Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First-principles study on multiphase property and phase transition of monolayer MoS2

Zhang Li-Yong Fang Liang Peng Xiang-Yang

Citation:

First-principles study on multiphase property and phase transition of monolayer MoS2

Zhang Li-Yong, Fang Liang, Peng Xiang-Yang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Using first principles calculations within density functional theory, we investigate multiphase property and phase transition of monolayer MoS2. All the quantities are calculated using the Vienna ab initio simulation package. Calculations are performed within the generalized gradient approximation with van der Waals corrections (optimized Perdew- Burke-Ernzerhof-vdW). The cutoff energy of plane-wave is set to be 400 eV. The atomic plane and its neighboring image are separated by a 15 vacuum layer. The k-meshes for the structure relaxation and post analysis are 11111 and 19191 respectively.Firstly, we obtain the geometry configurations of 2H-MoS2, 1T-MoS2 and ZT-MoS2 phases through structure relaxing. The lattice constants of 2H-MoS2 are a = 3.190 and b= 5.524 , and total energy is -39.83 eV which means that it is the most stable phase. The lattice constants of 1T-MoS2 are a = 3.191 and b = 5.528 , and total energy is -38.21 eV, which means that it is the most unstable phase. Both 2H-MoS2 and 1T-MoS2 have a three-layer structure with two S layers sandwiching one Mo layer. The difference of 1T-MoS2 from the 2H-MoS2 is the upper S layer shifting. The ZT-MoS2 derives from 1T-MoS2 through lattice distortion. The lattice constants of ZT-MoS2 are a = 3.185 and b = 5.725 , and total energy is -38.80 eV. The total energy determines the following stability order of three phases: 2H-MoS2 ZT-MoS2 1T-MoS2. Our computed results agree well with the other computed and experimental results. Band structure and density of states confirm that 1T-MoS2 is metallic and ZT-MoS2 is semiconducting. But the bandgap of ZT-MoS2 phase is only 0.01 eV. Then we compute the intrinsic carrier mobility values of 2H-MoS2 and ZT-MoS2 at 300 K with the deformation potential theory. The carrier mobility of 2H-MoS2 is between 100 cm2 V-1 s-1 and 400 cm2V-1s-1. Owing to ZT-MoS2 carrier effective mass decreasing obviously, the carrier mobility of ZT phase rises to 104 cm2V-1s-1. The great carrier mobility of ZT-MoS2 covers the shortage of 2H-MoS2 and expands the applications of monolayer MoS2.After obtaining the intrinsic properties of three phases, we investigate the phase transition of monolayer MoS2. Adsorption energy becomes more accurate with van der Waals corrections. Through comparing the adsorption energy, we conclude that the stabilities of Li absorbed on the surfaces of three phases are in the following order: 1T-MoS2 ZTMoS 2 2H-MoS2, which is opposite to the stability order of the three phases. It means that 1T-MoS2 absorbs Li more easily than 2H-MoS2. Finally we compute the energy pathways of the phase transition from 2H-MoS2 to 1T-MoS2. Introducing an electron makes the energy barrier of 2H-1T transition change from 1.85 eV to 1.49 eV. Increasing electron concentration reduces the difficulty in producing phase transition. Li intercalation plays the same role as an electron and the energy barrier drops to 1.24 eV. In conclusion, the MoS2 electron concentration change is the key reason for phase transition. The study results may provide guidance for the preparation and characterization of monolayer MoS2.
      Corresponding author: Fang Liang, lfang@nudt.edu.cn
    • Funds: Project supported by the Key Program of the National Natural Science Foundation of China (Grant No. 61332003), the National Natural Science Foundation of China (Grant No. 11274265), and the Fund from HPCL, China (Grant No. 201501-02).
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H, Zhang Y 2014 Nat. Nanotechnol. 9 372

    [3]

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699

    [4]

    Ataca C, Şahin H, Ciraci S 2012 J. Phys. Chem. C 116 8983

    [5]

    Yin Z Y, Li H, Li H, Jiang L, Shi Y M, Sun Y H, Lu G, Zhang Q, Chen X D, Zhang H 2012 ACS Nano 6 74

    [6]

    Li H, Wu J, Yin Z, Zhang H 2014 Acc. Chem. Res. 47 1067

    [7]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805

    [8]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147

    [9]

    Docherty C J, Parkinson P, Joyce H J, Chiu M H, Chen C H, Lee M Y, Li L J, Herz L M, Johnston M B 2014 ACS Nano 8 11147

    [10]

    Miwa J A, Ulstrup S, Sorensen S G, Dendzik M, Cabo A G, Bianchi M, Lauritsen J V, Hofmann P 2015 Phys. Rev. Lett. 114 046802

    [11]

