Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ultralow switching threshold optical bistable devices based on epsilon-near-zero Ga2O3-SiC-Ag multilayer structures

Hu Sheng-Run Ji Xue-Qiang Wang Jin-Jin Yan Jie-Yun Zhang Tian-Yue Li Pei-Gang

Citation:

Ultralow switching threshold optical bistable devices based on epsilon-near-zero Ga2O3-SiC-Ag multilayer structures

Hu Sheng-Run, Ji Xue-Qiang, Wang Jin-Jin, Yan Jie-Yun, Zhang Tian-Yue, Li Pei-Gang
cstr: 32037.14.aps.73.20231534
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Optical bistability has attracted much attention due to its enormous potential applications in all-optical operation and signal processing. However, the weak nonlinear responses typically require huge pump power to reach the threshold of the optical bistability, thus hindering the real applications. In this study, we propose an efficient optical bistable metamaterial, which is composed of multilayer Ga2O3-SiC-Ag metal-dielectric nanostructures. We not only use the epsilon-near-zero (ENZ) with SiC-Ag thin layers to enhance the substantial field, but also incorporate the SiC material to increase its significant optical nonlinear coefficient. In the structural design, the introduction of Ga2O3 layer facilitates the light field concentration, contributing to the further reduction in threshold power for optical bistability, and also conducing to the improvement of the physical and chemical stability of the device. The influences of the thickness and length of the ENZ layer on the optical bistability are systematically investigated by using the finite element method. The results demonstrate that optical bistability becomes more pronounced with the increase of the thickness and length of ENZ layer, exhibiting a bistability switching threshold as low as ~10–6 W/cm2 in the telecommunication band. Comparing with the previously reported optical bistability based on ENZ mechanism, the threshold shows a significant reduction by 9 orders of magnitude, demonstrating great application potential in the fields of semiconductor devices and photonic integrated circuits.
      Corresponding author: Zhang Tian-Yue, tianyue_zhang@bupt.edu.cn ; Li Pei-Gang, pgli@bupt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51572241), the BUPT Excellent Ph.D. Students Foundation, China (Grant No. CX2023301), and the Fundamental Research Funds for the Central Universities, China (Grant No. 2023RC87).
    [1]

    董丽娟, 薛春华, 孙勇, 邓富胜, 石云龙 2016 物理学报 65 114207Google Scholar

    1] Dong L J, Xue C H, Sun Y, Deng F S, Shi Y L 2016 Acta Phys. Sin. 65 114207Google Scholar

    [2]

    张强, 周胜, 励强华, 王选章, 付淑芳 2012 物理学报 61 157501Google Scholar

    Zhang Q, Zhou S, Li Q H, Wang X Z, Fu S F 2012 Acta Phys. Sin. 61 157501Google Scholar

    [3]

    Bassani F, Liedl G L, Wyder P 2005 Encyclopedia of Condensed Matter Physics (Oxford: Elsevier) pp147–152

    [4]

    Keshtkar P, Miri M, Yasrebi N 2021 Appl. Opt. 60 7234Google Scholar

    [5]

    Hu X Y, Jiang P, Ding C Y, Yang H, Gong Q H 2008 Nat. Photonics 2 185Google Scholar

    [6]

    Liu C W, Liu Y, Du L, Su W J, Wu H, Li Y 2023 Opt. Express 31 9236Google Scholar

    [7]

    Li Y N, Chen Y Y, Wan R G, Yan H W 2019 Phys. Lett. A 383 2248Google Scholar

    [8]

    Nozaki K, Shinya A, Matsuo S, Suzaki Y, Segawa T, Sato T, Kawaguchi Y, Takahashi R, Notomi M 2012 Nat. Photonics 6 248Google Scholar

    [9]

    Carmichael H J 1993 Phys. Rev. Lett. 70 2273Google Scholar

    [10]

    Gibbs H M, McCall S L, Gossard A C, Passner A, Wiegmann W, Venkatesan T N C 1979 Laser Spectroscopy IV (Berlin: Heidelberg) pp441–450

    [11]

    Koenderink A F, Alù A, Polman A 2015 Science 348 516Google Scholar

    [12]

    Powell K, Wang J, Shams-Ansari A, Liao B K, Meng D B, Sinclair N, Li L W, Deng J D, Lončar M, Yi X K 2022 Opt. Express 30 34149Google Scholar

    [13]

