Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Time-optimized quantum QFT gate in an Ising coupling system

Ling Hong-Sheng Tian Jia-Xin Zhou Shu-Na Wei Da-Xiu

Citation:

Time-optimized quantum QFT gate in an Ising coupling system

Ling Hong-Sheng, Tian Jia-Xin, Zhou Shu-Na, Wei Da-Xiu
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Quantum Fourier transform (QFT) is a quantum analogue of the classical discrete Fourier transform. It is a fundamental quantum gate in quantum algorithms which has an exponential advantage over the classical computation and has been excessively studied. Normally, an n-qubit quantum Fourier transform could be resolved into the tensor product of n single-qubit operations, and each operation could be implemented by a Hadamard gate and a controlled phase gate. Then the complexity of an n-qubit QFT is of order O(n2). To reduce the complexity of quantum operations, optimal control (OC) method has recently been used successfully to find the minimum time for implementing a quantum operation. Up to now, two types of quantum optimal control methods have been presented, i.e. analytical and numerical methods. The analytical approach is to change the problem of efficient synthesis of unitary transformations into the geometrical one of finding the shortest paths. Numerical optimal control procedures are based on the gradient methods (GRAPE, Gradient Ascent Pulse Engineering) and Krotov methods. Notable application mainly focus on nuclear magnetic resonance fields, including imaging, liquid-state NMR, solid-state NMR, and NMR quantum computation. One obvious advantage of optimal control NMR quantum computation is that the OC unitary evolution transformation pulse sequences are normally shorter than the conventional corresponding ones. Here we use the optimal control method to find the minimum duration for implementing QFT quantum gate. A linear spin chain with nearest-neighbor Ising interaction is used to find the optimization. And the optimized pulse sequence is experimentally demonstrated on an NMR quantum information processor. By using optimal control method with numerical calculation, a three-qubit QFT in an indirect-linear-coupling chain system is optimized. The duration of the OC QFT is obviously shorter than that of conventional approaches. The OC pulse sequence has been experimentally implemented on a liquid-state NMR spectrometer. To verify the optimally controlled pulse sequence for the three-qubit QFT, different initial states are assumed. The accuracy of the OC pulse sequence could be demonstrated by the consistency of theoretical simulation spectra with the experimental results. The good consistency between the simulation and the experimental spectra demonstrates that the OC QFT is of high fidelity.
      Corresponding author: Wei Da-Xiu, dxwei@phy.ecnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11005039).
    [1]

    Nielsen M A, Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)

    [2]

    Long G L 2010 Physics 39 0

    [3]

    Fu X Q, Bao W S, Li F D, Zhang Y C 2014 Chin. Phys. B 23 020306

    [4]

    Weinstein Y S, Pravia M A, Fortunato E M, Lloyd S, Cory D G 2001 Phys. Rev. Lett. 86 1889

    [5]

    Shor P 1994 Algorithms for quantum computation: discrete logarithms and factoring. Proc. 35th Ann. Symp. on Found. Of Comp. Sci. (IEEE Comp. Soc. Press) pp124-134

    [6]

    Ekert A, Jozsa R 1996 Rev. of Mod. Phy 68 733

    [7]

    D'Ariano G M, Macchiavello C, Sacchi M F 1998 Phys. Lett. A 248 103

    [8]

    Cooley J W, Tukey J W 1965 Math Comput. 19 297

    [9]

    Pang C Y, Hu B Q 2008 Chin. Phys. B 17 3220

    [10]

    Fang X M, Zhu X W, Feng M, MaoX A, Du D 2000 Chin. Sci. Bull. 45 1071

    [11]

    Yaakov S, Weinstein W, Lloyd S, Cory D G 2001 Phys. Rev. Lett. 86 1889

    [12]

    Yu L B, Xue Z Y 2010 Chin. Phys. Lett. 27 070305

    [13]

    Ren G, Du J M, Yu H J 2014 Chin. Phys. B 23 024207

    [14]

    Zheng S B 2007 Common. Theor. Phys. 47 1049

    [15]

