Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Nonlinear optical effect and nonlinear optical mass sensor based on graphene optomechanical system

Chen Hua-Jun

Citation:

Nonlinear optical effect and nonlinear optical mass sensor based on graphene optomechanical system

Chen Hua-Jun
PDF
HTML
Get Citation
  • Graphene, atomically thin two-dimensional (2D) nanomaterial consisting of a single layer of carbon atoms, has received tremendous attention in the past few decades. Graphene may be considered as an excellent nanomaterial for fabricating nanomechanical resonator systems to investigate the quantum behavior of the motion of micromechanical resonators because of its unique properties of low mass density, high frequency, high quality-factor, and intrinsically small size. Additionally, graphene optomechanics based on a bilayer graphene resonator coupled to a microwave on-chip cavity, where light and micromechanical motion interact via the radiation pressure, has been demonstrtated experimentally recently. In this work, we demonstrate theoretically the nonlinear optical effect including optical bistability and four-wave mixing under the regimes woth different parameters and detunings in a graphene resonator-microwave cavity system. When the graphene optomechanics is driven by one strong pump laser beam, we find that the optical bistability can be controlled by tuning the power and the frequency of the pump beam. The four-wave mixing (FWM) phenomenon is also investigated and we find that sharp peaks in the FWM spectrum exactly are located at the resonant frequency of graphene resonator. Therefore, a straight nonlinear optical means for determining the resonant frequency of the graphene resonator is presented. Setting the cavity field resonating with pump field, and then scanning the probe frequency across the cavity frequency, one can easily and exactly obtain the resonant frequency of the resonator from the FWM spectrum. We further theoretically propose a mass sensor based on the graphene optomechanical system. The mass of external nanoparticles deposited onto the graphene resonator can be measured conveniently by tracking the shift of resonant frequency due to mass changing in the FWM spectrum. Compared with optomechanical mass sensors in linear regime, the nonlinear optical mass sensor may be immune to the detection noise. The system may have potential applications in communication networks for frequency conversion and provide a new platform for high sensitive sensing devices.
      Corresponding author: Chen Hua-Jun, chenphysics@126.com
    [1]

    Chen C, Rosenblatt S, Bolotin K I, Kalb W, Kim P, Kymissis I, Stormer H L, Heinz T F, Hone J 2009 Nat. Nanotechnol. 4 861Google Scholar

    [2]

    Eichler A, Moser J, Chaste J, Zdrojek M, Wilson-Rae I, Bachtold A 2011 Nat. Nanotechnol. 6 339Google Scholar

    [3]

    Song X, Oksanen M, Sillanpää M A, Craighead H G, Parpia J M, Hakonen P J 2012 Nano. Lett. 12 198Google Scholar

    [4]

    Chen C, Lee S, Deshpande V V, Lee G H, Lekas M, Shepard K, Hone J 2013 Nat. Nanotechnol. 8 923Google Scholar

    [5]

    Bunch J S, van der Zande A M, Verbridge S S, Frank I W, Tanenbaum D M, Parpia J M, Craighead H G, McEuen P L 2007 Science 315 490Google Scholar

    [6]

    Moser J, Güttinger J, Eichler A, Esplandiu M J, Liu D E, Dykman M I, Bachtold A 2013 Nat. Nanotechnol. 8 493Google Scholar

    [7]

    Stapfner S, Ost L, Hunger D, Reichel J, Favero I, Weig E M 2013 Appl. Phys. Lett. 102 151910Google Scholar

    [8]

    Chiu H Y, Hung P, Postma H W C 2008 Nano. Lett. 8 4342Google Scholar

    [9]

    Chaste J, Eichler A, Moser J, Ceballos G, Rurali R, Bachtold A A 2012 Nat. Nanotechnol. 7 301Google Scholar

    [10]

    Singh V, Sengupta S, Solanki H S, Dhall R, Allain A, Dhara S, Pant P, Deshmukh M M 2010 Nanotechnology 211 65204

    [11]

    Aspelmeyer M, Kippenberg T J, Marquardt F 2014 Rev. Mod. Phys. 86 1391Google Scholar

