-
In the past few decades, although coupled-mode theory (CMT) has been extensively studied in quantum system, atomic system, plasmon system, circuit system, and so on, the theoretical origin is still plaguing many researchers. In the book of waves and fields in optoelectronics, the second-order differential equations of the simplest LC simple harmonic vibration circuit was turned into the first-order differential equation using the method of variable substitution by Haus. However, there is not loss in the simplest LC simple harmonic vibration circuit, loss term is introduced by qualitative analysis. Although this method of dealing with problems has no problems from a physical point of view, it is not rigorous enough from a mathematical point of view. In this paper, based on the secular perturbation theory, the well-known spring oscillator model is degenerated into two-mode CMT. Starting from the second-order differential equations of the spring oscillator model, the secular perturbation theory is used to obtain first order differential equations of two-mode CMT. The results show the relationships between each term’s coefficients in two-mode CMT and the physical quantities in Classical Mechanics are established by using the secular perturbation theory. Through solving two-mode coupled-mode equations, the energy transfer efficiency has been obtained. To verify the correctness of two-mode CMT, we design a coupled tuning fork mechanical vibration system, which consists of two experimental instruments to provide driving force and receive signals, two tuning forks and springs. The amplitude spectra are measured by an experimental instrument of forced vibration and resonance (HZDH4615), which provides a periodic driving signal for the tuning fork. To clarify the mechanism of the spectra, the numerical fitting has been performed by mathematica software based on the energy transfer efficiency. Theoretically, the obtained fitting parameters can also evaluate some important attributes of the system. The theoretical results are in close correspondence with the experiment. That is to say, two-mode CMT is suitable for classical vibration system.This study provides a more rigorous derivation for each term’s origin in two-mode CMT, and has guiding significance in the theoretical research of linear coupled vibration system.
-
Keywords:
- linear coupled system /
- spring oscillator model /
- coupled-mode theory /
- secular perturbation theory
[1] Garrido A C L, Martinez M A G, Nussenzveig P 2002 Am. J. Phys. 70 37
[2] 朱旭鹏, 张轼, 石惠民, 陈智全, 全军, 薛书文, 张军, 段辉高 2019 物理学报 68 247301Google Scholar
Zhu X P, Zhang S, Shi H M, Chen Z Q, Quan J, Xue S W, Zhang J, Duan H G 2019 Acta Phys. Sin. 68 247301Google Scholar
[3] 朱旭鹏, 石惠民, 张轼, 陈智全, 郑梦洁, 王雅思, 薛书文, 张军, 段辉高 2019 物理学报 68 247304
Zhu X P, Shi H M, Zhang S, Chen Z Q, Zheng M J, Wang Y S, Xue S W, Zhang J, Duan H G 2019 Acta Phys. Sin. 68 247304
[4] Liu N, Langguth L, Weiss T, Kästel J, Fleischhauer M, Pfau T, Giessen H 2009 Nat. Mater. 8 758Google Scholar
[5] Heylman K D, Thakkar N, Horak E H, Quillin S C, Goldsmith R H 2016 Nat. Photonics 10 788Google Scholar
[6] LiuZV, Li J, Liu Z, Li W, Li J, Gu C, L iZ 2017 Sci. Rep. 7 8010Google Scholar
[7] Suh W, Wang Z, Fan S 2004 IEEE J. Quantum Electron. 40 1511Google Scholar
[8] Fan S, Suh W, Joannopoulos J D 2003 J. Opt. Soc. Am. A 20 569Google Scholar
[9] Marcuse D 1971 The Bell System Technical Journal 50 1791Google Scholar
[10] Snyder A W 1970 IEEE Trans. Microwave Theory Tech. 18 383Google Scholar
[11] Hardy A, Streifer W 1985 J. Lightwave Technol. LT-3 1135
[12] McIntyre P D, Snyder A W 1973 J. Opt. Soc. Am. 63 1518Google Scholar
[13] Butler J K, Ackley D E, Botez D 1984 Appl. Phys. Lett. 44 293Google Scholar
[14] Feng L, Xu YL, William S F, Lu M H, José E B O, Vilson R A, Chen Y F, Axel S 2012 Nat. Mater. 12 108
[15] Hossein H, Absar U H, Steffen W, Hipolito GG, Ramy EG, Demetrios N C, Mercedeh K 2017 Nature 548 187Google Scholar
[16] Mikhail F L, Mikhail V R, Alexander N P, Yuri S K 2017 Nat. Photonics 11 543Google Scholar
[17] Miri M A, Andrea A 2019 Science 363 42
[18] SafaviNaeini A H, Alegre T P M, Chan J, Eichenfield M, Winger M, Lin Q, Hill J T, Chang D E, Painter O 2011 Nature 472 69Google Scholar
[19] Andersen D R, Datta S, Gunshor R L 1983 J. Appl. Phys. 54 5608Google Scholar
[20] Stegeman G I, Seaton C T 1985 J. Appl. Phys. 58 R57Google Scholar
[21] Boller K J, Imamoğlu A, Harris S E 1991 Phys. Rev. Lett. 66 2593Google Scholar
[22] Zhang S, Genov D A, Wang Y, Liu M, Zhang X 2008 Phys. Rev. Lett. 101 047401Google Scholar
[23] Kurs A, Karalis A, Moffatt R, Joannopoulos J D, Fisher P, Soljačić M 2007 Science 317 83Google Scholar
[24] Zhang F, Hackworth S A, Fu W, Li C, Mao Z, Sun M 2011 IEEE Trans. Magn. 47 1478Google Scholar
[25] Karalis A, Joannopoulos J D, Soljačić M 2008 Ann. Phys. 323 34Google Scholar
[26] Wang B, Yerazunis W, Teo K H 2013 Proc. IEEE 101 1359Google Scholar
[27] Haus H A 1984 Waves and Fields in Optoelectronics (New Jersey: Prentice-Hall) pp197–217
[28] Huang W X, Wang Q J, Yin X G, Huang C P, Huang H, Wang Y M, Zhu Y Y 2011 J. Appl. Phys. 109 114310Google Scholar
[29] Karabalin R, Cross M, Roukes M 2009 Phys. Rev. B 79 165309Google Scholar
[30] Villanueva L, Kenig E, Karabalin R, Matheny M, Lifshitz R, Cross M, Roukes M 2013 Phys. Rev.Lett. 110 177208Google Scholar
-
图 2 (a)两音叉耦合实验装置图; (b) 实验系统工作原理的示意图; (c)音叉单独振动时的实验谱和拟合谱; (d) 双音叉耦合下的实验谱和拟合谱
Figure 2. (a) Experimental device diagram of our two tuning forks’ coupled system; (b) schematic diagram of the experiment system; (c) measured and fitted spectra of two tuning forks without coupling; (d) measured and fitted spectra of two tuning forks with coupling.