    Peng Y X, Xu J, Dong H, Dai X Y, Jiang J, Qian S Y, Jiang L Y 2020 Opt. Express 28 34948Google Scholar

    [14]

    Atorf B, Muehlenbernd H, Zentgraf T, Kitzerow H 2020 Opt. Express 28 8898Google Scholar

    [15]

    Vassant S, Hugonin J-P, Marquier F, Greffet J-J 2012 Opt. Express 20 23971Google Scholar

    [16]

    Hendrickson J R, Vangala S, Dass C, Gibson R, Goldsmith J, Leedy K, Walker Jr D E, Cleary J W, Kim W, Guo J 2018 ACS Photonics 5 776Google Scholar

    [17]

    郭绮琪, 陈溢杭 2021 物理学报 70 187303Google Scholar

    Guo Q Q, Chen Y H 2021 Acta Phys. Sin. 70 187303Google Scholar

    [18]

    Campione S, Brener I, Marquier F 2015 Phys. Rev. B 91 121408Google Scholar

    [19]

    Vassant S, Archambault A, Marquier F, Pardo F, Gennser U, Cavanna A, Pelouard J L, Greffet J J 2012 Phys. Rev. Lett. 109 237401Google Scholar

    [20]

    Kim M, Kim S, Kim S 2019 Sci. Rep. 9 6552Google Scholar

    [21]

    Wang R, Hu F, Meng Y T, Gong M, Liu Q L 2023 Opt. Lett. 48 1371Google Scholar

    [22]

    Xu J, Peng Y X, Jiang J, Qian S Y, Jiang L Y 2023 Opt. Lett. 48 3235Google Scholar

    [23]

    Ding F, Yang Y, Deshpande R A, Bozhevolnyi S I 2018 Nanophotonics 7 1129Google Scholar

    [24]

    Gramotnev D K, Bozhevolnyi S I 2010 Nat. Photonics 4 83Google Scholar

    [25]

    Chen L, Shakya J, Lipson M 2006 Opt. Lett. 31 2133Google Scholar

    [26]

    Sanchis P, Blasco J, Martínez A, Martí J 2007 J. Lightwave Technol. 25 1298Google Scholar

    [27]

    郭道友, 李培刚, 陈政委, 吴真平, 唐为华 2019 物理学报 68 078501Google Scholar

    Guo D Y, Li P G, Chen Z W, Wu Z P, Tang W H 2019 Acta Phys. Sin. 68 078501Google Scholar

    [28]

    Ji X Q, Liu M Y, Yan Z Y, Li S, Liu Z, Qi X H, Yuan J Y, Wang J J, Zhao Y C, Tang W H 2023 IEEE Trans. Electron Devices 70 4236Google Scholar

    [29]

    董典萌, 汪成, 张清怡, 张涛, 杨永涛, 夏翰驰, 王月晖, 吴真平 2023 物理学报 72 097302Google Scholar

    Dong D M, Wang C, Zhang Q Y, Zhang T, Yang Y T, Xia H C, Wang Y H, Wu Z P 2023 Acta Phys. Sin. 72 097302Google Scholar

    [30]

    Wang J J, Ji X Q, Yan Z Y, Yan X, Lu C, Li Z T, Qi S, Li S, Qi X H, Zhang S R 2023 Mater. Sci. Semicond. Process. 159 107372Google Scholar

    [31]

    Ji X Q, Lu C, Yan Z Y, Shan L, Yan X, Wang J J, Yue J Y, Qi X H, Liu Z, Tang W H, Li P G 2022 J. Phys. D: Appl. Phys. 55 443002

    [32]

    Guo B, Zhang Z S, Huo Y Y, Wang S Y, Ning T Y 2023 Chin. Opt. Lett. 21 013602Google Scholar

    [33]

    De Leonardis F, Soref R A, Passaro V M N 2017 Sci. Rep. 7 40924Google Scholar

    [34]

    Borshch A, Brodyn M, Volkov V I, Rudenko V I, Lyakhovetskii V, Semenov V, Puzikov V 2008 JETP Lett. 88 386Google Scholar

    [35]

    Brodyn M, Volkov V, Lyakhovetskii V, Rudenko V, Puzilkov V, Semenov A 2012 J. Exp. Theor. Phys. 114 205Google Scholar

    [36]

    Johnson P B, Christy R W 1972 Phys. Rev. B 6 4370Google Scholar

    [37]

    Larruquert J I, PérezMarín A P, García Cortés S, Rodríguez de Marcos L, Aznárez J A, Méndez J A 2011 JOSA A 28 2340Google Scholar