    [12]

    O’Connell A D, Hofheinz M, Ansmann M, Bialczak R C, Lenander M, Lucero E, Neeley M, Sank D, Wang H, Weides M, Wenner J, Martinis J M, Cleland A N 2010 Nature 464 697Google Scholar

    [13]

    Teufel J D, Donner T, Li D, Harlow J W, Allman M S, Cicak K, Sirois A J, Whittaker J D, Lehnert K W, Simmonds R W 2011 Nature 475 359Google Scholar

    [14]

    Chan J, Alegre T P M, Safavi-Naeini A H, Hill J T, Krause A, Gröblacher S, Aspelmeyer M, Painter O 2011 Nature 478 89Google Scholar

    [15]

    Barton R A, Storch I R, Adiga V P, Sakakibara R, Cipriany B R, Ilic B, Wang S P, Ong P, McEuen P L, Parpia J M, Craighead F G 2012 Nano. Lett. 12 4681Google Scholar

    [16]

    Peterson R W, Purdy T P, Kampel N S, Andrews R W, Yu P L, Lehnert K W, Regal C A 2016 Phys. Rev. Lett. 116 063601Google Scholar

    [17]

    Chen H J 2018 J. Appl. Phys. 124 153102Google Scholar

    [18]

    Rossi M, Mason D, Chen J, Tsaturyan Y, Schliesser A 2018 Nature 563 53Google Scholar

    [19]

    Grudinin I S, Lee H, Painter O, Vahala K J, 2010 Phys. Rev. Lett. 104 083901Google Scholar

    [20]

    Jing H, Özdemir S K, Lü X Y, Zhang J, Yang L, Nori F 2014 Phys. Rev. Lett. 113 053604Google Scholar

    [21]

    Brooks D W C, Botter T, Schreppler S, Purdy T P, Brahms N, Stamper-Kurn D M 2012 Nature 488 476Google Scholar

    [22]

    Safavi-Naeini A H, Gröblacher S, Hill J T, Chan J, Aspelmeyer M, Painter O 2013 Nature 500 185Google Scholar

    [23]

    Purdy T P, Yu P L, Peterson R W, Kampel N S, Regal C A 2013 Phys. Rev. X 3 031012

    [24]

    Agarwal G S, Huang S M 2010 Phys. Rev. A 81 041803Google Scholar

    [25]

    Weis S, Riviere R, Deleglise S, Gavartin E, Arcizet O, Schliesser A, Kippenberg T J 2010 Science 330 1520Google Scholar

    [26]

    Teufel J D, Li D, Allman M S, Cicak K, Sirois A J, Whittaker J D, Simmonds R W 2011 Nature 471 204Google Scholar

    [27]

    Safavi-Naeini A H, Alegre T P M, Chan J, Eichenfield M, Winger M, Lin Q, Hill J T, Chang D E, Painter O 2011 Nature 472 69Google Scholar

    [28]

    Karuza M, Biancofiore C, Bawaj M, Molinelli C, Galassi M, Natali R, Tombesi P, Di Giuseppe G, Vitali D 2013 Phys. Rev. A 88 013804Google Scholar

    [29]

    Zhou X, Hocke F, Schliesser A, Marx A, Huebl H, Gross R, Kippenberg T J 2013 Nat. Phys. 9 179Google Scholar

    [30]

    Fan L, Fong KY, Poot M, Tang H X 2015 Nat. Commun. 6 5850Google Scholar

    [31]

    Massel F, Heikkilä T T, Pirkkalainen J M, Cho S U, Saloniemi H, Hakonen P J, Sillanpää M A 2011 Nature 480 351Google Scholar

    [32]

    Jing H, Özdemir S K, Lü X Y, Zhang J, Yang L, Nori F 2014 Phys. Rev. Lett. 113 053604

    [33]

    Jiang Y, Maayani S, Carmon T, Nori F, Jing H 2018 Phys. Rev. Appl. 10 064037Google Scholar

    [34]

    Jiao Y, Lü H, Qian J, Li Y, Jing H 2016 New J. Phys. 18 083034Google Scholar

    [35]

