Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ultrahigh-resolution mass sensing based on bound states in continuum domain in double-cavity optomechanical system

DONG Yaoyong WU Yi ZHENG Xuejun WANG Denglong ZHAO Peng

Citation:

Ultrahigh-resolution mass sensing based on bound states in continuum domain in double-cavity optomechanical system

DONG Yaoyong, WU Yi, ZHENG Xuejun, WANG Denglong, ZHAO Peng
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Resolution is one of the key indicators in the cavity optomechanical mass sensing. The bound states in the continuum (BIC) enable extremely narrow linewidths, which have great potential for enhancing the resolution of cavity optomechanical mass sensors. In order to enhance the resolution of cavity optomechanical mass sensing, we propose a simple double-cavity optomechanical system under the blue-detuning condition to realize the BIC singularity, and present an ultrahigh-resolution mass sensing scheme based on BIC in this paper. By solving the linearized Heisenberg-Langevin equations, the expressions for the susceptibility and transmission rate of the system are derived. Based on the system’s susceptibility, we study the absorption characteristics of the probe field under the blue-detuning condition. The absorption spectrum of the system exhibits three peaks, among which the central narrow peak exhibits optical gain characteristics, collectively forming a phenomenon analogous to double optomechanically induced transparency. Then, analysis of the dressed-state energy-level structure reveals that the formation of the central narrow peak stems from quantum interference effects in a double-Λ-type dark-state resonance. The linewidth evolution of the quasi-BIC central narrow peak is investigated by analyzing the dependence of the real part and imaginary part of the corresponding eigenvalue on the optomechanical coupling strength. It can be found that the imaginary part of the eigenvalue for the central narrow peak becomes zero when the optomechanical cooperativity coefficient equals the double-cavity cooperativity coefficient plus one, enabling the realization of BIC. The linewidth of the central peak is ultrasmall under this BIC condition, and the shift of the transmission peak in the transmission spectrum is linearly related to the adsorbed mass. Based on these characteristics, the system under the BIC condition can achieve mass sensing with an ultrahigh resolution, with a resolution of approximately 1 ag. Meanwhile, the linewidth of the transmission peak can be suppressed below 1 Hz, which is superior to the traditional optomechanical mass sensing schemes based on four-wave mixing, photonic molecules, and plasmon polaritons. Systematic investigation of eigenvalue variations and the corresponding sensitivity enhancement factors under mechanical resonator frequency shift reveals that the real part and the imaginary part of the eigenvalue associated with the central peak exhibit negligible variations under such perturbations. This indicates that the mass sensing scheme based on BIC in the double-cavity optomechanical system can maintain ultrahigh resolution and precise mass measurement under mechanical resonator frequency shift. Our scheme provides an approach for realizing the BIC singularity in optomechanical systems, and presents a new route to improving the resolution of mass sensors based on cavity optomechanical systems.
  • 图 1  双腔耦合的光力系统示意图, 光力腔a由泵浦场驱动, 其本征频率和衰减率分别为$ {\omega _{\text{a}}} $和$ \kappa $, 通过光力作用与本征频率和衰减率分别为$ {\omega _{\text{m}}} $和$ {\gamma _{\text{m}}} $的机械振子耦合, 而辅助腔c与光力腔a耦合, 耦合强度为J, 其本征频率和衰减率分别为$ {\omega _{\text{c}}} $和$ {\kappa _{\text{c}}} $, 探测场输入辅助腔c

    Figure 1.  Schematic diagram of a dual-cavity coupled optomechanical system, where the optomechanical cavity with the frequency $ {\omega _{\text{a}}} $ and dissipation rate $ \kappa $ is driven by the pumping field and couples to the mechanical resonator with the frequency $ {\omega _{\text{m}}} $ and dissipation rate $ {\gamma _{\text{m}}} $ by the optomechanical interaction. The auxiliary cavity c with the frequency $ {\omega _{\text{c}}} $ and dissipation rate $ {\kappa _{\text{c}}} $ is coupled with the optomechanical cavity a with the coupling strength J, the probe field is input into the auxiliary cavity.