    [38]

    Silvester P P, Ferrari R L 1996 Finite Elements for Electrical Engineers (Cambridge University Press

    [39]

    Jin J M 2015 The Finite Element Method in Electromagnetics (John Wiley & Sons

    [40]

    Lu J, Thiel D V 2000 IEEE Trans. Magn. 36 1000Google Scholar

    [41]

    Selleri S 2003 IEEE Antennas Propag. Mag. 45 86Google Scholar

    [42]

    Bhaumik I, Bhatt R, Ganesamoorthy S, Saxena A, Karnal A, Gupta P, Sinha A, Deb S 2011 Appl. Opt. 50 6006Google Scholar

    [43]

    Pearton S, Yang J, Cary P H, Ren F, Kim J, Tadjer M J, Mastro M A 2018 Appl. Phys. Rev. 5 011301Google Scholar

    [44]

    Gosciniak J, Hu Z, Thomaschewski M, Sorger V J, Khurgin J B 2023 Laser Photonics Rev. 17 2200723Google Scholar

  • 图 1  (a) 基于ENZ材料(Ga2O3-SiC-Ag)的光学双稳态的工作原理图; (b) 多层光学双稳态器件的几何特性图

    Figure 1.  (a) The working principle diagram of an optical bistable based on ENZ material (Ga2O3-SiC-Ag); (b) the proposed multi-layered optical bistable device’s geometric characteristics.

    图 2  (a) 正负介电常数的光学相图; (b) Ag填充分数为0.1的多层结构平行介电常数$ {\varepsilon }_{//} $的实部和虚部

    Figure 2.  (a) Optical phase diagram of the positive and negative permittivities; (b) real and imaginary parts of the parallel ($ {\varepsilon }_{//} $) permittivities for the multilayer structure with a Ag fraction of 0.1.

    图 3  电场在器件中的空间分布 (a) 普通模式(1550 nm); (b) ENZ模式(1350 nm). Y方向电场振幅分布 (c) 普通模式(1550 nm); (d) ENZ模式(1350 nm)

    Figure 3.  The spatial distribution of the electric field in the device: (a) Normal mode (1550 nm); (b) ENZ mode (1350 nm). The amplitude distribution of the electric field in the Y direction: (c) Normal mode (1550 nm); (d) ENZ mode (1350 nm).

    图 4  ENZ层厚H为10 nm时, 不同SiC-Ag层的对数下基于ENZ模式的光学双稳态曲线 (a) 40组; (b) 60组; (c) 80组

    Figure 4.  When the ENZ layer thickness H is 10 nm, optical bistable curves are obtained for varying quantities of SiC-Ag pairs: (a) 40 pairs; (b) 60 pairs; (c) 80 pairs.

    图 5  电场在器件中的空间分布 (a) 普通模式(1700 nm); (b) ENZ模式 (1400 nm). Y方向电场振幅分布 (c) 普通模式(1700 nm); (d) ENZ模式(1400 nm)

    Figure 5.  The spatial distribution of the electric field in the device: (a) Normal mode (1700 nm); (b) ENZ mode (1400 nm). The amplitude distribution of the electric field in the Y direction: (c) Normal mode (1700 nm); (d) ENZ mode (1400 nm).

    图 6  ENZ层厚H为20 nm时, 不同SiC-Ag层的对数下基于ENZ模式的光学双稳态曲线 (a) 40组; (b) 60组; (c) 80组

    Figure 6.  When the thickness H of the ENZ layer is 20 nm, optical bistable curves are obtained for varying quantities of SiC-Ag pairs: (a) 40 pairs; (b) 60 pairs; (c) 80 pairs.

  • [1]

    董丽娟, 薛春华, 孙勇, 邓富胜, 石云龙 2016 物理学报 65 114207Google Scholar

    1] Dong L J, Xue C H, Sun Y, Deng F S, Shi Y L 2016 Acta Phys. Sin. 65 114207Google Scholar

    [2]

    张强, 周胜, 励强华, 王选章, 付淑芳 2012 物理学报 61 157501Google Scholar

    Zhang Q, Zhou S, Li Q H, Wang X Z, Fu S F 2012 Acta Phys. Sin. 61 157501Google Scholar

    [3]

    Bassani F, Liedl G L, Wyder P 2005 Encyclopedia of Condensed Matter Physics (Oxford: Elsevier) pp147–152

    [4]