    Lu T X, Jiao Y F, Zhang H L, Saif F, Jing H 2019 Phys. Rev. A 100 013813Google Scholar

    [36]

    Zhang H, Saif F, Jiao Y, Jing H 2018 Opt. Express 26 25199Google Scholar

    [37]

    Jiao Y F, Lu T X, Jing H 2018 Phys. Rev. A 97 013843Google Scholar

    [38]

    Lü H, Özdemir S K, Kuang L M, Nori F, Jing H 2017 Phys. Rev. Appl. 8 044020Google Scholar

    [39]

    Lü H, Wang C, Yang L, Jing H 2018 Phys. Rev. Appl. 10 014006Google Scholar

    [40]

    Li B, Huang R, Xu X, Miranowicz A, Jing H 2019 Photonics Res. 7 630Google Scholar

    [41]

    Weber P, Guttinger J, Tsioutsios I, Chang D E, Bachtold A 2014 Nano. Lett. 14 2854Google Scholar

    [42]

    Singh V, Bosman S J, Schneider B H, Blanter Y M, Castellanos-Gomez A, Steele G A 2014 Nat. Nanotechnol. 9 820Google Scholar

    [43]

    Song X, Oksanen M, Li J, Hakonen P J, Sillanpää M A 2014 Phys. Rev. Lett. 113 027404Google Scholar

    [44]

    Chen B, Jiang C, Zhu K D 2011 Phys. Rev. A 83 055803Google Scholar

    [45]

    Chen B, Jiang C, Li J J, Zhu K D 2011 Phys. Rev. A 84 055802Google Scholar

    [46]

    Sete E A, Eleuch H 2012 Phys. Rev. A 85 043824Google Scholar

    [47]

    Kanamoto R, Meystre P 2010 Phys. Rev. Lett. 104 063601Google Scholar

    [48]

    Purdy T P, Brooks. D W C, Botter T, Brahms N, Ma Z Y, Stamper-Kurn D M 2010 Phys. Rev. Lett. 105 133602Google Scholar

    [49]

    Yan D, Wang Z H, Ren C N, Gao H, Li Y, Wu J H 2015 Phys. Rev. A 91 023813Google Scholar

    [50]

    Xiong W, Jin D Y, Qiu Y, Lam C H, You J Q 2016 Phys. Rev. A 93 023844Google Scholar

    [51]

    Huang S, Agarwal G S 2010 Phys. Rev. A 81 033830Google Scholar

    [52]

    Jiang C, Cui Y, Liu H 2013 Europhys. Lett. 104 34004Google Scholar

    [53]

    严晓波, 杨柳, 田雪冬, 刘一谋, 张岩 2014 物理学报 63 204201Google Scholar

    Yan X B, Yang L, Tian X D, Liu Y M, Zhang Y 2014 Acta Phys. Sin. 63 204201Google Scholar

    [54]

    陈雪, 刘晓威, 张可烨, 袁春华, 张卫平 2015 物理学报 64 164211Google Scholar

    Chen X, Liu X W, Zhang K Y, Yuan C H, Zhang W P 2015 Acta Phys. Sin. 64 164211Google Scholar

    [55]

    Liu Y C, Hu Y W, Wong C W, Xiao Y F 2013 Chin. Phys. B 22 114213Google Scholar

    [56]

    Liu Y L, Wang C, Zhang J, Liu Y X 2018 Chin. Phys. B 27 024204Google Scholar

    [57]

    Dobrindt J M, Kippenberg T J 2010 Phys. Rev. Lett. 104 033901Google Scholar

    [58]

    Aspelmeyer M, Kippenberg T J, Marquardt F 2014 Rev. Mod. Phys. 86 1391

    [59]

    Ekinci K L, Yang Y T, Roukes M L 2004 J. Appl. Phys. 95 2682Google Scholar

    [60]

    Yie Z, Zielke M A, Burgner C B, Turner K L 2011 J. Micromech. Microeng. 21 025027Google Scholar

    [61]

