Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Characterization and control of quasi-bound states in the continuous domain Si3N4 photonic crystal flat plate

ZHANG Yunhao HE Xiao YING Jiahe LIU Donglin TAO Guangyi DAI Yuchen DANG Zhibo FANG Zheyu

Citation:

Characterization and control of quasi-bound states in the continuous domain Si3N4 photonic crystal flat plate

ZHANG Yunhao, HE Xiao, YING Jiahe, LIU Donglin, TAO Guangyi, DAI Yuchen, DANG Zhibo, FANG Zheyu
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Photon localization is of great significance in both basic research and technical applications. Bound states in the continuum (BICs) in photonic crystal provide a new mechanism for effective photon localization. However, the imperfections and defects are inevitable in the process of fabricating photonic crystals. Momentum-space characterization is used as a powerful tool to analyze how such processing variations affect the photonic band structure, providing information for designing and fabricating photonic crystal devices. In this work, a photonic crystal in the visible light band is designed and its band structure is analyzed through FDTD simulation. The high symmetry at the point in momentum space Γ leads to a symmetry mismatch between the internal mode of the photonic crystal and the external propagation mode (radiation continuum), so that bound states with infinite lifetime appear above the light, thereby achieving the localization of photons in the vertical direction. At the same time, the angle-resolved photoluminescence (PL) spectrum of the photonic crystal is measured through the self-built angle-resolved optical path. The weak photoluminescence of the Si3N4 substrate is coupled with the photonic crystal mode for measuring the photonic crystal band. It can be observed that the band structure is consistent with the simulation results. At the same time, the intensity of the TE1 band near the Γ point is significantly weakened compared with the intensity at the position away from the Γ point, but it is not completely eliminated. This shows that errors and defects caused in fabrication process will destroy the symmetry of the structure, causing the BIC to evolve into the quasi-BIC. The quasi-BIC mode achieves effective localization of photons in the vertical direction near the Γ point. Furthermore, a heterostructure of photonic crystals with different periods is designed to achieve lateral photon localization by utilizing the band nesting between the two]. Through this approach, this study ultimately develops a high-quality microcavity with a ratio of impressive quality factor to mode volume of $ 6\times {10}^{14} $ cm–3, and achieves characteristic regulation of the momentum space of photonic crystals by adjusting the structural parameters. This research is of great significance for designing photonic crystals and studying the interaction between light and matter.
  • 图 1  光子晶体的设计和制备 (a) 光子晶体及导致其损耗因素的示意图; (b) 模拟的能带结构, 其中红色圆点代表TE模式, 蓝色圆点代表TM模式, 插图为第一个布里渊区; (c) 制备的光子晶体局部的扫描电子显微镜俯视图, 周期为326 nm, 孔洞结构直径为223 nm; (d) 制备的光子晶体扫描电子显微镜侧视图, 其中孔洞结构的高度为365 nm; (e) 光子晶体的扫描电子显微镜图像

    Figure 1.  Design and fabrication of photonic crystal: (a) Schematic of a photonic crystal and the factors contributing to loss. (b) Simulated band structure. The TE band is marked with red dots and The TM band is marked with blue dots. Inset: the first Brillouin zone. (c) Scanning electron microscope images of the fabricated photonic crystal from top views. The period is 326 nm and the diameter of the cylindrical holes is 223 nm. (d) Scanning electron microscope images of the fabricated photonic crystal from side views. The height of the cylindrical holes is 365 nm; (e) Scanning electron microscope images of the fabricated photonic crystal.

