Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A four-band perfect absorber based on high quality factor and high figure of merit of monolayer molybdenum disulfide

Jiang Li-Ying Yi Ying-Ting Yi Zao Yang Hua Li Zhi-You Su Ju Zhou Zi-Gang Chen Xi-Fang Yi You-Gen

Citation:

A four-band perfect absorber based on high quality factor and high figure of merit of monolayer molybdenum disulfide

Jiang Li-Ying, Yi Ying-Ting, Yi Zao, Yang Hua, Li Zhi-You, Su Ju, Zhou Zi-Gang, Chen Xi-Fang, Yi You-Gen
PDF
HTML
Get Citation
  • Transition-metal dichalcogenides with exceptional electrical and optical properties have emerged as a new platform for atomic-scale optoelectronic devices. However, the poor optical absorption resists their potential applications. In this paper, monolayer molybdenum disulfide four-band perfect absorber based on critical coupling and guided mode resonance is proposed theoretically and numerically by the finite difference time domain method. Meanwhile, the physical mechanism can be better analyzed through impedance matching and coupled mode theory. Monolayer molybdenum disulfide is placed between the silicon dioxide and a two-dimensional polymethyl methacrylate layer with a periodic square-shaped air groove structure. The three form a sandwich-like stacked structure similar to a rectangle. The bottom of the absorber uses a silver layer as the back reflection layer. Using the critical coupling principle of guided resonance, the high-efficiency light absorption of the monolayer molybdenum disulfide is obtained, that is, four perfect resonances are obtained at the resonance wavelengths (λ1 = 510.0 nm, λ2 = 518.8 nm, λ3 = 565.9 nm, and λ4 = 600.3 nm), the absorption rates are 99.03%, 98.10%, 97.30%, and 95.41%, and the average absorption rate is as high as 97.46% in the visible light spectrum range, which is over 12 times more than that of a bare monolayer MoS2. The simulation results show that the adjusting of the geometric parameters of the structure can control the range of the resonance wavelength of the monolayer molybdenum disulfide, the system experiences three states, i.e. under-coupling, critical coupling, and over-coupling because of the leakage rate of resonance, thereby exhibiting advantageous tunability of operating wavelength in monolayer MoS2, which has important practical significance for improving the absorption intensity and selectivity of the monolayer molybdenum disulfide. The novel idea of using critical coupling to enhance the light-MoS2 interaction can also be adopted in other atomically thin materials. At the same time, in this article the sensing performance of the absorber is discussed, and it is found that the highest quality factor, sensitivity and figure of merit of the sensor are 1294.1, 155.1 nm/RIU, and 436, respectively. The proposed structure is simple and the program is versatile. And these results indicate that the designed structure may offer a promising technology for improving the light-matter interaction in two-dimensional transition metal binary compounds, and has excellent application prospects in wavelength selective photoluminescence and photodetection.
      Corresponding author: Yi Zao, yizaomy@swust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 1187522), the Scientific Research Foundation of Sichuan Provincial Science and Technology Department, China (Grant Nos. 2020YJ0137, 2020YFG0467), and the Innovation Fund Project of School of Science, Southwest University of Science and Technology, China (Grant No. LX2020010)
    [1]

    Smith D R, Padilla W J, Vier D C, Nemat-Nasser S C, Schultz S 2000 Phys. Rev. Lett. 84 4184Google Scholar

    [2]

    Smith D R, Vier D C, Koschny T, Soukoulis C M 2005 Phys. Rev. E. 71 036617Google Scholar

    [3]

    Smith D R, Pendry J B, Wiltshire M C K 2004 Science 305 788Google Scholar

    [4]

    Pendry J B 2000 Phys. Rev. Lett. 85 3966Google Scholar

    [5]

    Pendry J B, Schurig D, Smith D R 2006 Science 312 1780Google Scholar

    [6]

    Cai W, Chettiar U K, Kildishev A V, Shalaev V M 2007 Nat. Photonics 1 224Google Scholar

    [7]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402Google Scholar

    [8]

    Wang X X, Zhu J K, Xu Y Q, Qi Y P, Zhang L P, Yang H, Yi Z 2021 Chin. Phys. B 30 024207Google Scholar

    [9]

    Lee K, Choi H J, Son J, Park H S, Ahn J, Min B 2015 Sci. Rep. 5 14403Google Scholar

    [10]

    Liu Z M, Zhang X, Zhang Z B, Gao E D, Zhou F Q, Li H J, Luo X 2020 New J. Phys. 22 083006Google Scholar

    [11]

    Song S C, Chen Q, Jin L, Sun F H 2013 Nanoscale 5 9615Google Scholar

    [12]