    Ramos D, Mertens J, Calleja M, Tamayo J 2008 Appl. Phys. Lett. 92 173108Google Scholar

    [62]

    Dai M D, Eom K, Kim C W 2009 Appl. Phys. Lett. 95 203104Google Scholar

    [63]

    Li J J, Zhu K.D 2013 Phys. Rep. 525 223Google Scholar

    [64]

    陈华俊, 方贤文, 陈昌兆, 李洋 2016 物理学报 65 194205Google Scholar

    Chen H J, Fang X W, Chen C Z, Li Y 2016 Acta Phys. Sin. 65 194205Google Scholar

    [65]

    Chen H J, Chen C Z, Li Y, Fang X W, Tang X D 2017 Opt. Commun. 382 73Google Scholar

  • 图 1  石墨烯光力系统与非线性质量传感示意图, 其中该系统由一束频率为${\omega _{\rm{p}}}$的泵浦光和一束频率${\omega _{\rm{s}}}$的信号光驱动

    Figure 1.  Schematic of graphene optomechanical system and nonlinear optical mass sensor driven by a strong pump field ${\omega _{\rm{p}}}$ and a weak signal field ${\omega _{\rm{s}}}$.

    图 2  在三个不同泵浦功率条件下石墨烯光力腔内光子数作为腔-泵浦失谐${\varDelta _{\rm{p}}}$的函数

    Figure 2.  Mean intracavity photon number of graphene optomechanical cavity as a function of the cavity-pump detuning ${\varDelta _{\rm{p}}}$ with four pump powers.

    图 3  (a)在失谐${\varDelta _{\rm{p}}} = {\omega _{\rm{m}}}$时, 腔内光子数${n_{\rm{c}}}$作为泵浦功率P的函数; (b) 在失谐${\varDelta _{\rm{p}}} = - {\omega _{\rm{m}}}$时, 腔内光子数${n_{\rm{c}}}$作为泵浦功率P的函数

    Figure 3.  (a) The mean intracavity photon number ${n_{\rm{c}}}$ as a function of P for ${\varDelta _{\rm{p}}} = {\omega _{\rm{m}}}$; (b) mean intracavity photon number ${n_{\rm{c}}}$ as a function of P for ${\varDelta _{\rm{p}}} = - {\omega _{\rm{m}}}$.

    图 4  (a) 在四个不同石墨烯振子频率时, 四波混频谱FWM作为探测-腔失谐${\varDelta _{\rm{s}}}$的函数; (b) 和 (c)分别是左边和右边尖峰的放大

    Figure 4.  (a) The four-wave mixing (FWM) spectrum as a function of probe-cavity detuning ${\varDelta _{\rm{s}}}$ under four different graphene resonator frequencies; (b) and (c) are the amplifications of the left and right peaks.

    图 5  当把纳米颗粒沉积到石墨烯振子表面上时, 四波混频谱的频移. 插图是纳米颗粒的质量与频移之间的线性关系

    Figure 5.  The four-wave mixing (FWM) spectrum after landing the nanoparticles on the surface of graphene resonator and the color curves shows the mechanical frequency-shifts. The inset shows the linear relationship between the frequency-shifts and the mass of the nanoparticles.

  • [1]

    Chen C, Rosenblatt S, Bolotin K I, Kalb W, Kim P, Kymissis I, Stormer H L, Heinz T F, Hone J 2009 Nat. Nanotechnol. 4 861Google Scholar

    [2]

    Eichler A, Moser J, Chaste J, Zdrojek M, Wilson-Rae I, Bachtold A 2011 Nat. Nanotechnol. 6 339Google Scholar

    [3]

    Song X, Oksanen M, Sillanpää M A, Craighead H G, Parpia J M, Hakonen P J 2012 Nano. Lett. 12 198Google Scholar

    [4]

    Chen C, Lee S, Deshpande V V, Lee G H, Lekas M, Shepard K, Hone J 2013 Nat. Nanotechnol. 8 923Google Scholar

    [5]

