Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Macroscopic basic characteristics of a road network under the influence of traffic generation and attraction source agglomeration

Ding Heng Zhou Jing-Wen Zheng Xiao-Yan Bai Hai-Jian Zhang Wei-Hua

Citation:

Macroscopic basic characteristics of a road network under the influence of traffic generation and attraction source agglomeration

Ding Heng, Zhou Jing-Wen, Zheng Xiao-Yan, Bai Hai-Jian, Zhang Wei-Hua
PDF
HTML
Get Citation
  • The macroscopic fundamental diagram (MFD), which can describe the macroscopic state of a regional network intuitively, describes a unimodal, statistical and reproducible relationship between accumulation and the trip completion flow of a region. Existing researches have proved that using MFD characteristics can ‘metering’ the boundary flow and relieve the traffic congestion problem effectively. As the foundation of traffic control, existing studies on the characteristic of MFD have proved that external origin to destination demand does not influence the MFD distribution. However, the traffic generation and attraction sources in the regional road networkwill changes the distribution of traffic density of the road network, thus affecting the characteristic of MFD. However, to date, no related analysis explored the influence of the traffic generation and attraction sourcesin the regional road network. To solve this problem, according to the spatial and temporal distribution of traffic generation and attraction sources in the regional road network, this paper puts forward an aggregation degree index analysis model of traffic generation and attraction sources, based on the dynamic parameters of traffic generation and attraction sources, and section traffic impedance. Taking a square-format road network as the target, nine groups of schemes for different traffic generation and attraction sources are designed. Two conclusions can be drawn after comparing the MFD curve of the road network under different aggregation degree index of traffic generation and attraction sources: (1) when the traffic flow of the road network is in the state of free flow or critical flow, the aggregation effect of traffic generation and attraction sources has no effect on MFD distribution; (2) when the traffic flow of the road network is in the congestion flow state, the aggregation effect of traffic generation and attraction sources influences MFD distribution. Moreover, under the same road network flow conditions, the aggregation degree of traffic generation and attraction sources is lower in the road network (the distribution of traffic generation and attraction volume is more balanced), the trip completion flow of road network will be higher. Otherwise, the aggregation degree of traffic generation and attraction sources is higher in the road network (the distribution of traffic generation and attraction volume is more unbalanced), the trip completion flow of road network will be lower.
      Corresponding author: Zheng Xiao-Yan, zhengxiaoyan@hfut.edu.cn
    [1]

    Geroliminis N, Daganzo C F 2008 Transp. Res. Pt. B-Methodol. 42 759Google Scholar

    [2]

    Gonzales E J, Chavis C, Li Y, Daganzo C F 2009 Multimodal transport modeling for Nairobi, Kenya: Insights and recommendations with an evidencebased mode (Berkeley: UC Berkeley Center for Future Urban Transport) pp1—36

    [3]

    Haddad J 2017 Control Eng. Practice 61 134Google Scholar

    [4]

    Yang K D, Zheng N, Menendez M 2018 Transp. Res. Pt. C-Emerg. Technol. 94 32Google Scholar

    [5]

    Ding H, Zhang Y, Zheng X Y, Yuan H Y, Zhang W H 2018 IEEE Trans. Control Syst. Technol. 26 2049Google Scholar

    [6]

    Kim S, Tak S, Yeo H 2018 Transp. Res. Pt. C-Emerg. Technol. 93 79Google Scholar

    [7]

    Haddad J, Mirkin B 2017 Transp. Res. Pt. C-Emerg. Technol. 77 495Google Scholar

    [8]

    丁恒, 朱良元, 蒋程镔, 袁含雨 2017 交通运输系统工程与信息 17 104

    Ding H, Zhu L Y, Jiang C B, Yuan H Y 2017 J. Transport. Syst. Engineer. Inform. Technol. 17 104

    [9]