    Yi Z, Li J K, Lin J C, Qin F, Chen X F, Yao W T, Liu Z M, Cheng S B, Wu P H, Li H L 2020 Nanoscale 12 23077Google Scholar

    [13]

    徐依全, 王聪 2020 物理学报 69 184216Google Scholar

    Xu Y Q, Wang C 2020 Acta Phys. Sin. 69 184216Google Scholar

    [14]

    Sun Z, Chang H 2014 ACS Nano 8 4133Google Scholar

    [15]

    许杰, 周丽, 黄志祥, 吴先良 2015 物理学报 64 238103Google Scholar

    Xu J, Zhou L, Huang Z X, Wu X L 2015 Acta Phys. Sin. 64 238103Google Scholar

    [16]

    谢剑锋, 曹觉先 2013 物理学报 62 017302Google Scholar

    Xie J F, Cao J X 2013 Acta Phys. Sin. 62 017302Google Scholar

    [17]

    Mak K F, Shan J 2016 Nat. Photonics 10 216Google Scholar

    [18]

    Zhang Y, Shi Y, Liang C 2016 Opt. Mater. Express 6 3036Google Scholar

    [19]

    Li J S, Sun J Z 2019 Appl. Phys. B 125 183Google Scholar

    [20]

    Li J K, Chen X F, Yi Z, Yang H, Tang Y J, Yi Y, Yao W T, Wang J Q, Yi Y G 2020 Mater. Today Energy 16 100390Google Scholar

    [21]

    Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G, Wang F 2010 Nano Lett. 10 1271Google Scholar

    [22]

    Li J K, Chen Z Q, Yang H, Yi Z, Chen X F, Yao W T, Duan T, Wu P H, Li G F, Yi Y G 2020 Nanomaterials 10 257Google Scholar

    [23]

    Bahauddin S M, Robatjazi H, Thomann I 2016 ACS Photonics 3 853Google Scholar

    [24]

    Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A, Kis A 2013 Nat. Nanotechnol. 8 497Google Scholar

    [25]

    Sobhani A, Lauchner A, Najmaei S, Ayala-Orozco C, Wen F, Lou J, Halas N J 2014 Appl. Phys. Lett. 104 031112Google Scholar

    [26]

    Late D J, Liu B, Matte H S, Dravid V P, Rao C N R 2012 ACS Nano 6 5635Google Scholar

    [27]

    Bernardi M, Palummo M, Grossman J C 2013 Nano Lett. 13 3664Google Scholar

    [28]

    Janisch C, Song H, Zhou C, Lin Z, Elías A L, Ji D, Liu Z 2016 2D Mater. 3 025017Google Scholar

    [29]

    Liu J T, Wang T B, Li X J, Liu N H 2014 J. Appl. Phys. 115 193511Google Scholar

    [30]

    Lu H, Gan X, Mao D, Fan Y, Yang D, Zhao J 2017 Opt. Express 25 21630Google Scholar

    [31]

    Cao J, Wang J, Yang G, Lu Y, Sun R, Yan P, Gao S 2017 Superlattices Microstruct. 110 26Google Scholar

    [32]

    Zheng J B, Barton R A, Englund D 2014 ACS Photonics 1 768Google Scholar

    [33]

    Piper J R, Fan S H 2016 ACS Photonics 3 3571Google Scholar

    [34]

    Li Y, Chernikov A, Zhang X, Rigosi A, Hill H M, Van der Zande A M, Chenet D A, Shih E M, Hone J, Heinz T F 2014 Phys. Rev. B 90 205422Google Scholar

    [35]

    Bade W 1957 Chem. Phys. 27 1280Google Scholar

    [36]

    Cheng L, Wang T, Jiang X, Yan X, Xiao S 2015 J. Phys. D 50 435104Google Scholar

    [37]

    Qin F, Chen X F, Yi Z, Yao W T, Yang H, Tang Y J, Yi Y, Li H L, Yi Y G 2020 Sol. Energy Mater. Sol. Cells 211 110535Google Scholar

    [38]

    He Z H, Li L Q, Ma H Q, Pu L H, Xu H, Yi Z, Cao X L, Cui W 2021 Results Phys. 21 103795Google Scholar

    [39]

    Haus H A, Huang W 1991 Proc. IEEE 79 1505Google Scholar

    [40]

    Li Q, Wang T, Su Y, Yan M, Qiu M 2010 Opt. Express 18 8367Google Scholar

    [41]

    An S, Lv J, Yi Z, Liu C, Yang L, Wang F, Liu Q, Su W, Li X, Sun T, Chu P 2021 Optik 226 165779Google Scholar

    [42]

    Qing Y M, Ma H F, Cui T J 2018 Opt. Express 26 32442Google Scholar

    [43]