    Huang D Z, Chen Z G, Guo Y 2009 Common. Theor. Phys. 51 221

    [16]

    Beth T, Verfahren der schnellen Fourier-Transformation. Teubner, Stuttgart, 1984

    [17]

    Khaneja N, Li J S, Kehlet C, Luy B, Glaser S J 2004 Proc. Natl. Acad. Sci. USA 101 14742

    [18]

    Khaneja N, Heitmann B, Spörl A, Yuan H, Schulte-Herbrüggen T, Glaser S J 2007 Phys. Rev. A 75 012322

    [19]

    Carlini A, Koike T 2013 J. Phys. A: Math. Theor. 46 045307

    [20]

    Khaneja N, Reiss T, Kehlet C, Schulte-Herbruggen T, Glaser S J 2005 J . Magn. Reson. 172 296

    [21]

    Maximov I, Tosner Z, Nielsen N C 2008 J. Chem. Phys. 128 184505

    [22]

    Tosner Z, Vosegaard T, Kehlet C T, Khaneja N, Glaser S J, Nielsen N C 2009 J. Magn. Reson. 197 120

    [23]

    Li Z K, Yung M H, Chen H W, Lu D W, Whitfield J D, Peng X H, Aspuru-Guzik A, Du J F 2011 Sci. Rep. 1 88

    [24]

    Lu D W, Xu N Y, Xu R X, Chen HW, Gong J B, Peng X H, Du J F 2011 Phys. Rev. Lett. 107 020501

    [25]

    Feng G R, Xu G F, Long G L 2013 Phys. Rev. Lett. 110 190501

    [26]

    Feng G R, Lu Y, Hao L, Zhang F H, Long G L 2013 Sci. Rep. 3 2232

    [27]

    Wei D X, Spörl A, Chang Y, Khaneja N, Yang X D, Glaser S J 2014 Chem. Phys. Lett. 612 143

    [28]

    Schulte-Herbrüggen T, Spörl A, Khaneja N, Glaser S J 2005 Phys. Rev. A 72 042331

  • [1]

    Nielsen M A, Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)

    [2]

    Long G L 2010 Physics 39 0

    [3]

    Fu X Q, Bao W S, Li F D, Zhang Y C 2014 Chin. Phys. B 23 020306

    [4]

    Weinstein Y S, Pravia M A, Fortunato E M, Lloyd S, Cory D G 2001 Phys. Rev. Lett. 86 1889

    [5]

    Shor P 1994 Algorithms for quantum computation: discrete logarithms and factoring. Proc. 35th Ann. Symp. on Found. Of Comp. Sci. (IEEE Comp. Soc. Press) pp124-134

    [6]

    Ekert A, Jozsa R 1996 Rev. of Mod. Phy 68 733

    [7]

    D'Ariano G M, Macchiavello C, Sacchi M F 1998 Phys. Lett. A 248 103

    [8]

    Cooley J W, Tukey J W 1965 Math Comput. 19 297

    [9]

    Pang C Y, Hu B Q 2008 Chin. Phys. B 17 3220

    [10]

    Fang X M, Zhu X W, Feng M, MaoX A, Du D 2000 Chin. Sci. Bull. 45 1071

    [11]

    Yaakov S, Weinstein W, Lloyd S, Cory D G 2001 Phys. Rev. Lett. 86 1889

    [12]

    Yu L B, Xue Z Y 2010 Chin. Phys. Lett. 27 070305

    [13]

    Ren G, Du J M, Yu H J 2014 Chin. Phys. B 23 024207

    [14]

    Zheng S B 2007 Common. Theor. Phys. 47 1049

    [15]

    Huang D Z, Chen Z G, Guo Y 2009 Common. Theor. Phys. 51 221

    [16]

    Beth T, Verfahren der schnellen Fourier-Transformation. Teubner, Stuttgart, 1984

    [17]

    Khaneja N, Li J S, Kehlet C, Luy B, Glaser S J 2004 Proc. Natl. Acad. Sci. USA 101 14742

    [18]