    Ding H, Guo F, Zheng X Y, Zhang W H 2017 Transp. Res. Pt. C-Emerg. Technol. 81 300Google Scholar

    [10]

    Godfrey J W 1969 TrafficEngineer. Control. 11 323

    [11]

    Gao F 2011 Ph. D. Dissertation (Stockholm: School of Architecture and the Built Environment)

    [12]

    Leclercq L, Geroliminis N 2013 Transp. Res. Pt. B-Methodol. 57 468Google Scholar

    [13]

    Daganzo C F, Geroliminis N 2008 Transp. Res. Pt. B-Methodol. 42 771Google Scholar

    [14]

    Courbon T, Leclercq L 2011 Procedia Soc. Behav Sci 20 417Google Scholar

    [15]

    Geroliminis N, Danes J, Estrada M A 2013 Transportation Research Board 92 nd Annual Meeting Washington DC, United States, January 13–17, 2013 p1013

    [16]

    Zheng N, Geroliminis N 2013 Transp. Res. Pt. B-Methodol. 57 326Google Scholar

    [17]

    Wang Y, Duan Z Y 2012 The 7 th Annual Conference of ITS China Beijig, China, September 26, 2012 p112

    [18]

    Gayah V V, Daganzo C F 2011 Transp. Res. Pt. B-Methodol. 45 643Google Scholar

    [19]

    许菲菲, 何兆成, 沙志仁 2013 交通运输系统工程与信息 13 185Google Scholar

    Xu F F, He Z C, Sha Z R 2013 J. Transport. Syst. Engineer. Inform. Technol. 13 185Google Scholar

    [20]

    朱琳, 于雷, 宋国华 2012 华南理工大学学报(自然科学版) 40 138

    Zhu L, Yu L, Song G H 2012 J. South Chin Univ. Technol. (Nat. Sci.) 40 138

    [21]

    Geroliminis N, Sun J 2011 Transp. Res. Pt. B-Methodol. 45 605Google Scholar

    [22]

    Geroliminis N, Boyaci B 2012 Transp. Res. Pt. B-Methodol. 46 1607Google Scholar

    [23]

    Buisson C, Ladier C 2009 Transp. Res. Record 2124 127Google Scholar

    [24]

    Jin W L, Gan Q J, Gayah V V 2013 Transp. Res. Pt. B-Methodol. 57 114Google Scholar

    [25]

    Alonso B, Ibeas A, Musolino G, Rindone C, Vitetta A 2019 Transp. Res. Pt. A-Policy Pract. 126 136Google Scholar

    [26]

    Leclercq L, Geroliminis N 2013 Procedia Soc. Behav Sci 80 960Google Scholar

    [27]

    Mazloumian A, Geroliminis N, Helbing D 2010 Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. 368 4627Google Scholar

    [28]

    丁恒, 朱良元, 蒋程镔, 郑小燕 2018 重庆交通大学学报(自然科学版) 37 77

    Ding H, Zhu L Y, Jiang C B, Zheng X Y 2018 J. Chongqing Jiaotong Univ. (Nat. Sci.) 37 77

    [29]

    马寒月 2016 硕士学位论文 (合肥: 合肥工业大学)

    Ma H Y 2016 M. S. Thesis (Hefei: Hefei University of Technology) (in Chinese)

    [30]

    Elilsion G, Glaeser E 1997 J. Polit. Econ. 105 889Google Scholar

    [31]

    四兵锋, 钟鸣, 高自友 2008 交通运输系统工程与信息 8 68Google Scholar

    Si B F, Zhong M, Gao Z Y 2008 J. Transport. Syst. Engineer. Inform. Technol. 8 68Google Scholar

    [32]

    Branston D 1976 Transp. Res. 10 223Google Scholar

    [33]

    Bates D M, Watts D G 1988 Nonlinear Regression Analysis and Its Applications (New York: Wiley) pp1−372

    [34]

    Gonzales E J, Chavis C, Li Y, Daganzo C F 2011 Transportation Research Board 90th Annual Meeting Washington DC, United States, January 23−27, 2011 p11

  • 图 1  MFD (a) MFD的基本特征; (b) 路网状态划分

    Figure 1.  MFD: (a) Basic characteristics of MFD; (b) state classification of MFD curve.