    Keshtkar P, Miri M, Yasrebi N 2021 Appl. Opt. 60 7234Google Scholar

    [5]

    Hu X Y, Jiang P, Ding C Y, Yang H, Gong Q H 2008 Nat. Photonics 2 185Google Scholar

    [6]

    Liu C W, Liu Y, Du L, Su W J, Wu H, Li Y 2023 Opt. Express 31 9236Google Scholar

    [7]

    Li Y N, Chen Y Y, Wan R G, Yan H W 2019 Phys. Lett. A 383 2248Google Scholar

    [8]

    Nozaki K, Shinya A, Matsuo S, Suzaki Y, Segawa T, Sato T, Kawaguchi Y, Takahashi R, Notomi M 2012 Nat. Photonics 6 248Google Scholar

    [9]

    Carmichael H J 1993 Phys. Rev. Lett. 70 2273Google Scholar

    [10]

    Gibbs H M, McCall S L, Gossard A C, Passner A, Wiegmann W, Venkatesan T N C 1979 Laser Spectroscopy IV (Berlin: Heidelberg) pp441–450

    [11]

    Koenderink A F, Alù A, Polman A 2015 Science 348 516Google Scholar

    [12]

    Powell K, Wang J, Shams-Ansari A, Liao B K, Meng D B, Sinclair N, Li L W, Deng J D, Lončar M, Yi X K 2022 Opt. Express 30 34149Google Scholar

    [13]

    Peng Y X, Xu J, Dong H, Dai X Y, Jiang J, Qian S Y, Jiang L Y 2020 Opt. Express 28 34948Google Scholar

    [14]

    Atorf B, Muehlenbernd H, Zentgraf T, Kitzerow H 2020 Opt. Express 28 8898Google Scholar

    [15]

    Vassant S, Hugonin J-P, Marquier F, Greffet J-J 2012 Opt. Express 20 23971Google Scholar

    [16]

    Hendrickson J R, Vangala S, Dass C, Gibson R, Goldsmith J, Leedy K, Walker Jr D E, Cleary J W, Kim W, Guo J 2018 ACS Photonics 5 776Google Scholar

    [17]

    郭绮琪, 陈溢杭 2021 物理学报 70 187303Google Scholar

    Guo Q Q, Chen Y H 2021 Acta Phys. Sin. 70 187303Google Scholar

    [18]

    Campione S, Brener I, Marquier F 2015 Phys. Rev. B 91 121408Google Scholar

    [19]

    Vassant S, Archambault A, Marquier F, Pardo F, Gennser U, Cavanna A, Pelouard J L, Greffet J J 2012 Phys. Rev. Lett. 109 237401Google Scholar

    [20]

    Kim M, Kim S, Kim S 2019 Sci. Rep. 9 6552Google Scholar

    [21]

    Wang R, Hu F, Meng Y T, Gong M, Liu Q L 2023 Opt. Lett. 48 1371Google Scholar

    [22]

    Xu J, Peng Y X, Jiang J, Qian S Y, Jiang L Y 2023 Opt. Lett. 48 3235Google Scholar

    [23]

    Ding F, Yang Y, Deshpande R A, Bozhevolnyi S I 2018 Nanophotonics 7 1129Google Scholar

    [24]

    Gramotnev D K, Bozhevolnyi S I 2010 Nat. Photonics 4 83Google Scholar

    [25]

    Chen L, Shakya J, Lipson M 2006 Opt. Lett. 31 2133Google Scholar

    [26]

    Sanchis P, Blasco J, Martínez A, Martí J 2007 J. Lightwave Technol. 25 1298Google Scholar

    [27]

    郭道友, 李培刚, 陈政委, 吴真平, 唐为华 2019 物理学报 68 078501Google Scholar

    Guo D Y, Li P G, Chen Z W, Wu Z P, Tang W H 2019 Acta Phys. Sin. 68 078501Google Scholar

    [28]

    Ji X Q, Liu M Y, Yan Z Y, Li S, Liu Z, Qi X H, Yuan J Y, Wang J J, Zhao Y C, Tang W H 2023 IEEE Trans. Electron Devices 70 4236Google Scholar

    [29]

    董典萌, 汪成, 张清怡, 张涛, 杨永涛, 夏翰驰, 王月晖, 吴真平 2023 物理学报 72 097302Google Scholar

    Dong D M, Wang C, Zhang Q Y, Zhang T, Yang Y T, Xia H C, Wang Y H, Wu Z P 2023 Acta Phys. Sin. 72 097302Google Scholar