    图 2  ${\varepsilon _{\text{T}}}$的实部${Re} ({\varepsilon _{\text{T}}})$随探测场失谐量变化曲线, 其中$ \kappa = {\kappa _{\text{c}}} = 6.4 \, {\text{MHz}} $, $ {\omega _{\text{m}}} = 2{\pi} \times 10.3\, {\text{MHz}} $, $ {\gamma _{\text{m}}} = 2{\pi} \times $$ 0.83\, {\text{kHz}} $, $ m = 10\, {\text{ng}} $, $ {G_{\text{m}}} = 0.003\, {\omega _{\text{m}}} $和$ {g_1} = 0.1\, {\omega _{\text{m}}} $ [49,61]

    Figure 2.  Real part ${Re} ({\varepsilon _{\text{T}}})$ of ${\varepsilon _{\text{T}}}$ as a function of the probe field detuning, where $ \kappa = {\kappa _{\text{c}}} = 6.4 \, {\text{MHz}} $, $ {\omega _{\text{m}}} = 2{\pi} \times $$ 10.3\, {\text{MHz}} $, $ {\gamma _{\text{m}}} = 2{\pi} \times 0.83\, {\text{kHz}} $, $ m = 10\, {\text{ng}} $, $ {G_{\text{m}}} = $ $ 0.003\, {\omega _{\text{m}}} $, and $ {g_1} = 0.1\, {\omega _{\text{m}}} $[49,61].

    图 3  (a)双腔光力学系统的能级结构示意图及其(b)缀饰态解释示意图, 能级$ \left| 0 \right\rangle $, $ \left| 1 \right\rangle $, $ \left| 2 \right\rangle $和$ \left| 3 \right\rangle $分别表示$ \left| {{n_{\text{a}}}, \, {n_{\text{c}}}, \, m} \right\rangle $, $ \left| {{n_{\text{a}}}, \, {n_{\text{c}}}, \, m + 1} \right\rangle $, $ \left| {{n_{\text{a}}}, \, {n_{\text{c}}} + 1, \, m} \right\rangle $和$ \left| {{n_{\text{a}}} + 1, \, {n_{\text{c}}}, \, m} \right\rangle $, 缀饰态$ \left| \pm \right\rangle $为$ {{(\left| 2 \right\rangle \pm \left| 3 \right\rangle )} {/ } {\sqrt 2 }} $, 其中$ {n_{\text{a}}} $和$ {n_{\text{c}}} $分别表示光力学腔中光模a和辅助腔中光模c的光子数, m表示机械模b的声子数

    Figure 3.  (a) Energy level structure diagram of the double-cavity optomechanical system and (b) the corresponding dressed-states explanation diagram, the energy level $ \left| 0 \right\rangle $, $ \left| 1 \right\rangle $, $ \left| 2 \right\rangle $, and $ \left| 3 \right\rangle $ represent $ \left| {{n_{\text{a}}}, \, {n_{\text{c}}}, \, m} \right\rangle $, $ \left| {{n_{\text{a}}}, \, {n_{\text{c}}}, \, m + 1} \right\rangle $, $ \left| {{n_{\text{a}}}, \, {n_{\text{c}}} + 1, \, m} \right\rangle $, and $ \left| {{n_{\text{a}}} + 1, \, {n_{\text{c}}}, \, m} \right\rangle $, respectively. The dressed-states $ \left| \pm \right\rangle $ are expressed as $ {{(\left| 2 \right\rangle \pm \left| 3 \right\rangle )} {/ } {\sqrt 2 }} $. Here, $ {n_{\text{a}}} $ and $ {n_{\text{c}}} $ represent the photon numbers of optical mode a in the optomechanical cavity and optical mode c in the auxiliary cavity, and m represents the phonon number of mechanical mode b.