    图 2  仿真路网

    Figure 2.  Simulation road network.

    图 3  不同交通发生吸引源集聚影响下交通密度分布

    Figure 3.  Traffic density distribution under different traffic generation and attraction sources.

    图 4  不同交通发生吸引源规模下路网MFDs (a) 800 pcu·h–1; (b) 1200 pcu·h–1; (c) 2000 pcu·h–1

    Figure 4.  MFDs under different traffic generation and attraction source scale: (a) 800 pcu·h–1; (b) 1200 pcu·h–1; (c) 2000 pcu·h–1.

    图 5  不同交通发生吸引源配置条件下MFDs和聚集度曲线 (a1) A组仿真实验MFD; (a2) A组仿真实验聚集度曲线; (b1) B组仿真实验MFD; (b2) B组仿真实验聚集度曲线; (c1) C组仿真实验MFD; (c2) C组仿真实验聚集度曲线

    Figure 5.  MFDs and aggregation degree curves under different traffic generation and attraction source configuration: (a1) MFDof group A simulation scheme; (a2) aggregation degree curve of group A simulation scheme; (b1) MFDof group B simulation scheme; (b2) aggregation degree curve of group B simulation scheme; (b1) MFDof group C simulation scheme; (b2) aggregation degree curve of group C simulation scheme.

    表 1  交通发生吸引源配置参数

    Table 1.  Traffic generation and attraction source configuration parameters.

    交通发生吸引源配置方案12345
    初始聚集度–0.142–0.146–0.182–0.082–0.009
    停车场规模配置情况/pcu·h–120389327238
    40725820371
    602791215050
    80123744986
    1004680322408
    12038132150530
    14010814749389
    2409695105428
    DownLoad: CSV

    表 2  不同交通发生吸引源规模下MFD参数

    Table 2.  MFD parameters under different traffic generation and attraction sourcescale.

    吸引源规模/pcu·h–1MFD拟合参数${R^2}$
    ${a_i}$${b_i}$${c_i}$${d_i}$
    8002 × 10–8–0.00020.8434192.340.876
    12002 × 10–8–0.00020.8742190.750.888
    20002 × 10–8–0.00030.9424188.860.901
    DownLoad: CSV

    表 3  仿真实验基本参数

    Table 3.  Basic parameters of simulation experiment.

    实验编号ABC
    停车场总规模/pcu·h–180012002000
    实验组数123123123
    初始聚集度–0.142–0.146–0.182–0.082–0.144–0.171–0.009–0.104–0.151
    停车场规模/pcu·h–12038932721387038100268
    40725820324530071170189
    60279121503672105014099
    8012374491036586200304
    100468032217970408260341
    1203813215048130530290107
    1401081474937220389350402
    240969510583135428490290
    DownLoad: CSV

    表 4  不同交通发生吸引源配置条件下MFD参数

    Table 4.  MFD parameters under differenttraffic generation and attraction sourceconfiguration.

    实验组MFD拟合参数${R^2}$
    ${a_i}$${b_i}$${c_i}$${d_i}$
    A1组3 × 10–8–0.00031.0743111.660.951
    A2组3 × 10–8–0.00041.0819111.440.960
    A3组3 × 10–8–0.00031.0588116.90.953
    B1组5 × 10–8–0.00051.332761.380.982
    B2组3 × 10–8–0.00041.0518125.810.967
    B3组2 × 10–8–0.00030.9445152.790.934
    C1组5 × 10–8–0.00051.308184.820.942
    C2组4 × 10–8–0.00051.21321100.929
    C3组4 × 10–8–0.00051.2579100.650.927
    DownLoad: CSV

    表 5  各组仿真实验平均旅行完成率评估参数

    Table 5.  Evaluation parameters of the average trip completionflow of simulation experiment.