-
[1] Garrido A C L, Martinez M A G, Nussenzveig P 2002 Am. J. Phys. 70 37
[2] 朱旭鹏, 张轼, 石惠民, 陈智全, 全军, 薛书文, 张军, 段辉高 2019 物理学报 68 247301Google Scholar
Zhu X P, Zhang S, Shi H M, Chen Z Q, Quan J, Xue S W, Zhang J, Duan H G 2019 Acta Phys. Sin. 68 247301Google Scholar
[3] 朱旭鹏, 石惠民, 张轼, 陈智全, 郑梦洁, 王雅思, 薛书文, 张军, 段辉高 2019 物理学报 68 247304
Zhu X P, Shi H M, Zhang S, Chen Z Q, Zheng M J, Wang Y S, Xue S W, Zhang J, Duan H G 2019 Acta Phys. Sin. 68 247304
[4] Liu N, Langguth L, Weiss T, Kästel J, Fleischhauer M, Pfau T, Giessen H 2009 Nat. Mater. 8 758Google Scholar
[5] Heylman K D, Thakkar N, Horak E H, Quillin S C, Goldsmith R H 2016 Nat. Photonics 10 788Google Scholar
[6] LiuZV, Li J, Liu Z, Li W, Li J, Gu C, L iZ 2017 Sci. Rep. 7 8010Google Scholar
[7] Suh W, Wang Z, Fan S 2004 IEEE J. Quantum Electron. 40 1511Google Scholar
[8] Fan S, Suh W, Joannopoulos J D 2003 J. Opt. Soc. Am. A 20 569Google Scholar
[9] Marcuse D 1971 The Bell System Technical Journal 50 1791Google Scholar
[10] Snyder A W 1970 IEEE Trans. Microwave Theory Tech. 18 383Google Scholar
[11] Hardy A, Streifer W 1985 J. Lightwave Technol. LT-3 1135
[12] McIntyre P D, Snyder A W 1973 J. Opt. Soc. Am. 63 1518Google Scholar
[13] Butler J K, Ackley D E, Botez D 1984 Appl. Phys. Lett. 44 293Google Scholar
[14] Feng L, Xu YL, William S F, Lu M H, José E B O, Vilson R A, Chen Y F, Axel S 2012 Nat. Mater. 12 108
[15] Hossein H, Absar U H, Steffen W, Hipolito GG, Ramy EG, Demetrios N C, Mercedeh K 2017 Nature 548 187Google Scholar
[16] Mikhail F L, Mikhail V R, Alexander N P, Yuri S K 2017 Nat. Photonics 11 543Google Scholar
[17] Miri M A, Andrea A 2019 Science 363 42
[18] SafaviNaeini A H, Alegre T P M, Chan J, Eichenfield M, Winger M, Lin Q, Hill J T, Chang D E, Painter O 2011 Nature 472 69Google Scholar
[19] Andersen D R, Datta S, Gunshor R L 1983 J. Appl. Phys. 54 5608Google Scholar
[20] Stegeman G I, Seaton C T 1985 J. Appl. Phys. 58 R57Google Scholar
[21] Boller K J, Imamoğlu A, Harris S E 1991 Phys. Rev. Lett. 66 2593Google Scholar
[22] Zhang S, Genov D A, Wang Y, Liu M, Zhang X 2008 Phys. Rev. Lett. 101 047401Google Scholar
[23] Kurs A, Karalis A, Moffatt R, Joannopoulos J D, Fisher P, Soljačić M 2007 Science 317 83Google Scholar
[24] Zhang F, Hackworth S A, Fu W, Li C, Mao Z, Sun M 2011 IEEE Trans. Magn. 47 1478Google Scholar
[25] Karalis A, Joannopoulos J D, Soljačić M 2008 Ann. Phys. 323 34Google Scholar
[26] Wang B, Yerazunis W, Teo K H 2013 Proc. IEEE 101 1359Google Scholar
[27] Haus H A 1984 Waves and Fields in Optoelectronics (New Jersey: Prentice-Hall) pp197–217
[28] Huang W X, Wang Q J, Yin X G, Huang C P, Huang H, Wang Y M, Zhu Y Y 2011 J. Appl. Phys. 109 114310Google Scholar
[29] Karabalin R, Cross M, Roukes M 2009 Phys. Rev. B 79 165309Google Scholar
[30] Villanueva L, Kenig E, Karabalin R, Matheny M, Lifshitz R, Cross M, Roukes M 2013 Phys. Rev.Lett. 110 177208Google Scholar
Catalog
Metrics
- Abstract views: 8410
- PDF Downloads: 141
- Cited By: 0