    [30]

    Wang J J, Ji X Q, Yan Z Y, Yan X, Lu C, Li Z T, Qi S, Li S, Qi X H, Zhang S R 2023 Mater. Sci. Semicond. Process. 159 107372Google Scholar

    [31]

    Ji X Q, Lu C, Yan Z Y, Shan L, Yan X, Wang J J, Yue J Y, Qi X H, Liu Z, Tang W H, Li P G 2022 J. Phys. D: Appl. Phys. 55 443002

    [32]

    Guo B, Zhang Z S, Huo Y Y, Wang S Y, Ning T Y 2023 Chin. Opt. Lett. 21 013602Google Scholar

    [33]

    De Leonardis F, Soref R A, Passaro V M N 2017 Sci. Rep. 7 40924Google Scholar

    [34]

    Borshch A, Brodyn M, Volkov V I, Rudenko V I, Lyakhovetskii V, Semenov V, Puzikov V 2008 JETP Lett. 88 386Google Scholar

    [35]

    Brodyn M, Volkov V, Lyakhovetskii V, Rudenko V, Puzilkov V, Semenov A 2012 J. Exp. Theor. Phys. 114 205Google Scholar

    [36]

    Johnson P B, Christy R W 1972 Phys. Rev. B 6 4370Google Scholar

    [37]

    Larruquert J I, PérezMarín A P, García Cortés S, Rodríguez de Marcos L, Aznárez J A, Méndez J A 2011 JOSA A 28 2340Google Scholar

    [38]

    Silvester P P, Ferrari R L 1996 Finite Elements for Electrical Engineers (Cambridge University Press

    [39]

    Jin J M 2015 The Finite Element Method in Electromagnetics (John Wiley & Sons

    [40]

    Lu J, Thiel D V 2000 IEEE Trans. Magn. 36 1000Google Scholar

    [41]

    Selleri S 2003 IEEE Antennas Propag. Mag. 45 86Google Scholar

    [42]

    Bhaumik I, Bhatt R, Ganesamoorthy S, Saxena A, Karnal A, Gupta P, Sinha A, Deb S 2011 Appl. Opt. 50 6006Google Scholar

    [43]

    Pearton S, Yang J, Cary P H, Ren F, Kim J, Tadjer M J, Mastro M A 2018 Appl. Phys. Rev. 5 011301Google Scholar

    [44]

    Gosciniak J, Hu Z, Thomaschewski M, Sorger V J, Khurgin J B 2023 Laser Photonics Rev. 17 2200723Google Scholar