    实验编号平均旅行完成率
    变化率/%
    交通流状态
    A(A3–A1)/A10.773.1330.96
    (A3–A2)/A20.611.143.29
    (A2–A1)/A10.161.9626.79
    B(B3–B1)/B1–0.11–0.5134.36
    (B3–B2)/B2–0.020.247.45
    (B2–B1)/B1–0.09–0.7425.05
    C(C3–C1)/C10.101.5214.87
    (C3–C2)/C20.411.176.01
    (C2–C1)/C1–0.310.348.36
    DownLoad: CSV
  • [1]

    Geroliminis N, Daganzo C F 2008 Transp. Res. Pt. B-Methodol. 42 759Google Scholar

    [2]

    Gonzales E J, Chavis C, Li Y, Daganzo C F 2009 Multimodal transport modeling for Nairobi, Kenya: Insights and recommendations with an evidencebased mode (Berkeley: UC Berkeley Center for Future Urban Transport) pp1—36

    [3]

    Haddad J 2017 Control Eng. Practice 61 134Google Scholar

    [4]

    Yang K D, Zheng N, Menendez M 2018 Transp. Res. Pt. C-Emerg. Technol. 94 32Google Scholar

    [5]

    Ding H, Zhang Y, Zheng X Y, Yuan H Y, Zhang W H 2018 IEEE Trans. Control Syst. Technol. 26 2049Google Scholar

    [6]

    Kim S, Tak S, Yeo H 2018 Transp. Res. Pt. C-Emerg. Technol. 93 79Google Scholar

    [7]

    Haddad J, Mirkin B 2017 Transp. Res. Pt. C-Emerg. Technol. 77 495Google Scholar

    [8]

    丁恒, 朱良元, 蒋程镔, 袁含雨 2017 交通运输系统工程与信息 17 104

    Ding H, Zhu L Y, Jiang C B, Yuan H Y 2017 J. Transport. Syst. Engineer. Inform. Technol. 17 104

    [9]

    Ding H, Guo F, Zheng X Y, Zhang W H 2017 Transp. Res. Pt. C-Emerg. Technol. 81 300Google Scholar

    [10]

    Godfrey J W 1969 TrafficEngineer. Control. 11 323

    [11]

    Gao F 2011 Ph. D. Dissertation (Stockholm: School of Architecture and the Built Environment)

    [12]

    Leclercq L, Geroliminis N 2013 Transp. Res. Pt. B-Methodol. 57 468Google Scholar

    [13]

    Daganzo C F, Geroliminis N 2008 Transp. Res. Pt. B-Methodol. 42 771Google Scholar

    [14]

    Courbon T, Leclercq L 2011 Procedia Soc. Behav Sci 20 417Google Scholar

    [15]

    Geroliminis N, Danes J, Estrada M A 2013 Transportation Research Board 92 nd Annual Meeting Washington DC, United States, January 13–17, 2013 p1013

    [16]

    Zheng N, Geroliminis N 2013 Transp. Res. Pt. B-Methodol. 57 326Google Scholar

    [17]

    Wang Y, Duan Z Y 2012 The 7 th Annual Conference of ITS China Beijig, China, September 26, 2012 p112

    [18]

    Gayah V V, Daganzo C F 2011 Transp. Res. Pt. B-Methodol. 45 643Google Scholar

    [19]

    许菲菲, 何兆成, 沙志仁 2013 交通运输系统工程与信息 13 185Google Scholar

    Xu F F, He Z C, Sha Z R 2013 J. Transport. Syst. Engineer. Inform. Technol. 13 185Google Scholar

    [20]

    朱琳, 于雷, 宋国华 2012 华南理工大学学报(自然科学版) 40 138

    Zhu L, Yu L, Song G H 2012 J. South Chin Univ. Technol. (Nat. Sci.) 40 138

    [21]