    图 2  光子晶体动量空间表征 (a) 角分辨光路原理示意图, 其中绿色线代表激发光, 浅红色线代表样品光致荧光信号, “BFP”表示后焦面; (b) 沿Γ-X方向和(d)沿Γ-M方向的角分辨光致荧光光谱; (c) 沿Γ-X方向和(e)沿Γ-M方向能带仿真. 光子晶体结构参数如图1(c), (d)所示

    Figure 2.  Characterization of momentum in photonic crystal: (a) Schematic of angle-resolved optical path. The green lines represent the incident light. The light red region denotes photoluminescence signal. BFP, back focal plane. (b), (d) Measured angle-resolved photoluminescence (PL) spectra along Γ-X (b) and Γ-M (d) directions. (c), (e) Calculated band structure along Γ-X (c) and Γ-M (e) directions. The structure parameters of photonic crystal are shown in Fig. 1 (c) and Fig. 1 (d).

    图 3  微腔的模式表征 (a) 微腔SEM图像, A区域光子晶体(周期 a = 325 nm, 直径d = 214 nm, 孔洞数目$ {N}_{a} $ = 13)由不同周期的B区域光子晶体(周期b = 335 nm, 直径d = 214 nm, 孔洞数目$ {N}_{b} $ = 17)包围, 两区域之间的间隔为330 nm; (b) 光子晶体PL光谱; (c) 光子晶体的模式热点位置处的PL光谱; (d) 光子晶体的PL扫描图像; (e) M11模式、(f) M12模式和(g) M21模式的远场模式分布; 白色虚线和蓝色虚线分别表示A区域和B区域光子晶体边界; 黄色虚线表示模式表征的扫描区域

    Figure 3.  Characterization of micro-cavity modes: (a) SEM image of micro-cavity. Region A photonic crystal (period a = 325 nm, diameter d = 214 nm, the number of holes $ {N}_{\mathrm{a}} $ = 13) are surrounded by region B photonic crystal (period b = 335 nm, diameter d = 214 nm, the number of holes $ {N}_{\mathrm{b}} $ = 17) with different periods, and the interval between the two regions is 330 nm. (b) PL spectral of photonic crystal. (c) PL spectral of mode hot spot in photonic crystal. (d) PL mapping image of photonic crystal. The far-field distribution of (e) M11, (f) M12 and (g) M21 modes. The white dashed and blue dashed represent the photonic crystal boundaries of region A and region B respectively. The yellow dashed represents the scan area of the mode characterization.

    图 4  微腔的参数调控 (a) 孔洞直径d为214 nm和(b) 229 nm的光子晶体角分辨PL光谱; (c) 不同孔洞直径的微腔光子晶体A区域PL光谱; (d) 高度h为330 nm, 孔洞直径d为233 nm的光子晶体角分辨PL光谱; (e) 高度h为330 nm不同孔洞直径的微腔光子晶体A区域PL光谱; (f) 高度h为330 nm孔洞直径d为233 nm的光子晶体PL扫描图像, 白色虚线和蓝色虚线分别表示A区域和B区域光子晶体边界; 图4样品的其他结构参数均与图3(a)相同

    Figure 4.  Parameters tuning of micro-cavity: Measured angle-resolved PL spectra of photonic crystals with hole diameter d of (a) 214 nm and (b) 229 nm; (c) PL spectra of region A of microcavity photonic crystals with different hole diameters; (d) measured angle-resolved PL spectra of photonic crystals with height h of 330 nm and hole diameter d of 233 nm; (e) PL spectra of region A of microcavity photonic crystals with different hole diameters and a height h of 330 nm; (f) PL mapping image of photonic crystals with height h of 330 nm and hole diameter d of 233 nm. The white dashed and blue dashed represent the photonic crystal boundaries of region A and region B respectively. Other structural parameters of the sample in Fig. 4 are the same as those in Fig. 3(a).