    El-Aasser M A, Mahmoud S A 2017 Optoelectron. Adv. Mater. Rapid Commun. 118 398

    [44]

    Li J Y, Wang S F, Sun G G, Gao H J, Yu X L, Tang S N, Zhao X X, Yi Z, Wang Y, Wei Y 2021 Mater. Today Chem. 19 100390Google Scholar

    [45]

    Wang S, Magnusson R 1993 Appl. Opt. 32 2606Google Scholar

    [46]

    Pan M, Su Z, Yu Z, Wu P, Jile H, Yi Z, Chen Z 2020 Result. Phys. 19 103415Google Scholar

    [47]

    Zhang X, Liu Z, Zhang Z, Gao E, Luo X, Zhou F, Li H, Yi Z 2020 Opt. Express 28 36771Google Scholar

    [48]

    Chu P X, Chen J X, Xiong Z G, Yi Z 2020 Opt. Commun. 476 126338Google Scholar

    [49]

    Zhang Y B, Yi Z, Wang X Y, Chu P X, Yao W T, Zhou Z G, Cheng S B, Liu Z M, Wu P H, Pan M, Yi Y G 2021 Physica E 127 114526Google Scholar

    [50]

    Guo C, Zhu Z, Yuan X, Ye W, Liu K, Zhang J, Xu Wei, Qin S 2016 Adv. Opt. Mater. 4 1955Google Scholar

    [51]

    Li H, Qin M, Wang L, Zhai X, Ren R, Hu J 2017 Opt. Express 25 31612Google Scholar

    [52]

    Cao J T, Yang J F, Gu Y, Fang X D, Lu N Y, Hua B, Yan.X M 2019 Mater. Res. Express. 6 15050Google Scholar

    [53]

    Piper J. R, Liu V, Fan S 2014 Appl. Phys. Lett. 104 251110Google Scholar

    [54]

    Sourav A, Li Z W, Huang Z H, Botcha V D, Hu C, YAO J P, Peng F, Kuo H C, Wu J, Liu X K, Ang K W, Transparent L S 2018 Adv. Opt. Mater. 6 1800461Google Scholar

    [55]

    Qi Y, Zhang B, Liu C, Deng X 2020 IEEE Access 8 116675Google Scholar

    [56]

    Jiang L Y, Yuan C, Li Z Y, Su J, Yi Z, Yao W T, Wu P, Liu Z M, Cheng S B, Pan M 2021 Diamond Relat. Mater. 111 108227Google Scholar

    [57]

    Yu P Q, Yang H, Chen X F, Yi Z, Yao W T, Chen J F, Yi Y G, Wu P H 2020 Renewable Energy 158 227Google Scholar

    [58]

    Deng Y H, Yang Z J, He J 2018 Opt. Express 26 31116Google Scholar

    [59]

    Maurer T, Nicolas R, Lévêque G, Subramanian P, Proust J, Béal J, Schuermans S, Vilcot J P, Herro Z, Kazan M, Plain J, Boukherroub R, Akjouj A, Djafari-Rouhani B, Adam P M, Szunerits S 2014 Plasmonics 9 507Google Scholar

    [60]

    Lu X, Zhang L, Zhang T 2015 Opt. Express 23 20715Google Scholar

    [61]

    Lin L H, Zheng Y B 2015 Sci. Rep. 5 14788Google Scholar

    [62]

    Ye J, Dorpe P V 2011 Plasmonics 6 665Google Scholar

    [63]

    Ameling R, Langguth L, Hentschel M, Mesch M, Braun P V, Giessen H 2010 Appl. Phys. Lett. 97 253116Google Scholar

    [64]

    Huang C, Ye J, Wang S, Stakenborg T, Lagae L 2012 Appl. Phys. Lett. 100 173114Google Scholar

  • 图 1  (a) 单层MoS2吸收增强系统的3D示意图; (b) 对应的俯视图; 具体的几何参数如图中所示

    Figure 1.  (a) 3D schematic diagram of monolayer MoS2 absorption enhancement system; (b) the corresponding top view. The specific geometric parameters are shown in the figure.