    Bunch J S, van der Zande A M, Verbridge S S, Frank I W, Tanenbaum D M, Parpia J M, Craighead H G, McEuen P L 2007 Science 315 490Google Scholar

    [6]

    Moser J, Güttinger J, Eichler A, Esplandiu M J, Liu D E, Dykman M I, Bachtold A 2013 Nat. Nanotechnol. 8 493Google Scholar

    [7]

    Stapfner S, Ost L, Hunger D, Reichel J, Favero I, Weig E M 2013 Appl. Phys. Lett. 102 151910Google Scholar

    [8]

    Chiu H Y, Hung P, Postma H W C 2008 Nano. Lett. 8 4342Google Scholar

    [9]

    Chaste J, Eichler A, Moser J, Ceballos G, Rurali R, Bachtold A A 2012 Nat. Nanotechnol. 7 301Google Scholar

    [10]

    Singh V, Sengupta S, Solanki H S, Dhall R, Allain A, Dhara S, Pant P, Deshmukh M M 2010 Nanotechnology 211 65204

    [11]

    Aspelmeyer M, Kippenberg T J, Marquardt F 2014 Rev. Mod. Phys. 86 1391Google Scholar

    [12]

    O’Connell A D, Hofheinz M, Ansmann M, Bialczak R C, Lenander M, Lucero E, Neeley M, Sank D, Wang H, Weides M, Wenner J, Martinis J M, Cleland A N 2010 Nature 464 697Google Scholar

    [13]

    Teufel J D, Donner T, Li D, Harlow J W, Allman M S, Cicak K, Sirois A J, Whittaker J D, Lehnert K W, Simmonds R W 2011 Nature 475 359Google Scholar

    [14]

    Chan J, Alegre T P M, Safavi-Naeini A H, Hill J T, Krause A, Gröblacher S, Aspelmeyer M, Painter O 2011 Nature 478 89Google Scholar

    [15]

    Barton R A, Storch I R, Adiga V P, Sakakibara R, Cipriany B R, Ilic B, Wang S P, Ong P, McEuen P L, Parpia J M, Craighead F G 2012 Nano. Lett. 12 4681Google Scholar

    [16]

    Peterson R W, Purdy T P, Kampel N S, Andrews R W, Yu P L, Lehnert K W, Regal C A 2016 Phys. Rev. Lett. 116 063601Google Scholar

    [17]

    Chen H J 2018 J. Appl. Phys. 124 153102Google Scholar

    [18]

    Rossi M, Mason D, Chen J, Tsaturyan Y, Schliesser A 2018 Nature 563 53Google Scholar

    [19]

    Grudinin I S, Lee H, Painter O, Vahala K J, 2010 Phys. Rev. Lett. 104 083901Google Scholar

    [20]

    Jing H, Özdemir S K, Lü X Y, Zhang J, Yang L, Nori F 2014 Phys. Rev. Lett. 113 053604Google Scholar

    [21]

    Brooks D W C, Botter T, Schreppler S, Purdy T P, Brahms N, Stamper-Kurn D M 2012 Nature 488 476Google Scholar

    [22]

    Safavi-Naeini A H, Gröblacher S, Hill J T, Chan J, Aspelmeyer M, Painter O 2013 Nature 500 185Google Scholar

    [23]

    Purdy T P, Yu P L, Peterson R W, Kampel N S, Regal C A 2013 Phys. Rev. X 3 031012

    [24]

    Agarwal G S, Huang S M 2010 Phys. Rev. A 81 041803Google Scholar

    [25]

    Weis S, Riviere R, Deleglise S, Gavartin E, Arcizet O, Schliesser A, Kippenberg T J 2010 Science 330 1520Google Scholar

    [26]

    Teufel J D, Li D, Allman M S, Cicak K, Sirois A J, Whittaker J D, Simmonds R W 2011 Nature 471 204Google Scholar

    [27]

    Safavi-Naeini A H, Alegre T P M, Chan J, Eichenfield M, Winger M, Lin Q, Hill J T, Chang D E, Painter O 2011 Nature 472 69Google Scholar

    [28]