    Khaneja N, Heitmann B, Spörl A, Yuan H, Schulte-Herbrüggen T, Glaser S J 2007 Phys. Rev. A 75 012322

    [19]

    Carlini A, Koike T 2013 J. Phys. A: Math. Theor. 46 045307

    [20]

    Khaneja N, Reiss T, Kehlet C, Schulte-Herbruggen T, Glaser S J 2005 J . Magn. Reson. 172 296

    [21]

    Maximov I, Tosner Z, Nielsen N C 2008 J. Chem. Phys. 128 184505

    [22]

    Tosner Z, Vosegaard T, Kehlet C T, Khaneja N, Glaser S J, Nielsen N C 2009 J. Magn. Reson. 197 120

    [23]

    Li Z K, Yung M H, Chen H W, Lu D W, Whitfield J D, Peng X H, Aspuru-Guzik A, Du J F 2011 Sci. Rep. 1 88

    [24]

    Lu D W, Xu N Y, Xu R X, Chen HW, Gong J B, Peng X H, Du J F 2011 Phys. Rev. Lett. 107 020501

    [25]

    Feng G R, Xu G F, Long G L 2013 Phys. Rev. Lett. 110 190501

    [26]

    Feng G R, Lu Y, Hao L, Zhang F H, Long G L 2013 Sci. Rep. 3 2232

    [27]

    Wei D X, Spörl A, Chang Y, Khaneja N, Yang X D, Glaser S J 2014 Chem. Phys. Lett. 612 143

    [28]