    图 2  (a) 在D1 = 220 nm, D2 = 175 nm, D3 = 0.615 nm, D4 = 380 nm, Px = 1010 nm, Py = 890 nm, W1 = 89 nm, W2 = 170 nm, A = 832 nm, B = 712 nm时完美吸收器中的MoS2单层(蓝线)的吸收光谱, 为了进行比较, 示出了无MoS2整个吸收器(红线)和裸MoS2单层(黑线)的光吸收光谱(图中Mode A对应吸收峰1, Mode B对应吸收峰2, Mode C对应吸收峰3, Mode D对应吸收峰4); (b)理想吸收峰的有效阻抗的实部(蓝线Re(Z))和虚部(绿线Im(Z))

    Figure 2.  (a) Absorption spectrum of MoS2 monolayer (blue line) in the perfect absorber at D1 = 220 nm, D2 = 175 nm, D3 = 0.615 nm, D4 = 380 nm, Px = 1010 nm, Py = 890 nm, W1 = 89 nm, W2 = 170 nm, A = 832 nm, B = 712 nm. For comparison, the light absorption spectra of the entire absorber without MoS2 (red line) and bare MoS2 monolayer (black line) are shown (Mode A corresponds to absorption peak 1, Mode B corresponds to absorption peak 2, Mode C corresponds to absorption peak 3, Mode D corresponds to absorption peak 4); (b) the real part (blue line Re(Z)) and imaginary part (green line Im(Z)) of the effective impedance showing the ideal absorption peak.

    图 3  正常TM偏振光下含(a) 和不含 (b) 银反射层结构的吸收、反射和透射光谱的数值计算, 其中A代表吸收, R代表反射, T代表透射

    Figure 3.  Numerical calculation of the absorption, reflection and transmission spectra of the structure with (a) and without (b) silver layer under normal TM polarized light, where A represents absorption, R represents reflection, and T represents transmission.

    图 4  D1 = 220 nm, D2 = 175 nm, D3 = 0.615 nm, D4 = 380 nm, Px = 1010 nm, Py = 890 nm, A = 832 nm, B = 712 nm条件下, 空气槽为(a) 长方体、(b) 交叉椭圆盘与 (c) 三棱柱时的吸收光谱

    Figure 4.  Absorption spectra when the air groove is (a) cuboid, (b) cross-elliptic disk, (c) triangular prism. D1 = 220 nm, D2 = 175 nm, D3 = 0.615 nm, D4 = 380 nm, Px = 1010 nm, Py = 890 nm, A = 832 nm, B = 712 nm,

    图 5  MoS2吸收器在(a)−(c) 共振模式B (共振波长为518.8 nm)下x -y, y -zx -z截面的电场(|E|)分布的模拟结果; 在垂直入射下, (d)−(f) 非共振模式(非共振波长542.0 nm)时其x -y, y -zx -z截面的电场(|E|)分布的模拟结果

    Figure 5.  Simulated electric field (|E|) distributions of (a)−(c) resonance mode B (resonant wavelength of 518.8 nm) in x -y, y -z and x -z based on the MoS2 absorber; (d)−(f) simulated electric field (|E|) distributions of non-resonant mode (non-resonant wavelength 542.0 nm) in x -y, y -z and x -z under normal incidence.

    图 6  (a)−(d) x -y截面的电场图; (e)−(h) y -z截面的电场图; (i)−(l) x -z截面的电场图 (图中Mode A对应吸收峰1, Mode B对应吸收峰2, Mode C对应吸收峰3, Mode D对应吸收峰4, λ1 = 510.0 nm, λ2 = 518.8 nm, λ3 = 565.9 nm, λ4 = 600.3 nm)

    Figure 6.  (a)−(d) Electric field diagrams of the x -y cross section; (e)−(h) the electric field diagrams of the y -z cross section; (i)−(l) the electric field diagrams of the x -z cross section. Mode A corresponds to absorption peak 1, Mode B corresponds to absorption peak 2, Mode C corresponds to absorption peak 3, Mode D corresponds to absorption peak 4. λ1 = 510.0 nm, λ2 = 518.8 nm, λ3 = 565.9 nm, λ4 = 600.3 nm.

    图 7  (a) 当D2从155 nm增长到195 nm时, 结构对应的光吸收情况; (b) 当W1从170 nm增长到210 nm时, 结构对应的光吸收情况

    Figure 7.  (a) Corresponding light absorption of the structure when D2 increases from 155 to 195 nm; (b) the corresponding light absorption of the structure when W1 increases from 170 to 210 nm.

    图 8  (a) D4与吸收率的关系图; (b) D4与对应共振波长范围的关系图; (c) W2与吸收率的关系图; (d) W2与对应共振波长范围的关系图; 图中Mode A对应吸收峰1, Mode B对应吸收峰2, Mode C对应吸收峰3, Mode D对应吸收峰4

    Figure 8.  (a) Relationship diagram between D4 and the absorption rate; (b) the relationship diagram between D4 and the corresponding resonance wavelength range; (c) the relationship diagram between W2 and the absorption rate; (d) the relationship diagram between W2 and the corresponding resonance wavelength range. Mode A corresponds to absorption peak 1, Mode B corresponds to absorption peak 2, Mode C corresponds to absorption peak 3, Mode D corresponds to absorption peak 4.

