Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Study of tunable magnon and optical bistability in a cavity optomagnomechanical system

MA Huifang YAN Yingce ZHOU Zhili XIA Huarong GAO Feng

Citation:

Study of tunable magnon and optical bistability in a cavity optomagnomechanical system

MA Huifang, YAN Yingce, ZHOU Zhili, XIA Huarong, GAO Feng
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • This study establishes a theoretical framework for realizing and dynamically controlling magnon and optical bistability in a hybrid cavity optomagnomechanical system composed of microwave cavity mode, magnon mode, phonon mode, and optical cavity mode. The objective is to investigate the synergistic interplay among self-Kerr nonlinearity, magnetostrictive effect, and radiation pressure induced optomechanical coupling in generating and modulating bistable behavior. Furthermore, this work aims to reveal the transient quantum state transition dynamics between bistable states. The system Hamiltonian incorporates magnetic dipole interaction between the magnon mode and microwave cavity mode, magnomechanical interaction between the magnon mode and phonon mode, and optomechanical interaction between the phonon mode and optical cavity mode. In addition, the self-Kerr nonlinearity of the magnon mode is considered. Numerical analysis of the system dynamics is conducted using quantum Langevin equations that include dissipation and input noise terms. Steady-state analytical solutions for the average magnon number and optical photon number are derived, revealing a bistable characteristic with three possible solutions. Numerical simulations are performed using experimentally feasible parameters, including coupling strengths, frequency detunings, and dissipation rates. Results indicate that both magnon and optical bistabilities are tunable. Specifically, adjusting the microwave cavity–magnon coupling efficiency enables modulation of the energy transfer efficiency from microwave to magnon, thereby altering the hysteresis window and excitation threshold of the magnon bistability. Tuning the magnon-phonon interaction can influence the energy transfer from magnon to phonon. A larger magnon-pump detuning enhances nonlinear frequency shifts, alters energy transfer pathways, broadens the hysteresis loop, and increases the magnon population on the upper branch of the bistable curve. Higher magnon dissipation rate hinder the accumulation of nonlinear effect, narrowing the bistability window and shifting the threshold to higher pump powers. For optical bistability, stronger optomechanical interaction reduce the effective cavity loss and weaken the nonlinear response to the pump field, leading to a decrease in the amplitude of bistability and a narrowing of the hysteresis loop. Increasing the optical cavity–pump detuning suppresses energy transfer efficiency, necessitating higher pump power to achieve the same photon number, thereby enhancing the prominence of the bistability. Elevating the optical cavity dissipation rate requires stronger driving to compensate for photon losses, resulting in a narrower hysteresis loop and a rightward shift of the threshold. Sharp vertical jumps observed in the bistability curves correspond to instantaneous transitions at critical driving points, enabling switch-like behavior. Moreover, transient dynamics obtained by numerically solving the Langevin equations reveal time evolution of magnon and photon numbers under nonequilibrium initial conditions. Within the bistability regime, the system exhibits quantum state transitions between low and high steady states. Transition rates are determined collectively by system parameters. Therefore, this study provides a theoretical platform for multi-parameter cooperative control of magnon and optical bistability. The tunability mechanisms are governed by the joint action of coupling strength, detuning, and dissipation rate. The controllability of bistability thresholds, hysteresis widths, and transient quantum state transition dynamics demonstrated in this work highlights the significant potential for applications such as tunable optical switches, quantum information processing devices, and fundamental studies of nonlinear quantum dynamics in hybrid system.
  • [1]

    Abraham E, Smith S D 1982Rep. Prog. Phys. 45 815

    [2]

    Gibbs H M, McCall S L, Venkatesan T N C 1976Phys. Rev. Lett. 36 1135

    [3]

    Chen Y Y, Li Y N, Wan R G 2018J. Opt. Soc. Am. B 35 1240

    [4]

    Kubytskyi V, Biehs S A, Ben-Abdallah P 2014Phys. Rev. Lett. 113074301

    [5]

    Anton M A, Calderón O G, Melle S, Gonzalo I, Carreno F 2006Opt. Commun. 268 146

    [6]

    Chen S W, Zeng Y X, Li Z F, Mao Y, Dai X Y, Xiang Y J 2023Nanophotonics 12 3613

    [7]

    Sete E A, Eleuch H 2012Phys. Rev. A 85 043824

    [8]

    Wang Z P, Zhen S L, Yu B L 2015 Laser Phys. Lett. 12 046004

    [9]

    Yan D, Wang Z H, Ren C N, Gao H, Li Y, Wu J H 2015Phys. Rev. A 91 023813

    [10]

    Wang Y P, Zhang G Q, Zhang D, Li T F, Hu C M, You J Q 2018Phys. Rev. Lett. 120 057202

    [11]

    Yang Z B, Jin H, Jin J W, Liu J Y, Liu H Y, Yang R C 2021Phys. Rev. Research 3 023126

    [12]

    Wang Y P, Zhang G Q, Zhang D, Luo X Q, Xiong W, Wang S P, Li T F, Hu C M, You J Q 2016Phys. Rev. B 94 224410