    Eda G, Yamaguchi H, Voiry D, Fujita T, Chen M, Chhowalla M 2011 Nano Lett. 11 5111

    [12]

    Eda G, Fujita T, Yamaguchi H, Voiry D, Chen M W, Chhowalla M 2012 ACS Nano 6 7311

    [13]

    Qian X F, Liu J W, Fu L, Li J 2014 Science 346 1344

    [14]

    Fan X, Xu P, Zhou D, Sun Y, Li Y C, Nguyen M A, Terrones M, Mallouk T E 2015 Nano Lett. 15 5956

    [15]

    Kang Y, Najmaei S, Liu Z, Bao Y, Wang Y, Zhu X, Halas N J, Nordlander P, Ajayan P M, Lou J, Fang Z 2014 Adv. Mater. 26 6467

    [16]

    Wang L, Xu Z, Wang W, Bai X 2014 J. Am. Chem. Soc. 136 6693

    [17]

    Duerloo K A, Li Y, Reed E J 2014 Nat. Commun. 5 4214

    [18]

    Kan M, Wang J Y, Li X W, Zhang S H, Li Y W, Kawazoe Y, Sun Q, Jena P 2014 J. Phys. Chem. C 118 1515

    [19]

    Gao G, Jiao Y, Ma F, Jiao Y, Waclawik E, Du A 2015 J. Phys. Chem. C 119 13124

    [20]

    Moses P G, Mortensen J J, Lundqvist B I, Norskov J K 2009 J. Chem. Phys. 130 104709

    [21]

    Kresse G, Furthmller J 1996 Comput. Mater. Sci. 6 15

    [22]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [23]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [24]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [25]

    Dion M, Rydberg H, Schrer E, Langreth D C, Lundqvist B I 2004 Phys. Rev. Lett. 92 246401

    [26]

    Klime J, Bowler D R, Michaelides A 2010 J. Phys. Condens. Matter 22 022201

    [27]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [28]

    Kaasbjerg K, Thygesen K S, Jacobsen K W 2012 Phys. Rev. B 85 115317

    [29]

    Kaasbjerg K, Thygesen K S, Jauho A P 2013 Phys. Rev. B 87 235312

    [30]

    Bardeen J, Shockley W 1950 Phys. Rev. 80 72

    [31]

    Fei R, Yang L 2014 Nano Lett. 14 2884

    [32]

    Long M Q, Tang L, Wang D, Wang L J, Shuai Z G 2009 J. Am. Chem. Soc. 131 17728

    [33]

    Cai Y, Zhang G, Zhang Y W 2014 J. Am. Chem. Soc. 136 6269

    [34]

    Liu K K, Zhang W, Lee Y H, Lin Y C, Chang M T, Su C Y, Chang C S, Li H, Shi Y, Zhang H, Lai C S, Li L J 2012 Nano Lett. 12 1538

    [35]

    Wu M S, Xu B, Liu G, Ouyang C Y 2012 Acta Phys. Sin. 61 227102

    [36]

    Tang Q, Jiang D E 2015 Chem. Mater. 27 3743

    [37]

    Radisavljevic B, Kis A 2013 Nat. Mater. 12 815

    [38]

    Enyashin A N, Yadgarov L, Houben L, Popov I, Weidenbach M, Tenne R, Bar-Sadan M, Seifert G 2011 J. Phys. Chem. C 115 24586

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H, Zhang Y 2014 Nat. Nanotechnol. 9 372

    [3]

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699

    [4]

    Ataca C, Şahin H, Ciraci S 2012 J. Phys. Chem. C 116 8983

    [5]

    Yin Z Y, Li H, Li H, Jiang L, Shi Y M, Sun Y H, Lu G, Zhang Q, Chen X D, Zhang H 2012 ACS Nano 6 74

    [6]

    Li H, Wu J, Yin Z, Zhang H 2014 Acc. Chem. Res. 47 1067

    [7]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805

    [8]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147

    [9]

    Docherty C J, Parkinson P, Joyce H J, Chiu M H, Chen C H, Lee M Y, Li L J, Herz L M, Johnston M B 2014 ACS Nano 8 11147

    [10]

    Miwa J A, Ulstrup S, Sorensen S G, Dendzik M, Cabo A G, Bianchi M, Lauritsen J V, Hofmann P 2015 Phys. Rev. Lett. 114 046802

    [11]

    Eda G, Yamaguchi H, Voiry D, Fujita T, Chen M, Chhowalla M 2011 Nano Lett. 11 5111

    [12]

    Eda G, Fujita T, Yamaguchi H, Voiry D, Chen M W, Chhowalla M 2012 ACS Nano 6 7311

    [13]

    Qian X F, Liu J W, Fu L, Li J 2014 Science 346 1344

    [14]