    图 9  (a)−(d) 保持其他参数不变, 周期与吸收峰波长和品质因子的函数关系(图中Mode A对应吸收峰1, Mode B对应吸收峰2, Mode C对应吸收峰3, Mode D对应吸收峰4)

    Figure 9.  (a)−(d) Relationship among the period, the absorption peak wavelength, and Q-factor (quality factor) when other parameters are kept constant (Mode A corresponds to absorption peak 1, Mode B corresponds to absorption peak 2, Mode C corresponds to absorption peak 3, Mode D corresponds to absorption peak 4).

    图 10  (a) 四个共振峰的吸收光谱随周围介质折射率的变化而移动; (b)−(e)当周围传感介质的折射率发生变化时(折射率从1.0到1.08, 间隔为0.02), 四个峰值的FOM与FWHM和波长的关系图 (图中Mode A对应吸收峰1, Mode B对应吸收峰2, Mode C对应吸收峰3, Mode D对应吸收峰4)

    Figure 10.  (a) Absorption spectra of the four resonance peaks move with the change in the refractive index of the surrounding medium; (b)−(e) when the refractive index of the surrounding sensing medium changes (the refractive index is from 1.0 to 1.08, the interval is 0.02), the relationships of FOM value of the four peaks and FWHM to wavelength (Mode A corresponds to absorption peak 1, Mode B corresponds to absorption peak 2, Mode C corresponds to absorption peak 3, Mode D corresponds to absorption peak 4).

    表 1  所提出的吸收器与其他类似吸收器的比较

    Table 1.  Comparisons of the proposed absorber with other similar absorbers.

    参考文献波长/nm半峰全宽/nm品质因子
    [30]66211.557.57
    [50]15002075
    [51]679.28.7277.89
    [52]66311.3558.32
    [53]661973
    [54]4087.3455.59
    本文531.90.41294.1
    DownLoad: CSV

    表 2  其他类似吸收器的FOM值的比较结果

    Table 2.  Comparisons of FOM values of other similar absorbers.

    参考文献[59][60][61][62][63][64]本文
    FWHM/nm5083.9497501000.3
    FOM (max)2.8252544.687.13.1436
    DownLoad: CSV
  • [1]

    Smith D R, Padilla W J, Vier D C, Nemat-Nasser S C, Schultz S 2000 Phys. Rev. Lett. 84 4184Google Scholar

    [2]

    Smith D R, Vier D C, Koschny T, Soukoulis C M 2005 Phys. Rev. E. 71 036617Google Scholar

    [3]

    Smith D R, Pendry J B, Wiltshire M C K 2004 Science 305 788Google Scholar

    [4]

    Pendry J B 2000 Phys. Rev. Lett. 85 3966Google Scholar

    [5]

    Pendry J B, Schurig D, Smith D R 2006 Science 312 1780Google Scholar

    [6]

    Cai W, Chettiar U K, Kildishev A V, Shalaev V M 2007 Nat. Photonics 1 224Google Scholar

    [7]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402Google Scholar

    [8]

    Wang X X, Zhu J K, Xu Y Q, Qi Y P, Zhang L P, Yang H, Yi Z 2021 Chin. Phys. B 30 024207Google Scholar

    [9]

    Lee K, Choi H J, Son J, Park H S, Ahn J, Min B 2015 Sci. Rep. 5 14403Google Scholar

    [10]

    Liu Z M, Zhang X, Zhang Z B, Gao E D, Zhou F Q, Li H J, Luo X 2020 New J. Phys. 22 083006Google Scholar

    [11]

    Song S C, Chen Q, Jin L, Sun F H 2013 Nanoscale 5 9615Google Scholar

    [12]

    Yi Z, Li J K, Lin J C, Qin F, Chen X F, Yao W T, Liu Z M, Cheng S B, Wu P H, Li H L 2020 Nanoscale 12 23077Google Scholar

    [13]

    徐依全, 王聪 2020 物理学报 69 184216Google Scholar

    Xu Y Q, Wang C 2020 Acta Phys. Sin. 69 184216Google Scholar

    [14]

    Sun Z, Chang H 2014 ACS Nano 8 4133Google Scholar

    [15]

    许杰, 周丽, 黄志祥, 吴先良 2015 物理学报 64 238103Google Scholar

    Xu J, Zhou L, Huang Z X, Wu X L 2015 Acta Phys. Sin. 64 238103Google Scholar

    [16]

    谢剑锋, 曹觉先 2013 物理学报 62 017302Google Scholar

    Xie J F, Cao J X 2013 Acta Phys. Sin. 62 017302Google Scholar

    [17]