    图 4  本征值$ {\lambda _{0, \, \pm }} $的(a)实部和(b)虚部随光力耦合强度${G_{\text{m}}}$变化, 其他参数与图2一致

    Figure 4.  (a) Real and (b) imaginary parts of the eigenvalues $ {\lambda _{0, \, \pm }} $ as function of the optomechanical coupling strength ${G_{\text{m}}}$, and other parameters are the same as in Fig. 2.

    图 5  (a)在吸附物的质量为0 pg, 10 pg, 15 pg和20 pg时, 系统的透射光谱图, 参数取$ G_{\text{m}}^{} = 0.001{\omega _{\text{m}}} $; (b)吸附物质量为10 pg时, 在不同光力耦合强度下的透射光谱, 其他参数与图2相同

    Figure 5.  (a) Transmission spectrum of the system when the mass of the adsorbate is 0 pg, 10 pg, 15 pg, and 20 pg, with $ G_{\text{m}}^{} = 0.001{\omega _{\text{m}}} $; (b) transmission spectrum for an adsorbate mass of 10 pg under different optomechanical coupling strengths, other parameters are the same as in Fig. 2.

    图 6  (a) ${Re} ({\lambda '_0})$和(b) ${Im} ({\lambda '_0})$随频移$\delta {\omega _{\text{m}}}$的变化曲线, 参数取$ G_{\text{m}}^{} = \sqrt {{{(4 J_{}^2{\gamma _{\text{m}}} - \kappa {\kappa _{\text{c}}}{\gamma _{\text{m}}})} {/ } {4{\kappa _{\text{c}}}}}} $, 其余参数与图2一致

    Figure 6.  Curves of (a) ${Re} ({\lambda '_0})$ and (b) ${Im} ({\lambda '_0})$ as function of $\delta {\omega _{\text{m}}}$ with $ G_{\text{m}}^{} = \sqrt {{{(4 J_{}^2{\gamma _{\text{m}}} - \kappa {\kappa _{\text{c}}}{\gamma _{\text{m}}})} {/ } {4{\kappa _{\text{c}}}}}} $, other parameters are the same as in Fig. 2.

    图 7  在不同的腔衰减率下灵敏度增加因子(a) ${\eta _{{\text{real}}}}$和(b) ${\eta _{{\text{imag}}}}$以及不同的腔耦合强度下灵敏度增加因子(c) ${\eta _{{\text{real}}}}$和(d) ${\eta _{{\text{imag}}}}$随频移$\delta {\omega _m}$的变化曲线, 参数取$ G_{\text{m}}^{} = \sqrt {{{(4 J_{}^2{\gamma _{\text{m}}} - \kappa {\kappa _{\text{c}}}{\gamma _{\text{m}}})} {/ } {4{\kappa _{\text{c}}}}}} $, 其余参数与图2一致

    Figure 7.  Curves of sensitivity enhancement factor (a) ${\eta _{{\text{real}}}}$ and (b) ${\eta _{{\text{imag}}}}$ as a function of $\delta {\omega _{\text{m}}}$ under different cavity decay rates, and curves of sensitivity enhancement factor (c) ${\eta _{{\text{real}}}}$ and (d) ${\eta _{{\text{imag}}}}$ as a function of $\delta {\omega _{\text{m}}}$ under different cavity coupling strengths with $ G_{\text{m}}^{} = \sqrt {{{(4 J_{}^2{\gamma _{\text{m}}} - \kappa {\kappa _{\text{c}}}{\gamma _{\text{m}}})} {/ } {4{\kappa _{\text{c}}}}}} $. Other parameters are the same as in Fig. 2.