  • [1]

    Genack A Z, Garcia N 1991 Phys. Rev. Lett. 66 2064Google Scholar

    [2]

    von Neumann J, Wigner E P. 1929 Phys. Z. 30 465

    [3]

    Fan S, Joannopoulos J D 2002 Phys. Rev. B 65 235112Google Scholar

    [4]

    Gomis-Bresco J, Artigas D, Torner L 2017 Nat. Photonics 11 232Google Scholar

    [5]

    Plotnik Y, Peleg O, Dreisow F, Heinrich M, Nolte S, Szameit A, Segev M 2011 Phys. Rev. Lett. 107 183901Google Scholar

    [6]

    Friedrich H, Wintgen D 1985 Phys. Rev. A 32 3231Google Scholar

    [7]

    Zhang J M, Braak D, Kollar M 2012 Phys. Rev. Lett. 109 116405Google Scholar

    [8]

    Lim T C, Farnell G W 1969 J. Acoust. Soc. Am. 45 845Google Scholar

    [9]

    Porter R, Evans D V 2005 Wave Motion 43 29Google Scholar

    [10]

    Joannopoulos J D, Villeneuve P R, Fan S 1997 Nature 386 143Google Scholar

    [11]

    Tang G J, He X T, Shi F L, Liu J W, Chen X D, Dong J W 2022 Laser Photonics Rev. 16 2100300Google Scholar

    [12]

    Hsu C W, Zhen B, Lee J, Chua S L, Johnson S G, Joannopoulos J D, Soljačić M 2013 Nature 499 188Google Scholar

    [13]

    Jin J, Yin X, Ni L, Soljačić M, Zhen B, Peng C 2019 Nature 574 501Google Scholar

    [14]

    Marinica D C, Borisov A G, Shabanov S V 2008 Phys. Rev. Lett. 100 183902Google Scholar

    [15]

    Molina M I, Miroshnichenko A E, Kivshar Y S 2012 Phys. Rev. Lett. 108 070401Google Scholar

    [16]

    Hirose K, Liang Y, Kurosaka Y, Watanabe A, Sugiyama T, Noda S 2014 Nat. Photonics 8 406Google Scholar

    [17]

    Kodigala A, Lepetit T, Gu Q, Bahari B, Fainman Y, Kanté B 2017 Nature 541 196Google Scholar

    [18]

    Hwang M S, Lee H C, Kim K H, Jeong K Y, Kwon S H, Koshelev K, Kivshar Y, Park H G 2021 Nat. Commun. 12 4135Google Scholar

    [19]

    闫梦, 孙珂, 宁廷银, 赵丽娜, 任莹莹, 霍燕燕 2023 物理学报 72 044202Google Scholar

    Yan M, Sun K, Ning T Y, Zhao L N, Ren Y Y, Huo Y Y 2023 Acta Phys. Sin. 72 044202Google Scholar

    [20]

    Iwahashi S, Kurosaka Y, Sakai K, Kitamura K, Takayama N, Noda S 2011 Opt. Express 19 11963Google Scholar

    [21]

    Kitamura K, Sakai K, Takayama N, Nishimoto M, Noda S 2012 Opt. Lett. 37 2421Google Scholar

    [22]

    Yang J L, Shi A Q, Peng Y C, Peng P, Liu J J 2024 Chin. Phys. B 33 306

    [23]

    Koshelev K, Lepeshov S, Liu M, Bogdanov A, Kivshar Y 2018 Phys. Rev. Lett. 121 193903Google Scholar

    [24]

    Wang D, Xiong A Y, Zhang J Q, She Z D, Kang X F, Zhu Y, Ghosh S, Xiong Q H 2024 Chin. Phys. B 33 197

    [25]

    夏兆生, 刘宇行, 包正, 王丽华, 吴博, 王刚, 王辉, 任信钢, 黄志祥 2024 物理学报 73 178102Google Scholar

    Xiao Z S, Liu Y X, Bao Z, Wang L H, Wu B, Wang G, Wang H, Ren X G, Huang Z X 2024 Acta Phys. Sin. 73 178102Google Scholar

    [26]

    Wu F, Wu J, Guo Z, Jiang H, Sun Y, Li Y, Ren J, Chen H, 2019 Phys. Rev. Appl. 12 014028Google Scholar

    [27]