    Mak K F, Shan J 2016 Nat. Photonics 10 216Google Scholar

    [18]

    Zhang Y, Shi Y, Liang C 2016 Opt. Mater. Express 6 3036Google Scholar

    [19]

    Li J S, Sun J Z 2019 Appl. Phys. B 125 183Google Scholar

    [20]

    Li J K, Chen X F, Yi Z, Yang H, Tang Y J, Yi Y, Yao W T, Wang J Q, Yi Y G 2020 Mater. Today Energy 16 100390Google Scholar

    [21]

    Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G, Wang F 2010 Nano Lett. 10 1271Google Scholar

    [22]

    Li J K, Chen Z Q, Yang H, Yi Z, Chen X F, Yao W T, Duan T, Wu P H, Li G F, Yi Y G 2020 Nanomaterials 10 257Google Scholar

    [23]

    Bahauddin S M, Robatjazi H, Thomann I 2016 ACS Photonics 3 853Google Scholar

    [24]

    Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A, Kis A 2013 Nat. Nanotechnol. 8 497Google Scholar

    [25]

    Sobhani A, Lauchner A, Najmaei S, Ayala-Orozco C, Wen F, Lou J, Halas N J 2014 Appl. Phys. Lett. 104 031112Google Scholar

    [26]

    Late D J, Liu B, Matte H S, Dravid V P, Rao C N R 2012 ACS Nano 6 5635Google Scholar

    [27]

    Bernardi M, Palummo M, Grossman J C 2013 Nano Lett. 13 3664Google Scholar

    [28]

    Janisch C, Song H, Zhou C, Lin Z, Elías A L, Ji D, Liu Z 2016 2D Mater. 3 025017Google Scholar

    [29]

    Liu J T, Wang T B, Li X J, Liu N H 2014 J. Appl. Phys. 115 193511Google Scholar

    [30]

    Lu H, Gan X, Mao D, Fan Y, Yang D, Zhao J 2017 Opt. Express 25 21630Google Scholar

    [31]

    Cao J, Wang J, Yang G, Lu Y, Sun R, Yan P, Gao S 2017 Superlattices Microstruct. 110 26Google Scholar

    [32]

    Zheng J B, Barton R A, Englund D 2014 ACS Photonics 1 768Google Scholar

    [33]

    Piper J R, Fan S H 2016 ACS Photonics 3 3571Google Scholar

    [34]

    Li Y, Chernikov A, Zhang X, Rigosi A, Hill H M, Van der Zande A M, Chenet D A, Shih E M, Hone J, Heinz T F 2014 Phys. Rev. B 90 205422Google Scholar

    [35]

    Bade W 1957 Chem. Phys. 27 1280Google Scholar

    [36]

    Cheng L, Wang T, Jiang X, Yan X, Xiao S 2015 J. Phys. D 50 435104Google Scholar

    [37]

    Qin F, Chen X F, Yi Z, Yao W T, Yang H, Tang Y J, Yi Y, Li H L, Yi Y G 2020 Sol. Energy Mater. Sol. Cells 211 110535Google Scholar

    [38]

    He Z H, Li L Q, Ma H Q, Pu L H, Xu H, Yi Z, Cao X L, Cui W 2021 Results Phys. 21 103795Google Scholar

    [39]

    Haus H A, Huang W 1991 Proc. IEEE 79 1505Google Scholar

    [40]

    Li Q, Wang T, Su Y, Yan M, Qiu M 2010 Opt. Express 18 8367Google Scholar

    [41]

    An S, Lv J, Yi Z, Liu C, Yang L, Wang F, Liu Q, Su W, Li X, Sun T, Chu P 2021 Optik 226 165779Google Scholar

    [42]

    Qing Y M, Ma H F, Cui T J 2018 Opt. Express 26 32442Google Scholar

    [43]

    El-Aasser M A, Mahmoud S A 2017 Optoelectron. Adv. Mater. Rapid Commun. 118 398

    [44]

    Li J Y, Wang S F, Sun G G, Gao H J, Yu X L, Tang S N, Zhao X X, Yi Z, Wang Y, Wei Y 2021 Mater. Today Chem. 19 100390Google Scholar

    [45]

    Wang S, Magnusson R 1993 Appl. Opt. 32 2606Google Scholar

    [46]

    Pan M, Su Z, Yu Z, Wu P, Jile H, Yi Z, Chen Z 2020 Result. Phys. 19 103415Google Scholar

    [47]

    Zhang X, Liu Z, Zhang Z, Gao E, Luo X, Zhou F, Li H, Yi Z 2020 Opt. Express 28 36771Google Scholar