    Karuza M, Biancofiore C, Bawaj M, Molinelli C, Galassi M, Natali R, Tombesi P, Di Giuseppe G, Vitali D 2013 Phys. Rev. A 88 013804Google Scholar

    [29]

    Zhou X, Hocke F, Schliesser A, Marx A, Huebl H, Gross R, Kippenberg T J 2013 Nat. Phys. 9 179Google Scholar

    [30]

    Fan L, Fong KY, Poot M, Tang H X 2015 Nat. Commun. 6 5850Google Scholar

    [31]

    Massel F, Heikkilä T T, Pirkkalainen J M, Cho S U, Saloniemi H, Hakonen P J, Sillanpää M A 2011 Nature 480 351Google Scholar

    [32]

    Jing H, Özdemir S K, Lü X Y, Zhang J, Yang L, Nori F 2014 Phys. Rev. Lett. 113 053604

    [33]

    Jiang Y, Maayani S, Carmon T, Nori F, Jing H 2018 Phys. Rev. Appl. 10 064037Google Scholar

    [34]

    Jiao Y, Lü H, Qian J, Li Y, Jing H 2016 New J. Phys. 18 083034Google Scholar

    [35]

    Lu T X, Jiao Y F, Zhang H L, Saif F, Jing H 2019 Phys. Rev. A 100 013813Google Scholar

    [36]

    Zhang H, Saif F, Jiao Y, Jing H 2018 Opt. Express 26 25199Google Scholar

    [37]

    Jiao Y F, Lu T X, Jing H 2018 Phys. Rev. A 97 013843Google Scholar

    [38]

    Lü H, Özdemir S K, Kuang L M, Nori F, Jing H 2017 Phys. Rev. Appl. 8 044020Google Scholar

    [39]

    Lü H, Wang C, Yang L, Jing H 2018 Phys. Rev. Appl. 10 014006Google Scholar

    [40]

    Li B, Huang R, Xu X, Miranowicz A, Jing H 2019 Photonics Res. 7 630Google Scholar

    [41]

    Weber P, Guttinger J, Tsioutsios I, Chang D E, Bachtold A 2014 Nano. Lett. 14 2854Google Scholar

    [42]

    Singh V, Bosman S J, Schneider B H, Blanter Y M, Castellanos-Gomez A, Steele G A 2014 Nat. Nanotechnol. 9 820Google Scholar

    [43]

    Song X, Oksanen M, Li J, Hakonen P J, Sillanpää M A 2014 Phys. Rev. Lett. 113 027404Google Scholar

    [44]

    Chen B, Jiang C, Zhu K D 2011 Phys. Rev. A 83 055803Google Scholar

    [45]

    Chen B, Jiang C, Li J J, Zhu K D 2011 Phys. Rev. A 84 055802Google Scholar

    [46]

    Sete E A, Eleuch H 2012 Phys. Rev. A 85 043824Google Scholar

    [47]

    Kanamoto R, Meystre P 2010 Phys. Rev. Lett. 104 063601Google Scholar

    [48]

    Purdy T P, Brooks. D W C, Botter T, Brahms N, Ma Z Y, Stamper-Kurn D M 2010 Phys. Rev. Lett. 105 133602Google Scholar

    [49]

    Yan D, Wang Z H, Ren C N, Gao H, Li Y, Wu J H 2015 Phys. Rev. A 91 023813Google Scholar

    [50]

    Xiong W, Jin D Y, Qiu Y, Lam C H, You J Q 2016 Phys. Rev. A 93 023844Google Scholar

    [51]

    Huang S, Agarwal G S 2010 Phys. Rev. A 81 033830Google Scholar

    [52]

    Jiang C, Cui Y, Liu H 2013 Europhys. Lett. 104 34004Google Scholar

    [53]

    严晓波, 杨柳, 田雪冬, 刘一谋, 张岩 2014 物理学报 63 204201Google Scholar

    Yan X B, Yang L, Tian X D, Liu Y M, Zhang Y 2014 Acta Phys. Sin. 63 204201Google Scholar

    [54]