    Geroliminis N, Sun J 2011 Transp. Res. Pt. B-Methodol. 45 605Google Scholar

    [22]

    Geroliminis N, Boyaci B 2012 Transp. Res. Pt. B-Methodol. 46 1607Google Scholar

    [23]

    Buisson C, Ladier C 2009 Transp. Res. Record 2124 127Google Scholar

    [24]

    Jin W L, Gan Q J, Gayah V V 2013 Transp. Res. Pt. B-Methodol. 57 114Google Scholar

    [25]

    Alonso B, Ibeas A, Musolino G, Rindone C, Vitetta A 2019 Transp. Res. Pt. A-Policy Pract. 126 136Google Scholar

    [26]

    Leclercq L, Geroliminis N 2013 Procedia Soc. Behav Sci 80 960Google Scholar

    [27]

    Mazloumian A, Geroliminis N, Helbing D 2010 Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. 368 4627Google Scholar

    [28]

    丁恒, 朱良元, 蒋程镔, 郑小燕 2018 重庆交通大学学报(自然科学版) 37 77

    Ding H, Zhu L Y, Jiang C B, Zheng X Y 2018 J. Chongqing Jiaotong Univ. (Nat. Sci.) 37 77

    [29]

    马寒月 2016 硕士学位论文 (合肥: 合肥工业大学)

    Ma H Y 2016 M. S. Thesis (Hefei: Hefei University of Technology) (in Chinese)

    [30]

    Elilsion G, Glaeser E 1997 J. Polit. Econ. 105 889Google Scholar

    [31]

    四兵锋, 钟鸣, 高自友 2008 交通运输系统工程与信息 8 68Google Scholar

    Si B F, Zhong M, Gao Z Y 2008 J. Transport. Syst. Engineer. Inform. Technol. 8 68Google Scholar

    [32]

    Branston D 1976 Transp. Res. 10 223Google Scholar

    [33]

    Bates D M, Watts D G 1988 Nonlinear Regression Analysis and Its Applications (New York: Wiley) pp1−372

    [34]

    Gonzales E J, Chavis C, Li Y, Daganzo C F 2011 Transportation Research Board 90th Annual Meeting Washington DC, United States, January 23−27, 2011 p11