  • [1]

    Kanari-Naish L A, Clarke J, Qvarfort S, Vanner M R 2022 Quantum Sci. Technol. 7 035012Google Scholar

    [2]

    Barzanjeh S, Xuereb A, Gröblacher S, Paternostro M, Regal C A, Weig E M 2022 Nat. Phys. 18 15Google Scholar

    [3]

    Guo J K, Wu J L, Cao J, Zhang S, Su S L 2024 Phys. Rev. A 110 043510Google Scholar

    [4]

    Li B B, Ou L, Lei Y, Liu Y C 2021 Nanophotonics 10 2799Google Scholar

    [5]

    Pujol‐Vila F, Güell‐Grau P, Nogués J, Alvarez M, Sepúlveda B 2023 Adv. Funct. Mater. 33 2213109Google Scholar

    [6]

    Zhang S D, Wang J, Zhang Q, Jiao Y F, Zuo Y L, Özdemir Ş K, Qiu C W, Nori F, Jing H 2024 Opt. Quantum 2 222Google Scholar

    [7]

    Zhang Y, Hines A, Wilson D J, Guzman F 2023 Phys. Rev. Appl. 19 054004Google Scholar

    [8]

    Clarke J, Neveu P, Khosla K E, Verhagen E, Vanner M R 2023 Phys. Rev. Lett. 131 053601Google Scholar

    [9]

    Li J J, Zhu K D 2013 Phys. Rep. 525 223Google Scholar

    [10]

    Xia J, Qiao Q F, Zhou G C, Chau F S, Zhou G Y 2020 Appl. Sci. 10 7080Google Scholar

    [11]

    He Y T, Feng Z J, Jing Y W, Xiong W, Chen X L, Kuang T F, Xiao G Z, Tan Z Q, Luo H 2023 Opt. Express 31 37507Google Scholar

    [12]

    Subhash S, Das S, Dey T N, Li Y, Davuluri S 2023 Opt. Express 31 177Google Scholar

    [13]

    He Q, Bai Y F, Badshah F, Li L P, Qi H Q 2024 Opt. Quantum Electron. 56 1140Google Scholar

    [14]

    Zhang Q, Du S M, Yang S W, Wang Q S, Zhang J, Wang D D, Li Y M 2024 Opt. Express 32 13873Google Scholar

    [15]

    Liu Y Z, Jiang J F, Liu K, Wang S, Niu P P, Wang T, Xu T H, Zhang X Z, Liu T G 2024 J. Lightwave Technol. 42 5753Google Scholar

    [16]

    Loyez M, Adolphson M, Liao J, Yang L 2023 ACS Sens. 8 2440Google Scholar

    [17]

    Liu F, Alaie S, Leseman Z C, Hossein-Zadeh M 2013 Opt. Express 21 19555Google Scholar

    [18]

    Grau A, Mercadé L, Ortiz R, Martínez A 2025 Opt. Express 33 1458Google Scholar

    [19]

    Li T, Wang W, Yi X X 2021 Phys. Rev. A 104 013521Google Scholar

    [20]

    He Y, Chen Q 2024 Laser Phys. 34 055206Google Scholar

    [21]

    Safavi-Naeini A H, Mayer Alegre T P, Chan J, Eichenfield M, Winger M, Lin Q, Hill J T, Chang D E, Painter O 2011 Nature 472 69Google Scholar

    [22]

    严晓波, 杨柳, 田雪冬, 刘一谋, 张岩 2014 物理学报 63 204201Google Scholar

    Yan X B, Yang L, Tian X D, Liu Y M, Zhang Y 2014 Acta Phys. Sin. 63 204201Google Scholar

    [23]

    Xiong H, Wu Y 2018 Appl. Phys. Rev. 5 031305Google Scholar

    [24]

    谢宝豪, 陈华俊, 孙轶 2023 物理学报 72 154203Google Scholar

    Xie B H, Chen H J, Sun Y 2023 Acta Phy. Sin. 72 154203Google Scholar

    [25]

    Wang Q, Li W J 2017 Int. J. Theor. Phys. 56 1346Google Scholar

    [26]

    Li Z Y, You X, Li Y M, Liu Y C, Peng K C 2018 Phys. Rev. A 97 033806Google Scholar

    [27]