    陈雪, 刘晓威, 张可烨, 袁春华, 张卫平 2015 物理学报 64 164211Google Scholar

    Chen X, Liu X W, Zhang K Y, Yuan C H, Zhang W P 2015 Acta Phys. Sin. 64 164211Google Scholar

    [55]

    Liu Y C, Hu Y W, Wong C W, Xiao Y F 2013 Chin. Phys. B 22 114213Google Scholar

    [56]

    Liu Y L, Wang C, Zhang J, Liu Y X 2018 Chin. Phys. B 27 024204Google Scholar

    [57]

    Dobrindt J M, Kippenberg T J 2010 Phys. Rev. Lett. 104 033901Google Scholar

    [58]

    Aspelmeyer M, Kippenberg T J, Marquardt F 2014 Rev. Mod. Phys. 86 1391

    [59]

    Ekinci K L, Yang Y T, Roukes M L 2004 J. Appl. Phys. 95 2682Google Scholar

    [60]

    Yie Z, Zielke M A, Burgner C B, Turner K L 2011 J. Micromech. Microeng. 21 025027Google Scholar

    [61]

    Ramos D, Mertens J, Calleja M, Tamayo J 2008 Appl. Phys. Lett. 92 173108Google Scholar

    [62]

    Dai M D, Eom K, Kim C W 2009 Appl. Phys. Lett. 95 203104Google Scholar

    [63]

    Li J J, Zhu K.D 2013 Phys. Rep. 525 223Google Scholar

    [64]

    陈华俊, 方贤文, 陈昌兆, 李洋 2016 物理学报 65 194205Google Scholar

    Chen H J, Fang X W, Chen C Z, Li Y 2016 Acta Phys. Sin. 65 194205Google Scholar

    [65]

    Chen H J, Chen C Z, Li Y, Fang X W, Tang X D 2017 Opt. Commun. 382 73Google Scholar