    Wu F, Qi X, Qin M, Luo M, Long Y, Wu J, Sun Y, Jiang H, Liu T, Xiao S, Chen H 2024 Phys. Rev. B 109 085436Google Scholar

    [28]

    Wei M, Long Y, Wu F, Liu G G, Zhang B 2025 Sci. Bull. 70 882Google Scholar

    [29]

    Zhen B, Hsu C W, Lu L, Stone A D, Soljačić M 2014 Phys. Rev. Lett. 113 257401Google Scholar

    [30]

    Men H, Lee K Y K, Freund R M, Peraire J, Johnson S G 2014 Opt. Express 22 2263

    [31]

    Lee J, Zhen B, Chua S L, Qiu W, Joannopoulos J D, Soljačić M, Shapira O 2012 Phys. Rev. Lett. 109 067401Google Scholar

    [32]

    Perczel J, Borregaard J, Chang D E, Yelin S F, Lukin M D 2020 Phys. Rev. Lett. 124 083603Google Scholar

    [33]

    Ge X, Minkov M, Fan S, Li X, Zhou W 2019 npj 2D Mater. Appl. 3 16

    [34]

    Wu M, Ding L, Sabatini R P, Sagar L K, Bappi G, Paniagua-Domínguez R, Sargent E H, Kuznetsov A I 2021 Nano Lett. 21 9754Google Scholar

    [35]

    Sun S, Kim H, Luo Z, Solomon G S, Waks E 2018 Science 361 57Google Scholar

    [36]

    Carletti L, Koshelev K, De Angelis C, Kivshar Y 2018 Phys. Rev. Lett. 121 033903Google Scholar

    [37]

    Bernhardt N, Koshelev K, White S J U, Meng K W C, Fröch J E, Kim S, Tran T T, Choi D Y, Kivshar Y, Solntsev A S 2020 Nano Lett. 20 5309Google Scholar

    [38]

    Chen Z H, Yin X F, Jin J C, Zheng Z, Zhang Z X, Wang F F, He L, Zhen B, Peng C 2022 Sci. Bull. 67 359Google Scholar