    Shang L, Chen B, Xing L L, Chen J B, Xue H B, Guo K X 2021 Chin. Phys. B 30 054209Google Scholar

    [28]

    Liu J H, Yu Y F, Wu Q, Wang J D, Zhang Z M 2021 Opt. Express 29 12266Google Scholar

    [29]

    Zhang W, Shen H Z 2024 Phys. Rev. A 109 033701Google Scholar

    [30]

    Li J J, Zhu K D 2012 Appl. Phys. Lett. 101 141905Google Scholar

    [31]

    Jiang C, Cui Y, Zhu K D 2014 Opt. Express 22 13773Google Scholar

    [32]

    He Y 2015 Appl. Phys. Lett. 106 121905Google Scholar

    [33]

    Chen H J, Chen C Z, Li Y, Fang X W, Tang X D 2017 Opt. Commun. 382 73Google Scholar

    [34]

    Liu S P, Liu B, Wang J F, Zhao L L, Yang W X 2021 J. Appl. Phys. 129 084504Google Scholar

    [35]

    Yang Y, Wang Y P, Rao J W, Gui Y S, Yao B M, Lu W, Hu C M 2020 Phys. Rev. Lett. 125 147202Google Scholar

    [36]

    Friedrich H, Wintgen D 1985 Phys. Rev. A 32 3231Google Scholar

    [37]

    毕千惠, 彭于娟, 陈润, 王漱明 2023 光学学报 43 1623008Google Scholar

    Bi Q H, Peng Y J, Chen R, Wang S M 2023 Acta Opt. Sin. 43 1623008Google Scholar

    [38]

    Dell’Olio F 2025 Photonics 12 48Google Scholar

    [39]

    Thapa D K, Biswas S 2025 Mater. Horiz. published online, doi: 10.1039/D5MH00413F

    [40]

    Wang Y Q, Qi Y P, Zhou Z H, Li Z X, Wang X X 2024 Phys. Scr. 99 105533Google Scholar

    [41]

    Yang S, Zhang X, Liu J, Feng H L, Meng H Y, Jia Y, Gao Y C 2025 Phys. Lett. A 547 130540Google Scholar

    [42]

    Li J S, Xue Y Y, Guo F L 2024 Opt. Commun. 554 130225Google Scholar

    [43]

    Du X, Xie S X, Nan H X, Sun S Y, Shen W W, Yang J C, Guan X 2023 Photonics 10 980Google Scholar

    [44]

    Peng J, Lin X, Yan X N, Yan X, Hu X F, Yao H Y, Liang L J, Ma G H 2024 Nanomaterials 14 799Google Scholar

    [45]

    Liu Z C, Guo T B, Tan Q, Hu Z P, Sun Y W, Fan H X, Zhang Z, Jin Y, He S L 2023 Nano. Lett. 23 10441Google Scholar

    [46]

    刘会刚, 张翔宇, 南雪莹, 赵二刚, 刘海涛 2024 物理学报 73 047802Google Scholar

    Liu H G, Zhang X Y, Nan X Y, Zhao E G, Liu H T 2024 Acta. Phys. Sin. 73 047802Google Scholar

    [47]

    Qian Z, Zhao M M, Hou B P, Zhao Y H 2017 Opt. Express 25 33097Google Scholar

    [48]

    Peng B, Özdemir Ş K, Lei F, Monifi F, Gianfreda M, Long G L, Fan S, Nori F, Bender C M, Yang L 2014 Nat. Phys. 10 394Google Scholar

    [49]

    Zhang J, Peng B, Özdemir Ş K, Pichler K, Krimer D O, Zhao G, Nori F, Liu Y X, Rotter S, Yang L 2018 Nat. Photonics 12 479Google Scholar

    [50]

    Aspelmeyer M, Kippenberg T J, Marquardt F 2014 Rev. Mod. Phys. 86 1391Google Scholar

    [51]

    Chang Y, Shi T, Liu Y X, Sun C P, Nori F 2011 Phys. Rev. A 83 063826Google Scholar