    Schulte-Herbrüggen T, Spörl A, Khaneja N, Glaser S J 2005 Phys. Rev. A 72 042331

  • [1] Tian Yu, Lin Zi-Dong, Wang Xiang-Yu, Che Liang-Yu, Lu Da-Wei. Experimental progress of quantum machine learning based on spin systems. Acta Physica Sinica, 2021, 70(14): 140305. doi: 10.7498/aps.70.20210684
    [2] Jiang Chuan-Dong, Wang Qi, Du Guan-Feng, Yi Xiao-Feng, Tian Bao-Feng. Characteristics of surface nuclear magnetic off-resonance signal and complex envelope inversion. Acta Physica Sinica, 2018, 67(1): 013302. doi: 10.7498/aps.67.20171464
    [3] Kong Xiang-Yu, Zhu Yuan-Ye, Wen Jing-Wei, Xin Tao, Li Ke-Ren, Long Gui-Lu. New research progress of nuclear magnetic resonance quantum information processing. Acta Physica Sinica, 2018, 67(22): 220301. doi: 10.7498/aps.67.20180754
    [4] Pan Jian, Yu Qi, Peng Xin-Hua. Experimental technique for multi-qubit nuclear magnetic resonance system. Acta Physica Sinica, 2017, 66(15): 150302. doi: 10.7498/aps.66.150302
    [5] Wu Liang, Chen Fang, Huang Chong-Yang, Ding Guo-Hui, Ding Yi-Ming. Multi-exponential inversion of T2 spectrum in NMR based on improved nonlinear fitting. Acta Physica Sinica, 2016, 65(10): 107601. doi: 10.7498/aps.65.107601
    [6] Li Zheng, Zhou Rui, Zheng Guo-Qing. Quantum criticalities in carrier-doped iron-based superconductors. Acta Physica Sinica, 2015, 64(21): 217404. doi: 10.7498/aps.64.217404
    [7] Tian Bao-Feng, Zhou Yuan-Yuan, Wang Yue, Li Zhen-Yu, Yi Xiao-Feng. Noise cancellation method for full-wave magnetic resonance sounding signal based on independent component analysis. Acta Physica Sinica, 2015, 64(22): 229301. doi: 10.7498/aps.64.229301
    [8] Li Jun, Cui Jiang-Yu, Yang Xiao-Dong, Luo Zhi-Huang, Pan Jian, Yu Qi, Li Zhao-Kai, Peng Xin-Hua, Du Jiang-Feng. Quantum control of nuclear magnetic resonance spin systems. Acta Physica Sinica, 2015, 64(16): 167601. doi: 10.7498/aps.64.167601
    [9] Yao Yun-Hua, Lu Chen-Hui, Xu Shu-Wu, Ding Jing-Xin, Jia Tian-Qing, Zhang Shi-An, Sun Zhen-Rong. Femtosecond pulse shaping technology and its applications. Acta Physica Sinica, 2014, 63(18): 184201. doi: 10.7498/aps.63.184201
    [10] Ye Jing-Jing, Li Ke-Ping, Jin Xin-Min. Simulation of optimal control of train movement based on car-following model. Acta Physica Sinica, 2014, 63(7): 070202. doi: 10.7498/aps.63.070202
    [11] Zhou Xuan, Yang Fan, Zhang Feng-Ming, Zhou Wei-Ping, Zou Wei. Control method for complex network topological connection optimization. Acta Physica Sinica, 2013, 62(15): 150201. doi: 10.7498/aps.62.150201
    [12] Li Xin, Xiao Li-Zhi, Liu Hua-Bing, Zhang Zong-Fu, Guo Bao-Xin, Yu Hui-Jun, Zong Fang-Rong. Optimization of nuclear magnetic resonance refocusing pulses to enhance signal intensity in gradient B0 field. Acta Physica Sinica, 2013, 62(14): 147602. doi: 10.7498/aps.62.147602
    [13] Yao Xi-Wei, Zeng Bi-Rong, Liu Qin, Mu Xiao-Yang, Lin Xing-Cheng, Yang Chun, Pan Jian, Chen Zhong. Subspace quantum process tomography via nuclear magnetic resonance. Acta Physica Sinica, 2010, 59(10): 6837-6841. doi: 10.7498/aps.59.6837
    [14] Zhao Hong-Min, Wang Lu-Xia. Laser pulse control of bridge state electron transfer in heterogeneous structures. Acta Physica Sinica, 2009, 58(2): 1332-1337. doi: 10.7498/aps.58.1332
    [15] Li Shao, Ren Yu-Feng, Wang Ning, Tian Ye, Chu Hai-Feng, Li Song-Lin, Chen Ying-Fei, Li Jie, Chen Geng-Hua, Zheng Dong-Ning. Detection of nuclear magnetic resonance in the microtesla range using a high Tc dc-superconducting quantum interference device. Acta Physica Sinica, 2009, 58(8): 5744-5749. doi: 10.7498/aps.58.5744
    [16] Xu Feng, Liu Tang-Yan, Huang Yong-Ren. Theoretical computation and numerical simulation of the relaxation of sphere-capillary model saturated with oil and water. Acta Physica Sinica, 2008, 57(1): 550-555. doi: 10.7498/aps.57.550
    [17] Pan Ke-Jia, Chen Hua, Tan Yong-Ji. Multi-exponential inversion of T2 spectrum in NMR based on differential evolution algorithm. Acta Physica Sinica, 2008, 57(9): 5956-5961. doi: 10.7498/aps.57.5956
    [18] Li Hong, Zhang Yong-Qiang, Cheng Jie, Wang Lu-Xia, Liu De-Sheng. Femtosecond laser pulse control of multidimensional vibrational dynamics: (Ⅰ) the three vibrational mode two electronic state system. Acta Physica Sinica, 2007, 56(5): 3010-3016. doi: 10.7498/aps.56.3010
    [19] Xu Feng, Liu Tang-Yan, Huang Yong-Ren. Theoretical description and numerical computation of the relaxation of multi-spin system in the presence of an RF field. Acta Physica Sinica, 2006, 55(6): 3054-3059. doi: 10.7498/aps.55.3054
    [20] Wang He, Li Geng-Ying. Combination of inversion and fitting as an effective method for the analysis of NMR relaxation data. Acta Physica Sinica, 2005, 54(3): 1431-1436. doi: 10.7498/aps.54.1431
Metrics
  • Abstract views:  7018
  • PDF Downloads:  279
  • Cited By: 0
Publishing process
  • Received Date:  17 March 2015
  • Accepted Date:  28 April 2015
  • Published Online:  05 September 2015

/

返回文章
返回