  • [1] MA Huifang, YAN Yingce, ZHOU Zhili, XIA Huarong, GAO Feng. Tunable magnon and optical bistability in a cavity optomagnomechanical system. Acta Physica Sinica, 2025, 74(17): 174203. doi: 10.7498/aps.74.20250549
    [2] Li Yun-Heng, Yu Ke, Zhu Tian-Yu, Yu Tong, Shan Si-Chao, Gu Ya-Zhou, Li Zhi-Tong. Optical bistability in topological layered structure and its application in photonic neural network. Acta Physica Sinica, 2024, 73(16): 164208. doi: 10.7498/aps.73.20240569
    [3] Li Hai-Peng, Zhou Jia-Sheng, Ji Wei, Yang Zi-Qiang, Ding Hui-Min, Zhang Zi-Tao, Shen Xiao-Peng, Han Kui. Effect of edge on nonlinear optical property of graphene quantum dots. Acta Physica Sinica, 2021, 70(5): 057801. doi: 10.7498/aps.70.20201643
    [4] Guo Qi-Qi, Chen Yi-Hang. Enhanced nonlinear optical effects based on strong coupling between epsilon-near-zero mode and gap surface plasmons. Acta Physica Sinica, 2021, 70(18): 187303. doi: 10.7498/aps.70.20210290
    [5] Zeng Zhou-Xiao-Song, Wang Xiao, Pan An-Lian. Second harmonic generation of two-dimensional layered materials: characterization, signal modulation and enhancement. Acta Physica Sinica, 2020, 69(18): 184210. doi: 10.7498/aps.69.20200452
    [6] Xu Xin, Jin Xue-Ying, Hu Xiao-Hong, Huang Xin-Ning. Spatiotemporal evolution and spectral character of second harmonic generation in optical microresonator. Acta Physica Sinica, 2020, 69(2): 024203. doi: 10.7498/aps.69.20191294
    [7] Chen Hua-Jun. Nonlinear optical effect and nonlinear optical mass sensor based on graphene optomechanical system. Acta Physica Sinica, 2020, 69(13): 134203. doi: 10.7498/aps.69.20191745
    [8] Bai Rui-Xue, Yang Jue-Han, Wei Da-Hai, Wei Zhong-Ming. Research progress of low-dimensional semiconductor materials in field of nonlinear optics. Acta Physica Sinica, 2020, 69(18): 184211. doi: 10.7498/aps.69.20200206
    [9] Deng Jun-Hong, Li Gui-Xin. Nonlinear photonic metasurfaces. Acta Physica Sinica, 2017, 66(14): 147803. doi: 10.7498/aps.66.147803
    [10] Dong Li-Juan, Xue Chun-Hua, Sun Yong, Deng Fu-Sheng, Shi Yun-Long. Loss-induced localized field enhancement and optical bistable state in heterostructure containing single-negative materials. Acta Physica Sinica, 2016, 65(11): 114207. doi: 10.7498/aps.65.114207
    [11] Chen Wei-Jun, Lu Ke-Qing, Hui Juan-Li, Wang Chun-Xiang, Yu Hui-Min, Hu Kai. Study on nonlinear surface waves along the boundary of LiNbO3 crystals. Acta Physica Sinica, 2015, 64(1): 014204. doi: 10.7498/aps.64.014204
    [12] Lu Jing-Jing, Feng Miao, Zhan Hong-Bing. Preparation of graghene oxide/chitosan composite films and investigations on their nonlinear optical limiting effect. Acta Physica Sinica, 2013, 62(1): 014204. doi: 10.7498/aps.62.014204
    [13] Yang Jin-Jin, Li Hui-Jun, Wen Wen, Huang Guo-Xiang. Optical bistability via active Raman gain in an n-type atomic medium. Acta Physica Sinica, 2012, 61(22): 224204. doi: 10.7498/aps.61.224204
    [14] Liu Jun-Hai, Wan Yong, Han Wen-Juan, Yang Hong-Wei, Zhang Huai-Jin, Wang Ji-Yang, Petrov Valentin. Study on the optical bistability in the laser oscillation of Yb doped vanadate crystals. Acta Physica Sinica, 2010, 59(1): 293-299. doi: 10.7498/aps.59.293
    [15] Mao Qing-He, Feng Su-Juan, Jiang Jian, Zhu Zong-Jiu, Liu Wen-Qing. Bistability-mapping of L-band dual-wavelength erbium-doped fiber laser based on fiber loop mirror. Acta Physica Sinica, 2007, 56(1): 296-300. doi: 10.7498/aps.56.296
    [16] Huang Xiao-Ming, Tao Li-Min, Guo Ya-Hui, Gao Yun, Wang Chuan-Kui. Theoretical studies of nonlinear optical properties of a novel double-conjugated-segment molecule. Acta Physica Sinica, 2007, 56(5): 2570-2576. doi: 10.7498/aps.56.2570
    [17] Yang Guang, Chen Zheng-Hao. Large optical nonlinearities in Ag-doped BaTiO3 nanocomposite films. Acta Physica Sinica, 2007, 56(2): 1182-1187. doi: 10.7498/aps.56.1182
    [18] Liang Xiao-Rui, Zhao Bo, Zhou Zhi-Hua. Ab initio study on the second-order nonlinear optical properties of some coumarin derivatives. Acta Physica Sinica, 2006, 55(2): 723-728. doi: 10.7498/aps.55.723
    [19] Chen Jun, Liu Zheng-Dong, You Su-Ping. The hole burning and optical bistability of quasi-Λ-type four-level atom system. Acta Physica Sinica, 2006, 55(12): 6410-6413. doi: 10.7498/aps.55.6410
    [20] Zhang Ming-Xin, Wu Ke-Chen, Liu Cai-Ping, Wei Yong-Qin. Computational study on the exchange-correlation function in density functional theory and optical nonlinearity of transition-metal complexes. Acta Physica Sinica, 2005, 54(4): 1762-1770. doi: 10.7498/aps.54.1762
Metrics
  • Abstract views:  3798
  • PDF Downloads:  69
  • Cited By: 0
Publishing process
  • Received Date:  20 September 2023
  • Accepted Date:  25 October 2023
  • Available Online:  08 December 2023
  • Published Online:  05 March 2024
  • /

    返回文章
    返回