  • [1] Dong Chang-Yin, Wang Hao, Wang Wei, Li Ye, Hua Xue-Dong. Hybrid traffic flow model for intelligent vehicles exiting to off-ramp. Acta Physica Sinica, 2018, 67(14): 144501. doi: 10.7498/aps.67.20172752
    [2] Cui Man, Xue Hui-Feng, Chen Fu-Zhen, Bu Fan-Biao. Physics model of fluid and particle simulation method for road traffic. Acta Physica Sinica, 2017, 66(22): 224501. doi: 10.7498/aps.66.224501
    [3] Qin Yan-Yan, Wang Hao, Wang Wei, Wan Qian. Stability analysis and fundamental diagram of heterogeneous traffic flow mixed with cooperative adaptive cruise control vehicles. Acta Physica Sinica, 2017, 66(9): 094502. doi: 10.7498/aps.66.094502
    [4] Liu Qing-Chao, Lu Jian, Chen Shu-Yan. Traffic state prediction based on competence region. Acta Physica Sinica, 2014, 63(14): 140504. doi: 10.7498/aps.63.140504
    [5] Zhang Xing-Qiang, Wang Ying, Hu Qing-Hua. Research and simulation on cellular automaton model of mixed traffic flow at intersection. Acta Physica Sinica, 2014, 63(1): 010508. doi: 10.7498/aps.63.010508
    [6] Liang Jia-Yuan, Ten Wei-Zhong, Xue Yu. Study on the energy dissipation of macroscopic traffic models. Acta Physica Sinica, 2013, 62(2): 024706. doi: 10.7498/aps.62.024706
    [7] Zhu Liu-Hua, Zheng Rong-Sen, Tian Huan-Huan, Wei Yan-Fang. Energy dissipation of the mixed traffic system with automatic cruise. Acta Physica Sinica, 2011, 60(12): 128901. doi: 10.7498/aps.60.128901
    [8] Sun Di-Hua, Tian Chuan. A traffic flow lattice model with the consideration of driver anticipation effect and its numerical simulation. Acta Physica Sinica, 2011, 60(6): 068901. doi: 10.7498/aps.60.068901
    [9] Xue Yu, Liang Yu-Juan. Study on traffic flow affected by the road turning. Acta Physica Sinica, 2010, 59(8): 5325-5331. doi: 10.7498/aps.59.5325
    [10] Peng Guang-Han. A coupling lattice model of traffic flow on two lanes and numerical simulation. Acta Physica Sinica, 2010, 59(6): 3824-3830. doi: 10.7498/aps.59.3824
    [11] He Zheng-Bing, Ma Shou-Feng, He Guo-Guang. Experimental macroscopic phenomena in urban transportation system. Acta Physica Sinica, 2010, 59(1): 171-177. doi: 10.7498/aps.59.171
    [12] Chen Shi-Dong, Kong Ling-Jiang, Liu Mu-Ren, Zheng Rong-Sen, Zhu Liu-Hua. Investigation on mixed traffic system with automatic cruise control. Acta Physica Sinica, 2009, 58(4): 2271-2275. doi: 10.7498/aps.58.2271
    [13] Zheng Rong-Sen, Lü Ji-Er, Zhu Liu-Hua, Chen Shi-Dong, Pang Shou-Quan. Intersection effects of arterial road for traffic flow. Acta Physica Sinica, 2009, 58(8): 5244-5250. doi: 10.7498/aps.58.5244
    [14] Yue Hao, Shao Chun-Fu, Chen Xiao-Ming, Hao He-Rui. Simulation of bi-directional pedestrian flow based on cellular automata model. Acta Physica Sinica, 2008, 57(11): 6901-6908. doi: 10.7498/aps.57.6901
    [15] Peng Guang-Han, Sun Di-Hua, He Heng-Pan. Two-car following model of traffic flow and numerical simulation. Acta Physica Sinica, 2008, 57(12): 7541-7546. doi: 10.7498/aps.57.7541
    [16] Fu Chuan-Ji, Wang Bing-Hong, Yin Chuan-Yang, Gao Kun. Intelligent decision-making in a two-route traffic flow model. Acta Physica Sinica, 2006, 55(8): 4032-4038. doi: 10.7498/aps.55.4032
    [17] Ge Hong-Xia, Zhu Hui-Bing, Dai Shi-Qiang. Cellular automaton traffic flow model considering intelligent transportation system. Acta Physica Sinica, 2005, 54(10): 4621-4626. doi: 10.7498/aps.54.4621
    [18] Chen Yan-Hong, Xue Yu. Effects of the stochastic delay probability on traffic flow*. Acta Physica Sinica, 2004, 53(12): 4145-4150. doi: 10.7498/aps.53.4145
    [19] Xue Yu. Lattice models of the optimal traffic current. Acta Physica Sinica, 2004, 53(1): 25-30. doi: 10.7498/aps.53.25
    [20] Lü XIAO-YANG, KONG LING-JIANG, LIU MU-REN. ANALYSIS ON MACROSCOPIC EQUATION TO ONE-DIMENSIONAL RANDOM TRAFFIC FLOW MODELS. Acta Physica Sinica, 2001, 50(7): 1255-1259. doi: 10.7498/aps.50.1255
Metrics
  • Abstract views:  7372
  • PDF Downloads:  96
  • Cited By: 0
Publishing process
  • Received Date:  28 October 2019
  • Accepted Date:  14 January 2020
  • Published Online:  05 April 2020

/

返回文章
返回