    Fan X, Xu P, Zhou D, Sun Y, Li Y C, Nguyen M A, Terrones M, Mallouk T E 2015 Nano Lett. 15 5956

    [15]

    Kang Y, Najmaei S, Liu Z, Bao Y, Wang Y, Zhu X, Halas N J, Nordlander P, Ajayan P M, Lou J, Fang Z 2014 Adv. Mater. 26 6467

    [16]

    Wang L, Xu Z, Wang W, Bai X 2014 J. Am. Chem. Soc. 136 6693

    [17]

    Duerloo K A, Li Y, Reed E J 2014 Nat. Commun. 5 4214

    [18]

    Kan M, Wang J Y, Li X W, Zhang S H, Li Y W, Kawazoe Y, Sun Q, Jena P 2014 J. Phys. Chem. C 118 1515

    [19]

    Gao G, Jiao Y, Ma F, Jiao Y, Waclawik E, Du A 2015 J. Phys. Chem. C 119 13124

    [20]

    Moses P G, Mortensen J J, Lundqvist B I, Norskov J K 2009 J. Chem. Phys. 130 104709

    [21]

    Kresse G, Furthmller J 1996 Comput. Mater. Sci. 6 15

    [22]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [23]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [24]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [25]

    Dion M, Rydberg H, Schrer E, Langreth D C, Lundqvist B I 2004 Phys. Rev. Lett. 92 246401

    [26]

    Klime J, Bowler D R, Michaelides A 2010 J. Phys. Condens. Matter 22 022201

    [27]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [28]

    Kaasbjerg K, Thygesen K S, Jacobsen K W 2012 Phys. Rev. B 85 115317

    [29]

    Kaasbjerg K, Thygesen K S, Jauho A P 2013 Phys. Rev. B 87 235312

    [30]

    Bardeen J, Shockley W 1950 Phys. Rev. 80 72

    [31]

    Fei R, Yang L 2014 Nano Lett. 14 2884

    [32]

    Long M Q, Tang L, Wang D, Wang L J, Shuai Z G 2009 J. Am. Chem. Soc. 131 17728

    [33]

    Cai Y, Zhang G, Zhang Y W 2014 J. Am. Chem. Soc. 136 6269

    [34]

    Liu K K, Zhang W, Lee Y H, Lin Y C, Chang M T, Su C Y, Chang C S, Li H, Shi Y, Zhang H, Lai C S, Li L J 2012 Nano Lett. 12 1538

    [35]

    Wu M S, Xu B, Liu G, Ouyang C Y 2012 Acta Phys. Sin. 61 227102

    [36]

    Tang Q, Jiang D E 2015 Chem. Mater. 27 3743

    [37]

    Radisavljevic B, Kis A 2013 Nat. Mater. 12 815

    [38]

    Enyashin A N, Yadgarov L, Houben L, Popov I, Weidenbach M, Tenne R, Bar-Sadan M, Seifert G 2011 J. Phys. Chem. C 115 24586