    [48]

    Chu P X, Chen J X, Xiong Z G, Yi Z 2020 Opt. Commun. 476 126338Google Scholar

    [49]

    Zhang Y B, Yi Z, Wang X Y, Chu P X, Yao W T, Zhou Z G, Cheng S B, Liu Z M, Wu P H, Pan M, Yi Y G 2021 Physica E 127 114526Google Scholar

    [50]

    Guo C, Zhu Z, Yuan X, Ye W, Liu K, Zhang J, Xu Wei, Qin S 2016 Adv. Opt. Mater. 4 1955Google Scholar

    [51]

    Li H, Qin M, Wang L, Zhai X, Ren R, Hu J 2017 Opt. Express 25 31612Google Scholar

    [52]

    Cao J T, Yang J F, Gu Y, Fang X D, Lu N Y, Hua B, Yan.X M 2019 Mater. Res. Express. 6 15050Google Scholar

    [53]

    Piper J. R, Liu V, Fan S 2014 Appl. Phys. Lett. 104 251110Google Scholar

    [54]

    Sourav A, Li Z W, Huang Z H, Botcha V D, Hu C, YAO J P, Peng F, Kuo H C, Wu J, Liu X K, Ang K W, Transparent L S 2018 Adv. Opt. Mater. 6 1800461Google Scholar

    [55]

    Qi Y, Zhang B, Liu C, Deng X 2020 IEEE Access 8 116675Google Scholar

    [56]

    Jiang L Y, Yuan C, Li Z Y, Su J, Yi Z, Yao W T, Wu P, Liu Z M, Cheng S B, Pan M 2021 Diamond Relat. Mater. 111 108227Google Scholar

    [57]

    Yu P Q, Yang H, Chen X F, Yi Z, Yao W T, Chen J F, Yi Y G, Wu P H 2020 Renewable Energy 158 227Google Scholar

    [58]

    Deng Y H, Yang Z J, He J 2018 Opt. Express 26 31116Google Scholar

    [59]

    Maurer T, Nicolas R, Lévêque G, Subramanian P, Proust J, Béal J, Schuermans S, Vilcot J P, Herro Z, Kazan M, Plain J, Boukherroub R, Akjouj A, Djafari-Rouhani B, Adam P M, Szunerits S 2014 Plasmonics 9 507Google Scholar

    [60]

    Lu X, Zhang L, Zhang T 2015 Opt. Express 23 20715Google Scholar

    [61]

    Lin L H, Zheng Y B 2015 Sci. Rep. 5 14788Google Scholar

    [62]

    Ye J, Dorpe P V 2011 Plasmonics 6 665Google Scholar

    [63]

    Ameling R, Langguth L, Hentschel M, Mesch M, Braun P V, Giessen H 2010 Appl. Phys. Lett. 97 253116Google Scholar

    [64]

    Huang C, Ye J, Wang S, Stakenborg T, Lagae L 2012 Appl. Phys. Lett. 100 173114Google Scholar