  • [1] Hu Sheng-Run, Ji Xue-Qiang, Wang Jin-Jin, Yan Jie-Yun, Zhang Tian-Yue, Li Pei-Gang. Ultralow switching threshold optical bistable devices based on epsilon-near-zero Ga2O3-SiC-Ag multilayer structures. Acta Physica Sinica, 2024, 73(5): 054201. doi: 10.7498/aps.73.20231534
    [2] Ge Yun-Ran, Zheng Kang, Ding Chun-Ling, Hao Xiang-Ying, Jin Rui-Bo. Efficient optical nonreciprocity based on four-wave mixing effect in semiconductor quantum well. Acta Physica Sinica, 2024, 73(1): 014201. doi: 10.7498/aps.73.20231212
    [3] Li Yun-Heng, Yu Ke, Zhu Tian-Yu, Yu Tong, Shan Si-Chao, Gu Ya-Zhou, Li Zhi-Tong. Optical bistability in topological layered structure and its application in photonic neural network. Acta Physica Sinica, 2024, 73(16): 164208. doi: 10.7498/aps.73.20240569
    [4] Jiang Yang-Yang, Xia Xiao-Shuang, Li Jian-Bo. Four-wave mixing properties in bilayer graphene nanosystem. Acta Physica Sinica, 2023, 72(12): 126801. doi: 10.7498/aps.72.20230012
    [5] Cao Lei-Ming, Du Jin-Jian, Zhang Kai, Liu Sheng-Shuai, Jing Jie-Tai. Experimental generation of multimode quantum correlations between a conical probe and a conical conjugate based on a four-wave mixing process. Acta Physica Sinica, 2022, 71(16): 160306. doi: 10.7498/aps.71.20220081
    [6] Xu Xiao-Yin, Liu Sheng-Shuai, Jing Jie-Tai. Amplification of entangled beam based on four-wave mixing process. Acta Physica Sinica, 2022, 71(5): 050301. doi: 10.7498/aps.71.20211324
    [7] Amplification of entangled beam based on four-wave mixing process. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211324
    [8] Zhong Yin-Yin, Pan Xiao-Zhou, Jing Jie-Tai. Quantum entanglement in coherent feedback system based on the cascaded four wave mixing processes. Acta Physica Sinica, 2020, 69(13): 130301. doi: 10.7498/aps.69.20200042
    [9] Yang Rong-Guo, Zhang Chao-Xia, Li Ni, Zhang Jing, Gao Jiang-Rui. Quantum manipulation of entanglement enhancement in cascaded four-wave-mixing process. Acta Physica Sinica, 2019, 68(9): 094205. doi: 10.7498/aps.68.20181837
    [10] Yang Jian-Yong, Chen Hua-Jun. All-optical mass sensing based on ultra-strong coupling quantum dot-nanomechanical resonator system. Acta Physica Sinica, 2019, 68(24): 246302. doi: 10.7498/aps.68.20190607
    [11] Cao Ya-Min, Wu Bao-Jian, Wan Feng, Qiu Kun. Principle and noise performance of optical phase arithmetic devices using four wave mixing. Acta Physica Sinica, 2018, 67(9): 094208. doi: 10.7498/aps.67.20172638
    [12] Dong Li-Juan, Xue Chun-Hua, Sun Yong, Deng Fu-Sheng, Shi Yun-Long. Loss-induced localized field enhancement and optical bistable state in heterostructure containing single-negative materials. Acta Physica Sinica, 2016, 65(11): 114207. doi: 10.7498/aps.65.114207
    [13] Chen Hua-Jun, Fang Xian-Wen, Chen Chang-Zhao, Li Yang. Coherent optical propagation properties and ultrahigh resolution mass sensing based on double whispering gallery modes cavity optomechanics. Acta Physica Sinica, 2016, 65(19): 194205. doi: 10.7498/aps.65.194205
    [14] Yang Jin-Jin, Li Hui-Jun, Wen Wen, Huang Guo-Xiang. Optical bistability via active Raman gain in an n-type atomic medium. Acta Physica Sinica, 2012, 61(22): 224204. doi: 10.7498/aps.61.224204
    [15] Liu Jun-Hai, Wan Yong, Han Wen-Juan, Yang Hong-Wei, Zhang Huai-Jin, Wang Ji-Yang, Petrov Valentin. Study on the optical bistability in the laser oscillation of Yb doped vanadate crystals. Acta Physica Sinica, 2010, 59(1): 293-299. doi: 10.7498/aps.59.293
    [16] Yin Jing-Chan, Xiao Xiao-Sheng, Yang Chang-Xi. Experimental study of slow light based on four-wave mixing wavelength conversion and dispersion in optical fibers. Acta Physica Sinica, 2010, 59(6): 3986-3991. doi: 10.7498/aps.59.3986
    [17] Yang Yong-Ming, Xu Qi-Ming, Zhang Yan-Peng. Repeatedly dressed four-wave mixing in N5B five-level atomic system. Acta Physica Sinica, 2009, 58(1): 290-297. doi: 10.7498/aps.58.290
    [18] Li Pei-Li, Huang De-Xiu, Zhang Xin-Liang. Ultrahigh-speed all-optical encoder based on four-wave mixing in semiconductor optical amplifiers with PolSK modulated signals. Acta Physica Sinica, 2009, 58(3): 1785-1792. doi: 10.7498/aps.58.1785
    [19] Mao Qing-He, Feng Su-Juan, Jiang Jian, Zhu Zong-Jiu, Liu Wen-Qing. Bistability-mapping of L-band dual-wavelength erbium-doped fiber laser based on fiber loop mirror. Acta Physica Sinica, 2007, 56(1): 296-300. doi: 10.7498/aps.56.296
    [20] Chen Jun, Liu Zheng-Dong, You Su-Ping. The hole burning and optical bistability of quasi-Λ-type four-level atom system. Acta Physica Sinica, 2006, 55(12): 6410-6413. doi: 10.7498/aps.55.6410
Metrics
  • Abstract views:  6794
  • PDF Downloads:  144
  • Cited By: 0
Publishing process
  • Received Date:  13 November 2019
  • Accepted Date:  15 April 2020
  • Available Online:  09 May 2020
  • Published Online:  05 July 2020

/

返回文章
返回