    [13]

    Chen Z C, Kong D Y, Wang F 2024Results Phys. 61 107762

    [14]

    Shen R C, Li J, Fan Z Y, Wang Y P, You J Q 2022 Phys. Rev. Lett. 129123601

    [15]

    Wang Q, Verba R, Davídková K, Heinz B, Tian S X, Rao Y H, Guo M Y, Guo X Y, Dubs C, Pirro P, Chumak A V 2024Nat. Commun. 15 7577

    [16]

    Shen R C, Wang Y P, Li J, Zhu S Y, Agarwal G S, You J Q 2021Phys. Rev. Lett. 127 183202

    [17]

    Kuo D M T, Chang Y C 2009Jpn. J. Appl. Phys. 48 104504

    [18]

    Zhang G Q, Wang Y P, You J Q 2019Sci. China Phys. Mech. Astron. 62 1

    [19]

    Li J, Zhu S Y, Agarwal G S 2018Phys. Rev. Lett. 121203601

    [20]

    Soykal Ö O, Flatté M E 2010Phys. Rev. Lett. 104077202

    [21]

    Zhang X, Zou C L, Jiang L, Tang H X 2016Sci. Adv. 2 e1501286

    [22]

    Fan Z Y, Qian H, Zuo X, Li J 2023Phys. Rev. A 108 023501

    [23]

    Martinis J M, Nam S, Aumentado J, Urbina C 2002Phys. Rev. Lett. 89117901

    [24]

    Fan Z Y, Shen R C, Wang Y P, Li J, You J Q 2022 Phys. Rev. A 105 033507

    [25]

    Huebl H, Zollitsch C W, Lotze J, Hocke F, Greifenstein M, Marx A, Gross R, Goennenwein S T B 2013Phys. Rev. Lett. 111 127003

    [26]

    Zuo X, Fan Z Y, Qian H, Ding M S, Tan H, Xiong H, Li J 2024New J. Phys. 26031201

    [27]

    Fan Z Y, Qian H, Li J 2022Quantum Sci. Technol. 8 015014

    [28]

    Fan Z Y, Qiu L, Gröblacher S, Li J 2023Laser Photonics Rev. 17 2200866

    [29]

    Engelhardt F, Bittencourt V A, Huebl H, Klein O, Kusminskiy S V 2022Phys. Rev. Appl. 18 044059

    [30]

    Di K, Tan S, Wang L Y, Cheng A Y, Wang X, Liu Y, Du J J 2023Opt. Express 3129491

    [31]

    Di K, Wang X, Xia H R, Zhao Y X, Liu Y, Cheng A Y, Du J J 2024Opt. Lett. 492878

    [32]

    Yu M, Zhu S Y, Li J 2020 J. Phys. B: At. Mol. Opt. Phys. 53 065402

    [33]

    Chen J, Fan X G, Xiong W, Wang D, Ye L 2024Phys. Rev. A 109 043512

    [34]

    Bi M X, Yan X H, Xiao Y, Dai C J 2020J. Appl. Phys. 127084501

    [35]

    Rameshti B Z, Kusminskiy S V, Haigh J A, Usami K, Lachance-Quirion D, Nakamura Y, Hu C M, Tang H X, Bauer G E W, Blanter Y M 2022Phys. Rep. 979 1

    [36]

    Wu Q, Hu Y H, Ma P C 2017 Int. J. Theor. Phys. 561635

    [37]

    Barbhuiya S A, Bhattacherjee A B 2022J. Appl. Phys. 132184401

    [38]

    Yeasmin, S, Yadav S, Bhattacherjee A B, Banerjee S 2021J. Mod. Opt. 68975

    [39]

    Kumar - Singh M, Mahajan S, Bhatt V, Yadav S, Jha P K, Bhattacherjee A B 2024 J. Appl. Phys. 136

    [40]

    Zhang G Q, Chen Z, Xiong W, Lam C H, You J Q 2021 Phys. Rev. B 104 064423

    [41]

    Wu W J, Xu D, Qian J, Li J, Wang Y P, You J Q 2022Chin. Phys. B 31 127503

    [42]

    Zhang G J, Wang Y P 2020Acta Phys. Sin. 694

    [43]

    Gröblacher S, Hammerer K, Vanner M R, Aspelmeyer M 2009Nature 460724

    [44]

    Weis S, Rivière R, Deléglise S, Gavartin E, Arcizet O, Schliesser A, Kippenberg T J 2010 Science 3301520