  • [1] YANG Fei, ZHANG Binglin, SHENG Miaomiao, JIN Lufan, YAO Jianquan. Dynamic tuning of high-Q quasi-bound states in continuum driven by liquid crystal. Acta Physica Sinica, doi: 10.7498/aps.74.20250337
    [2] Ji Yu-Xuan, Zhang Ming-Kai, Li Yan. Dual-band semi-Dirac cones in two-dimensional photonic crystal and zero-index material. Acta Physica Sinica, doi: 10.7498/aps.73.20240800
    [3] Sui Wen-Jie, Zhang Yu, Zhang Zi-Rui, Wang Xiao-Long, Zhang Hong-Fang, Shi Qiang, Yang Bing. Unidirectional propagation control of helical edge states in topological spin photonic crystals. Acta Physica Sinica, doi: 10.7498/aps.71.20220353
    [4] Zhou Ming-Jie, Tan Hai-Yun, Zhou Yan, Zhuge Lan-Jian, Wu Xue-Mei. A tunable narrow-band plasma photonic crystal filter based on bound state. Acta Physica Sinica, doi: 10.7498/aps.70.20210241
    [5] Wang Yan-Lan, Li Yan. Pseudospin states and topological phase transitions in two-dimensional photonic crystals made of dielectric materials. Acta Physica Sinica, doi: 10.7498/aps.69.20191962
    [6] Fang Yun-Tuan, Wang Zhang-Xin, Fan Er-Pan, Li Xiao-Xue, Wang Hong-Jin. Topological phase transition based on structure reversal of two-dimensional photonic crystals and construction of topological edge states. Acta Physica Sinica, doi: 10.7498/aps.69.20200415
    [7] Wang Hai-Xiao, Xu Lin, Jiang Jian-Hua. Dirac photonic crystal. Acta Physica Sinica, doi: 10.7498/aps.66.220302
    [8] Jia Zi-Yuan, Yang Yu-Ting, Ji Li-Yu, Hang Zhi-Hong. Deterministic interface states in photonic crystal with graphene-allotrope-like complex unit cells. Acta Physica Sinica, doi: 10.7498/aps.66.227802
    [9] Zhu Qi-Guang, Dong Xin-Yu, Wang Chun-Fang, Wang Ning, Chen Wei-Dong. Tunable filtering properties of the ployphyly photonic crystal with double local states. Acta Physica Sinica, doi: 10.7498/aps.64.034209
    [10] Chen Ying, Fan Hui-Qing, Lu Bo. Tamm state of semi-infinite photonic crystal based on surface defect cavity with porous silicon and its refractive index sensing mechanism. Acta Physica Sinica, doi: 10.7498/aps.63.244207
    [11] Li Qian-Li, Wen Ting-Dun, Xu Li-Ping, Wang Zhi-Bin. Effect of uniaxial stress on photon localization of one-dimensional photonic crystal with a mirror symmetry. Acta Physica Sinica, doi: 10.7498/aps.62.184212
    [12] Zhang Hai-Feng, Ma Li, Liu Shao-Bin. Defect mode properties of magnetized plasma photonic crystals. Acta Physica Sinica, doi: 10.7498/aps.58.1071
    [13] Liu Jing, Sun Jun-Qiang, Huang De-Xiu, Huang Chong-Qing, Wu Ming. Modulated photon confined states with graded-index photonic quantum well structure. Acta Physica Sinica, doi: 10.7498/aps.56.2281
    [14] Shen Xiao-Peng, Han Kui, Shen Yi-Feng, Li Hai-Peng, Xiao Zheng-Wei, Zheng Jian. Self-collimation of unpolarized electromagnetic waves in 2D photonic crystals. Acta Physica Sinica, doi: 10.7498/aps.55.2760
    [15] Tong Yuan-Wei, Zhang Ye-Wen, He Li, Li Hong-Qiang, Chen Hong. The band structure in microwave frequency for quasi-1-D coaxial photonic crystals. Acta Physica Sinica, doi: 10.7498/aps.55.935
    [16] Zhou Mei, Chen Xiao-Shuang, Xu Jing, Zeng Yong, Wu Yan-Rui, Lu Wei, Wang Lian-Wei, Chen Yu. Photonic band gap of two-dimensional photonic crystal based on silicon in mid-infrared. Acta Physica Sinica, doi: 10.7498/aps.54.411
    [17] Li Rong, Ren Kun, Ren Xiao-Bin, Zhou Jing, Liu Da-He. Angular and wavelength selectivity of band gaps of holographic photonic crystals for different polarizations. Acta Physica Sinica, doi: 10.7498/aps.53.2520
    [18] Liu Xiao-Dong, Wang Yi-Quan, Xu Xing-Sheng, Cheng Bing-Ying, Zhang Dao-Zhong. Enhancement and suppression of the spontaneous emission of a two-level atom in a photonic crystal with a state-conservative photonic pseudogap. Acta Physica Sinica, doi: 10.7498/aps.53.125
    [19] Liu Xiao-Dong, Li Shu-Guang, Xu Xing-Sheng, Wang Yi-Quan, Cheng Bing-Ying, Zhang Dao-Zhong. Probing the total density of states in a photonic crystal with different number density distributions of luminescent molecules. Acta Physica Sinica, doi: 10.7498/aps.53.132
    [20] Wang xia, Xu Jian-Feng, Su Hui-Min, He Yong-Jun, Jiang Shao-Ji, Wang He-Zhou, Zeng Zhao-Hua, Chen Yong-Lie. . Acta Physica Sinica, doi: 10.7498/aps.51.527
Metrics
  • Abstract views:  304
  • PDF Downloads:  10
  • Cited By: 0
Publishing process
  • Received Date:  12 June 2025
  • Accepted Date:  06 July 2025
  • Available Online:  24 July 2025
  • /

    返回文章
    返回