    [52]

    Fu C B, Yan X B, Gu K H, Cui C L, Wu J H, Fu T D 2013 Phys. Rev. A 87 053841Google Scholar

    [53]

    Zhang X Y, Zhou Y H, Guo Y Q, Yi X X 2018 Phys. Rev. A 98 033832Google Scholar

    [54]

    Mirza I M, Ge W, Jing H 2019 Opt. Express 27 25515Google Scholar

    [55]

    Hao H, Kuzyk M C, Ren J, Zhang F, Duan X, Zhou L, Zhang T, Gong Q, Wang H, Gu Y 2019 Phys. Rev. A 100 023820Google Scholar

    [56]

    Li S J, Yang X D, Cao X M, Zhang C H, Xie C D, Wang H 2008 Phys. Rev. Lett. 101 073602Google Scholar

    [57]

    Kou J, Wan R G, Kuang S Q, Jiang L, Zhang L, Kang Z H, Wang H H, Gao J Y 2011 Opt. Commun. 284 1603Google Scholar

    [58]

    Wang H, Gu X, Liu Y X, Miranowicz A, Nori F 2014 Phys. Rev. A 90 023817Google Scholar

    [59]

    Lukin M D, Yelin S F, Fleischhauer M, Scully M O 1999 Phys. Rev. A 60 3225Google Scholar

    [60]

    Liu C P, Gong S Q, Cheng D C, Fan X J, Xu Z Z 2006 Phys. Rev. A 73 025801Google Scholar

    [61]

    Zhang D W, Zheng L L, Wang M, Zhou Y, Lü X Y 2024 Phys. Rev. A 109 023529Google Scholar

    [62]

    Chen H J 2020 Laser Phys. 30 115203Google Scholar

    [63]

    Liu J, Zhu K D 2018 Photonics Res. 6 867Google Scholar

    [64]

    Aleebrahim E, Harouni M B, Amooghorban E 2022 Phys. Rev. A 105 062609Google Scholar