  • [1] Zhang Leng, Shen Yu-Hao, Tang Chao-Yang, Wu Kong-Ping, Zhang Peng-Zhan, Liu Fei, Hou Ji-Wei. Effect of uniaxial strain on Hole mobility of Sb2Se3. Acta Physica Sinica, 2024, 73(11): 117101. doi: 10.7498/aps.73.20240175
    [2] Zhang Leng, Zhang Peng-Zhan, Liu Fei, Li Fang-Zheng, Luo Yi, Hou Ji-Wei, Wu Kong-Ping. Carrier mobility in doped Sb2Se3 based on deformation potential theory. Acta Physica Sinica, 2024, 73(4): 047101. doi: 10.7498/aps.73.20231406
    [3] Du Jian-Bin, Feng Zhi-Fang, Zhang Qian, Han Li-Jun, Tang Yan-Lin, Li Qi-Feng. Molecular structure and electronic spectrum of MoS2under external electric field. Acta Physica Sinica, 2019, 68(17): 173101. doi: 10.7498/aps.68.20190781
    [4] Du Jian-Bin, Zhang Qian, Li Qi-Feng, Tang Yan-Lin. Investigation of external electric field effect on C24H38O4 molecule by density functional theory. Acta Physica Sinica, 2018, 67(6): 063102. doi: 10.7498/aps.67.20172022
    [5] Di Lin-Jia, Dai Xian-Ying, Song Jian-Jun, Miao Dong-Ming, Zhao Tian-Long, Wu Shu-Jing, Hao Yue. Calculations of energy band structure and mobility in critical bandgap strained Ge1-xSnx based on Sn component and biaxial tensile stress modulation. Acta Physica Sinica, 2018, 67(2): 027101. doi: 10.7498/aps.67.20171969
    [6] Tao Peng-Cheng, Huang Yan, Zhou Xiao-Hao, Chen Xiao-Shuang, Lu Wei. First principles investigation of the tuning in metal-MoS2 interface induced by doping. Acta Physica Sinica, 2017, 66(11): 118201. doi: 10.7498/aps.66.118201
    [7] Wei Yang, Ma Xin-Guo, Zhu Lin, He Hua, Huang Chu-Yun. Interfacial cohesive interaction and band modulation of two-dimensional MoS2/graphene heterostructure. Acta Physica Sinica, 2017, 66(8): 087101. doi: 10.7498/aps.66.087101
    [8] Dai Guang-Zhen, Jiang Xian-Wei, Xu Tai-Long, Liu Qi, Chen Jun-Ning, Dai Yue-Hua. Effect of oxygen vacancy on lattice and electronic properties of HfO2 by means of density function theory study. Acta Physica Sinica, 2015, 64(3): 033101. doi: 10.7498/aps.64.033101
    [9] Bai Min, Xuan Rong-Xi, Song Jian-Jun, Zhang He-Ming, Hu Hui-Yong, Shu Bin. Hole scattering and mobility in compressively strained Ge/(001)Si1-xGex. Acta Physica Sinica, 2015, 64(3): 038501. doi: 10.7498/aps.64.038501
    [10] Lü Jin, Yang Li-Jun, Wang Yan-Fang, Ma Wen-Jin. Density functional theory study of structure characteristics and stabilities of Al2Sn(n=2-10) clusters. Acta Physica Sinica, 2014, 63(16): 163601. doi: 10.7498/aps.63.163601
    [11] Yu Ben-Hai, Chen Dong. Phase transition, electronic and optical properties of Si3N4 new phases at high pressure with density functional theory. Acta Physica Sinica, 2014, 63(4): 047101. doi: 10.7498/aps.63.047101
    [12] Wei Xiao-Xu, Cheng Ying, Huo Da, Zhang Yu-Han, Wang Jun-Zhuan, Hu Yong, Shi Yi. PL enhancement of MoS2 by Au nanoparticles. Acta Physica Sinica, 2014, 63(21): 217802. doi: 10.7498/aps.63.217802
    [13] Wen Jun-Qing, Zhang Jian-Min, Yao Pan, Zhou Hong, Wang Jun-Fei. A density functional theory study of small bimetallic PdnAl (n =18) clusters. Acta Physica Sinica, 2014, 63(11): 113101. doi: 10.7498/aps.63.113101
    [14] Wang Hong-Pei, Wang Guang-Long, Yu Ying, Xu Ying-Qiang, Ni Hai-Qiao, Niu Zhi-Chuan, Gao Feng-Qi. Properties of δ doped GaAs/AlxGa1-xAs 2DEG with embedded InAs quantum dots. Acta Physica Sinica, 2013, 62(20): 207303. doi: 10.7498/aps.62.207303
    [15] Dong Hai-Ming. Investigation on mobility of single-layer MoS2 at low temperature. Acta Physica Sinica, 2013, 62(20): 206101. doi: 10.7498/aps.62.206101
    [16] Zhang Bei, Bao An, Chen Chu, Zhang Jun. Density-functional theory study of ConCm (n=15, m=1,2) clusters. Acta Physica Sinica, 2012, 61(15): 153601. doi: 10.7498/aps.61.153601
    [17] Li Xi-Bo, Wang Hong-Yan, Luo Jiang-Shan, Wu Wei-Dong, Tang Yong-Jian. Density functional theory study of the geometry, stability and electronic properties of ScnO(n=1—9) clusters. Acta Physica Sinica, 2009, 58(9): 6134-6140. doi: 10.7498/aps.58.6134
    [18] Chen Yu-Hong, Kang Long, Zhang Cai-Rong, Luo Yong-Chun, Ma Jun. Density functional theory study of [Mg(NH2)2]n(n=1—5) clusters. Acta Physica Sinica, 2008, 57(8): 4866-4874. doi: 10.7498/aps.57.4866
    [19] Chen Yu-Hong, Zhang Cai-Rong, Ma Jun. Density functional theory study on the structure and properties of MgmBn(m=1,2;n=1—4) clusters. Acta Physica Sinica, 2006, 55(1): 171-178. doi: 10.7498/aps.55.171
    [20] Xu Xue-Mei, Peng Jing-Cui, Li Hong-Jian, Qu Shu, Luo Xiao-Hua. . Acta Physica Sinica, 2002, 51(10): 2380-2385. doi: 10.7498/aps.51.2380
Metrics
  • Abstract views:  9298
  • PDF Downloads:  731
  • Cited By: 0
Publishing process
  • Received Date:  13 January 2016
  • Accepted Date:  14 April 2016
  • Published Online:  05 June 2016

/

返回文章
返回