  • [1] SHE Yanchao, XU Mingqi, FENG Wenya, LIU Jiaqi, YANG Hong. Magneton bistability in quantum dot-double cavity optomechanical coupling system. Acta Physica Sinica, doi: 10.7498/aps.74.20250172
    [2] Hu Sheng-Run, Ji Xue-Qiang, Wang Jin-Jin, Yan Jie-Yun, Zhang Tian-Yue, Li Pei-Gang. Ultralow switching threshold optical bistable devices based on epsilon-near-zero Ga2O3-SiC-Ag multilayer structures. Acta Physica Sinica, doi: 10.7498/aps.73.20231534
    [3] Li Yun-Heng, Yu Ke, Zhu Tian-Yu, Yu Tong, Shan Si-Chao, Gu Ya-Zhou, Li Zhi-Tong. Optical bistability in topological layered structure and its application in photonic neural network. Acta Physica Sinica, doi: 10.7498/aps.73.20240569
    [4] Chen Hua-Jun. Nonlinear optical effect and nonlinear optical mass sensor based on graphene optomechanical system. Acta Physica Sinica, doi: 10.7498/aps.69.20191745
    [5] Dong Li-Juan, Xue Chun-Hua, Sun Yong, Deng Fu-Sheng, Shi Yun-Long. Loss-induced localized field enhancement and optical bistable state in heterostructure containing single-negative materials. Acta Physica Sinica, doi: 10.7498/aps.65.114207
    [6] Wang Li-Ming, Wu Feng. Synchronization, antisynchronization and amplitude death in coupled fractional order bistable oscillators. Acta Physica Sinica, doi: 10.7498/aps.62.210504
    [7] Zhang Qiang, Zhou Sheng, Li Qiang-Hua, Wang Xuan-Zhang, Fu Shu-Fang. Optical Bi-stability in one-dimensional antiferromagnetic photonic crystal. Acta Physica Sinica, doi: 10.7498/aps.61.157501
    [8] Yang Jin-Jin, Li Hui-Jun, Wen Wen, Huang Guo-Xiang. Optical bistability via active Raman gain in an n-type atomic medium. Acta Physica Sinica, doi: 10.7498/aps.61.224204
    [9] Liu Jun-Hai, Wan Yong, Han Wen-Juan, Yang Hong-Wei, Zhang Huai-Jin, Wang Ji-Yang, Petrov Valentin. Study on the optical bistability in the laser oscillation of Yb doped vanadate crystals. Acta Physica Sinica, doi: 10.7498/aps.59.293
    [10] Chen Ai-Xi, Chen De-Hai, Wang Zhi-Ping. Optical bistability and multistability in ladder-type four-level atomic coherence medium. Acta Physica Sinica, doi: 10.7498/aps.58.5450
    [11] Niu Yong-Di, Ma Wen-Qiang, Wang Rong. Chaos control and synchronization in electrical-optical bistable systems. Acta Physica Sinica, doi: 10.7498/aps.58.2934
    [12] Mao Qing-He, Feng Su-Juan, Jiang Jian, Zhu Zong-Jiu, Liu Wen-Qing. Bistability-mapping of L-band dual-wavelength erbium-doped fiber laser based on fiber loop mirror. Acta Physica Sinica, doi: 10.7498/aps.56.296
    [13] Chen Jun, Liu Zheng-Dong, You Su-Ping. The hole burning and optical bistability of quasi-Λ-type four-level atom system. Acta Physica Sinica, doi: 10.7498/aps.55.6410
    [14] WANG HUI, LAN WEN-GUANG, LIN WEI-ZHU, MO DANG. MIRRORLESS OPTICAL BISTABILITY DUE TO PHOTOINDUCED EXCITON BLEACHING OF POLYMERS. Acta Physica Sinica, doi: 10.7498/aps.46.1493
    [15] YANG YUAN, DAI JIAN-HUA, ZHANG HONG-JUN. THE DYNAMICAL BEHAVIOR OF A DISCRETE MODEL OF OPTICAL BISTABLE SYSTEM. Acta Physica Sinica, doi: 10.7498/aps.43.699
    [16] WANG YING-HAI, HU CHENG-SHENG, WANG ZHI-CHENG. TEMPORAL ASPECTS OF ABSORPTIVE TWO-PHOTON OPTICAL BISTABILITY. Acta Physica Sinica, doi: 10.7498/aps.41.1598
    [17] WANG PENG-YE, ZHANG HONG-JUN, DAI JIAN-HUA. CRITICAL PHENOMENA IN OPTICAL BISTABILITY AND CHAOS. Acta Physica Sinica, doi: 10.7498/aps.34.1233
    [18] DAI JIAN-HUA, ZHANG HONG-JUN, WANG PENG-YE, JIN CHAO-DING. BIFURCATION DIAGRAMS IN LIQUID CRYSTAL HYBRID OPTICAL B1STABILITY. Acta Physica Sinica, doi: 10.7498/aps.34.992
    [19] CHENG RUI-HUA, LUAN SHAO-JIN, SHEN HONG-WEI, TAN WEI-HAN. OPTICAL BISTABILITY OF InSb. Acta Physica Sinica, doi: 10.7498/aps.34.1212
    [20] ZHU SHI-YAO. STUDY OF TWO-PHOTON OPTICAL BISTABILITY. Acta Physica Sinica, doi: 10.7498/aps.33.16
Metrics
  • Abstract views:  30
  • PDF Downloads:  2
  • Cited By: 0
Publishing process
  • Available Online:  16 July 2025
  • /

    返回文章
    返回