6] Fan Hui-Ying, Luo Jie. Research progress of non-Hermitian electromagnetic metasurfaces. Acta Physica Sinica, 2022, 71(24): 247802. doi: 10.7498/aps.71.20221706
    [7] Li Chao-Gang, Wang Mao-Sheng, Fang Quan, Peng Xue-Cheng, Huang Wan-Xia. Applications of representation transformation and secular perturbation theory to coupled Duffing equations. Acta Physica Sinica, 2021, 70(2): 024601. doi: 10.7498/aps.70.20201057
    [8] Wang Xin, Wang Jun-Lin. Refractive index sensing characteristics of electromagnetic metamaterial absorber in terahertz band. Acta Physica Sinica, 2021, 70(3): 038102. doi: 10.7498/aps.70.20201054
    [9] Wang Yue, Cui Zi-Jian, Zhang Xiao-Ju, Zhang Da-Chi, Zhang Xiang, Zhou Tao, Wang Xuan. Research progress of metamaterials powered advanced terahertz biochemical sensing detection techniques. Acta Physica Sinica, 2021, 70(24): 247802. doi: 10.7498/aps.70.20211752
    [10] Jiang Li-Ying, Yi Ying-Ting, Yi Zao, Yang Hua, Li Zhi-You, Su Ju, Zhou Zi-Gang, Chen Xi-Fang, Yi You-Gen. A four-band perfect absorber based on high quality factor and high figure of merit of monolayer molybdenum disulfide. Acta Physica Sinica, 2021, 70(12): 128101. doi: 10.7498/aps.70.20202163
    [11] Zhu Cun-Yuan, Li Chao-Gang, Fang Quan, Wang Mao-Sheng, Peng Xue-Cheng, Huang Wan-Xia. The spring oscillator model degenerated into the coupled-mode theory by using secular perturbation theory. Acta Physica Sinica, 2020, 69(7): 074501. doi: 10.7498/aps.69.20191505
    [12] Li Xue-Jian, Cao Min, Tang Min, Mi Yue-An, Tao Hong, Gu Hao, Ren Wen-Hua, Jian Wei, Ren Guo-Bin. Inter-mode stimulated Brillouin scattering and simultaneous temperature and strain sensing in M-shaped few-mode fiber. Acta Physica Sinica, 2020, 69(11): 114203. doi: 10.7498/aps.69.20200103
    [13] Tu Xing-Hua, Zhao Yi-Chao. Temperature and stress sensing characteristics of symmetrically fused tapered fiber grating. Acta Physica Sinica, 2019, 68(24): 244204. doi: 10.7498/aps.68.20191034
    [14] Zhang Hui-Yun, Huang Xiao-Yan, Chen Qi, Ding Chun-Feng, Li Tong-Tong, Lü Huan-Huan, Xu Shi-Lin, Zhang Xiao, Zhang Yu-Ping, Yao Jian-Quan. Tunable terahertz absorber based on complementary graphene meta-surface. Acta Physica Sinica, 2016, 65(1): 018101. doi: 10.7498/aps.65.018101
    [15] Fu Xing-Hu, Xie Hai-Yang, Yang Chuan-Qing, Zhang Shun-Yang, Fu Guang-Wei, Bi Wei-Hong. Research on the temperature sensing characteristics of triple cladding quartz specialty fiber based on cladding mode resonance. Acta Physica Sinica, 2016, 65(2): 024211. doi: 10.7498/aps.65.024211
    [16] Zhang Yu-Ping, Li Tong-Tong, Lü Huan-Huan, Huang Xiao-Yan, Zhang Hui-Yun. Study on sensing characteristics of I-shaped terahertz metamaterial absorber. Acta Physica Sinica, 2015, 64(11): 117801. doi: 10.7498/aps.64.117801
    [17] Pei Li, Zhao Rui-Feng. Analysis of unified unsymmetric lateral coupled-mode theory of optical waveguide. Acta Physica Sinica, 2013, 62(18): 184213. doi: 10.7498/aps.62.184213
    [18] Li Peng, Zhao Jian-Lin, Zhang Xiao-Juan, Hou Jian-Ping. Analysis of model coupling in photonic crystal fiber with triangular structure triple-core. Acta Physica Sinica, 2010, 59(12): 8625-8631. doi: 10.7498/aps.59.8625
    [19] Wang Yan-Hua, Ren Wen-Hua, Liu Yan, Tan Zhong-Wei, Jian Shui-Sheng. Phase-modified coupled mode theory for calculation of fiber Bragg grating Fabry-Perot cavity transmission spectrum. Acta Physica Sinica, 2008, 57(10): 6393-6399. doi: 10.7498/aps.57.6393
    [20] Wang Mu-Guang, Wei Huai, Jian Shui-Sheng. Experimental and theoretical study on the compound dual-period fibre grating. Acta Physica Sinica, 2003, 52(3): 609-614. doi: 10.7498/aps.52.609
Metrics
  • Abstract views:  2073
  • PDF Downloads:  85
  • Cited By: 0
Publishing process
  • Received Date:  21 June 2024
  • Accepted Date:  31 July 2024
  • Available Online:  31 July 2024
  • Published Online:  05 September 2024

/

返回文章
返回