  • [1] Wang Zheng-Yu, Huang Fei, Xue Run-Yu, Wang Zheng-Ling. Perfect absorption of symmetric grating structure based on the continuous metal film. Acta Physica Sinica, 2023, 72(5): 054201. doi: 10.7498/aps.72.20221701
    [2] Fan Hui-Ying, Luo Jie. Research progress of non-Hermitian electromagnetic metasurfaces. Acta Physica Sinica, 2022, 71(24): 247802. doi: 10.7498/aps.71.20221706
    [3] Huang Xin-Yu, Han Xu, Chen Hui, Wu Xu, Liu Li-Wei, Ji Wei, Wang Ye-Liang, Huang Yuan. New progress and prospects of mechanical exfoliation technology of two-dimensional materials. Acta Physica Sinica, 2022, 71(10): 108201. doi: 10.7498/aps.71.20220030
    [4] Wu Fan-Fan, Ji Yi-Ru, Yang Wei, Zhang Guang-Yu. Experimental research progress of electronic band structure and low temperature transport based on molybdenum disulfide. Acta Physica Sinica, 2022, 71(12): 127306. doi: 10.7498/aps.71.20220015
    [5] Tian Jin-Peng, Wang Shuo-Pei, Shi Dong-Xia, Zhang Guang-Yu. Vertical short-channel MoS2 field-effect transistors. Acta Physica Sinica, 2022, 71(21): 218502. doi: 10.7498/aps.71.20220738
    [6] Liu Kai-Long, Peng Dong-Sheng. Effects of photoelectric properties of monolayer MoS2 under tensile strain. Acta Physica Sinica, 2021, 70(21): 217101. doi: 10.7498/aps.70.20210816
    [7] Du Jian-Bin, Feng Zhi-Fang, Zhang Qian, Han Li-Jun, Tang Yan-Lin, Li Qi-Feng. Molecular structure and electronic spectrum of MoS2under external electric field. Acta Physica Sinica, 2019, 68(17): 173101. doi: 10.7498/aps.68.20190781
    [8] Meng Fan, Hu Jin-Hua, Wang Hui, Zou Ge-Yin, Cui Jian-Gong, Zhao Yue. Fluorescence enhancement of monolayer MoS2 in plasmonic resonator. Acta Physica Sinica, 2019, 68(23): 237801. doi: 10.7498/aps.68.20191121
    [9] Zhang Xin-Cheng, Liao Wen-Hu, Zuo Min. Electronic structure and spin/valley transport properties of monolayer MoS2 under the irradiation of the off-resonant circularly polarized light. Acta Physica Sinica, 2018, 67(10): 107101. doi: 10.7498/aps.67.20180213
    [10] Liu Le, Tang Jian, Wang Qin-Qin, Shi Dong-Xia, Zhang Guang-Yu. Thermal stability of MoS2 encapsulated by graphene. Acta Physica Sinica, 2018, 67(22): 226501. doi: 10.7498/aps.67.20181255
    [11] Wei Yang, Ma Xin-Guo, Zhu Lin, He Hua, Huang Chu-Yun. Interfacial cohesive interaction and band modulation of two-dimensional MoS2/graphene heterostructure. Acta Physica Sinica, 2017, 66(8): 087101. doi: 10.7498/aps.66.087101
    [12] Zhang Hui-Yun, Huang Xiao-Yan, Chen Qi, Ding Chun-Feng, Li Tong-Tong, Lü Huan-Huan, Xu Shi-Lin, Zhang Xiao, Zhang Yu-Ping, Yao Jian-Quan. Tunable terahertz absorber based on complementary graphene meta-surface. Acta Physica Sinica, 2016, 65(1): 018101. doi: 10.7498/aps.65.018101
    [13] Li Ming-Lin, Wan Ya-Ling, Hu Jian-Yue, Wang Wei-Dong. Molecular dynamics simulation of effects of temperature and chirality on the mechanical properties of single-layer molybdenum disulfide. Acta Physica Sinica, 2016, 65(17): 176201. doi: 10.7498/aps.65.176201
    [14] Zhang Li-Yong, Fang Liang, Peng Xiang-Yang. First-principles study on multiphase property and phase transition of monolayer MoS2. Acta Physica Sinica, 2016, 65(12): 127101. doi: 10.7498/aps.65.127101
    [15] Fu Chong-Yuan, Xing Song, Shen Tao, Tai Bo, Dong Qian-Min, Shu Hai-Bo, Liang Pei. Synthesis and characterization of flower-like MoS2 microspheres by hydrothermal method. Acta Physica Sinica, 2015, 64(1): 016102. doi: 10.7498/aps.64.016102
    [16] Zhang Li-Yong, Fang Liang, Peng Xiang-Yang. Tuning the electronic property of monolayer MoS2 adsorbed on metal Au substrate: a first-principles study. Acta Physica Sinica, 2015, 64(18): 187101. doi: 10.7498/aps.64.187101
    [17] Xu Jie, Zhou Li, Huang Zhi-Xiang, Wu Xian-Liang. Study on the absorbing properties of critically coupled resonator with graphene. Acta Physica Sinica, 2015, 64(23): 238103. doi: 10.7498/aps.64.238103
    [18] Wei Xiao-Xu, Cheng Ying, Huo Da, Zhang Yu-Han, Wang Jun-Zhuan, Hu Yong, Shi Yi. PL enhancement of MoS2 by Au nanoparticles. Acta Physica Sinica, 2014, 63(21): 217802. doi: 10.7498/aps.63.217802
    [19] Dong Hai-Ming. Investigation on mobility of single-layer MoS2 at low temperature. Acta Physica Sinica, 2013, 62(20): 206101. doi: 10.7498/aps.62.206101
    [20] Wu Mu-Sheng, Xu Bo, Liu Gang, Ouyang Chu-Ying. The effect of strain on band structure of single-layer MoS2: an ab initio study. Acta Physica Sinica, 2012, 61(22): 227102. doi: 10.7498/aps.61.227102
  • supplement 128101-20202163补充材料.pdf supplement
Metrics
  • Abstract views:  7233
  • PDF Downloads:  158
  • Cited By: 0
Publishing process
  • Received Date:  19 December 2020
  • Accepted Date:  24 January 2021
  • Available Online:  10 June 2021
  • Published Online:  20 June 2021

/

返回文章
返回