  • [1] YANG Fei, ZHANG Binglin, SHENG Miaomiao, YAO Jianquan, JIN Lufan. Dynamic Tuning of High-Q quasi-Bound States in the Continuum Driven by Liquid Crystal. Acta Physica Sinica, doi: 10.7498/aps.74.20250337
    [2] WANG Junhui, LI Deqiong, NIE Guozheng, ZHAN Jie, GAN Longfei, CHEN Zhiquan, LAN Linfeng. Near-infrared high-Q all-dielectric metasurface biosensor based on quasi-bound state in continuum. Acta Physica Sinica, doi: 10.7498/aps.74.20241752
    [3] CHEN Zhijian, ZHAO Kaixin, WANG Chenxiao, WEI Chunke, YAO Bimu. Broadband nonreciprocal transmission tuned by pump-induced magnon modes. Acta Physica Sinica, doi: 10.7498/aps.74.20241666
    [4] Meng Xiang-Yu, Li Tao, Yu Bin-Bin, Tai Yong-Hang. Exploring the tuning mechanism of multipolar quasi-continuous domain bound states in tetramer metasurface. Acta Physica Sinica, doi: 10.7498/aps.73.20240272
    [5] Liu Hui-Gang, Zhang Xiang-Yu, Nan Xue-Ying, Zhao Er-Gang, Liu Hai-Tao. All-dielectric metasurface two-parameter sensor based on quasi-bound states in continuum. Acta Physica Sinica, doi: 10.7498/aps.73.20231514
    [6] Xia Zhao-Sheng, Liu Yu-Hang, Bao Zheng, Wang Li-Hua, Wu Bo, Wang Gang, Wang Hui, Ren Xin-Gang, Huang Zhi-Xiang. Strong circular dichroism chiral metasurfaces generated by quasi bound state in continuum domain. Acta Physica Sinica, doi: 10.7498/aps.73.20240834
    [7] Ren Yang, Li Zhen-Xiong, Zhang Lei, Cui Wei, Wu Xiong-Xiong, Huo Ya-Shan, He Zhi-Hui. Tunable continuous domain bound states based on Fabry-Perot cavities and their applications. Acta Physica Sinica, doi: 10.7498/aps.73.20240861
    [8] Wang Yue, Wang Hao-Jie, Cui Zi-Jian, Zhang Da-Chi. Bound states in continuum domain of double resonant ring metal metasurfaces. Acta Physica Sinica, doi: 10.7498/aps.73.20231556
    [9] Yan Meng, Sun Ke, Ning Ting-Yin, Zhao Li-Na, Ren Ying-Ying, Huo Yan-Yan. Numerical study of the low- threshold nanolaser based on quasi-bound states in the continuum supported by resonant waveguide grating structures. Acta Physica Sinica, doi: 10.7498/aps.72.20221894
    [10] Wang Xin, Ren Fei-Fan, Han Song, Han Hai-Yan, Yan Dong. Perfect optomechanically induced transparency and slow light in an Rydberg atom-assisted optomechanical system. Acta Physica Sinica, doi: 10.7498/aps.72.20222264
    [11] Xie Bao-Hao, Chen Hua-Jun, Sun Yi. Slow light effect caused by optomechanically induced transparency in multimode optomechanical system. Acta Physica Sinica, doi: 10.7498/aps.72.20230663
    [12] Sun Zhan-Shuo, Wang Xin, Wang Jun-Lin, Fan Bo, Zhang Yü, Feng Yao. Sensing and slow light properties of dual-band terahertz metamaterials based on electromagnetically induced transparency-like. Acta Physica Sinica, doi: 10.7498/aps.71.20212163
    [13] Du Qian, Chen Yi-Hang. Enhancing third-harmonic generation by quasi bound states in continuum in silicon nanoparticle arrays. Acta Physica Sinica, doi: 10.7498/aps.70.20210332
    [14] Chen Hua-Jun. Nonlinear optical effect and nonlinear optical mass sensor based on graphene optomechanical system. Acta Physica Sinica, doi: 10.7498/aps.69.20191745
    [15] Yang Jian-Yong, Chen Hua-Jun. All-optical mass sensing based on ultra-strong coupling quantum dot-nanomechanical resonator system. Acta Physica Sinica, doi: 10.7498/aps.68.20190607
    [16] Gu Kai-Hui, Yan Dong, Zhang Meng-Long, Yin Jing-Zhi, Fu Chang-Bao. Quantum control of fast/slow light in atom-assisted optomechanical cavity. Acta Physica Sinica, doi: 10.7498/aps.68.20181424
    [17] Deng Rui-Jie, Yan Zhi-Hui, Jia Xiao-Jun. Analysis of electromagnetically induced transparency based on quantum memory of squeezed state of light. Acta Physica Sinica, doi: 10.7498/aps.66.074201
    [18] Chen Hua-Jun, Fang Xian-Wen, Chen Chang-Zhao, Li Yang. Coherent optical propagation properties and ultrahigh resolution mass sensing based on double whispering gallery modes cavity optomechanics. Acta Physica Sinica, doi: 10.7498/aps.65.194205
    [19] Yan Xiao-Bo, Yang Liu, Tian Xue-Dong, Liu Yi-Mou, Zhang Yan. Optomechanically induced transparency and normal mode splitting in an optical parametric amplifier cavity. Acta Physica Sinica, doi: 10.7498/aps.63.204201
    [20] Fu Jing, Liu Wan-Fang, Zhao Yu-Jie. Wigner-Yanse skew information of the system with the electromagnetically induced transparency. Acta Physica Sinica, doi: 10.7498/aps.62.170302
Metrics
  • Abstract views:  205
  • PDF Downloads:  10
  • Cited By: 0
Publishing process
  • Received Date:  15 January 2025
  • Accepted Date:  26 April 2025
  • Available Online:  10 May 2025

/

返回文章
返回