- 
				Two-mode entangled state is an important quantum resource for quantum information. In this paper, the amplification of a single mode of two-mode entangled state (single-mode amplification scheme) and two modes of two-mode entangled state (two-mode amplification scheme) are theoretically proposed. Here, the optical beam splitter model is used to simulate the vacuum noise introduced by the loss in the optical transmission process. By utilizing the positivity under partial transpose criterion, we analyze the effect of the gain of the four-wave mixing process on the entanglement degree of the initial two-mode entangled state in two different amplification schemes. In these two schemes, we set the gain of the initial two-mode entangled state generation process to be 1.5, 2.5 and 50.0 respectively, and then change the gain of the amplification process in a certain range. We also set the transmission efficiency of the amplified beams for each of the two schemes to be a definite value. The results show that the entanglement of the initial two-mode entangled state decreases with the gain increasing under the condition of specific transmission loss in two schemes. When the gain does not exceed a certain value, the entanglement of the initial two-mode entangled state can be maintained. Then, with the increase of the gain, the entanglement of the initial two-mode entangled state will disappear. Moreover, the entanglement of the initial two-mode entangled state of the two-mode amplification scheme disappears faster than that of the single-mode amplification scheme. Our theoretical results pave the way for the experimental realization of the amplification of two-mode entangled state based on four-wave mixing process.- 
										Keywords:
										
- four-wave mixing /
- quantum entanglement /
- two-mode entangled state /
- optical parametric amplifier
 [1] Horodecki R, Horodecki P, Horodecki M, Horodecki K 2009 Rev. Mod. Phys. 81 865  Google Scholar Google Scholar[2] Braunstein S L, Look P van 2005 Rev. Mod. Phys. 77 513  Google Scholar Google Scholar[3] Weedbrook C, Pirandola S, García-Patrón R, Cerf N J, Ralph T C, Shapiro J H, Lloyd S 2012 Rev. Mod. Phys. 84 621  Google Scholar Google Scholar[4] Ekert A K 1991 Phys. Rev. Lett. 67 661  Google Scholar Google Scholar[5] Ralph T C 1999 Phys. Rev. A 61 010303  Google Scholar Google Scholar[6] Naik D S, Peterson C G, White A G, Berglund A J, Kwiat P G 2000 Phys. Rev. Lett. 84 4733  Google Scholar Google Scholar[7] Bennett C H, Wiesner S J 1992 Phys. Rev. Lett. 69 2881  Google Scholar Google Scholar[8] Zhang J, Peng K C 2000 Phys. Rev. A 62 064302  Google Scholar Google Scholar[9] Heaney L, Vedral V 2009 Phys. Rev. Lett. 103 200502  Google Scholar Google Scholar[10] Ou Z Y, Pereira S F, Kimble H J, Peng K C 1992 Phys. Rev. Lett. 68 3663  Google Scholar Google Scholar[11] Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H, Zeilinger A 1997 Nature 390 575  Google Scholar Google Scholar[12] Furusawa A, Sørensen J L, Braunstein S L, Fuchs C A, Kimble H J, Polzik E S 1998 Science 282 706  Google Scholar Google Scholar[13] Li X Y, Pan Q, Jing J T, Zhang J, Xie C D, Peng K C 2002 Phys. Rev. Lett. 88 047904  Google Scholar Google Scholar[14] McCormick C F, Boyer V, Arimondo E, Lett P D 2007 Opt. Lett. 32 178  Google Scholar Google Scholar[15] Boyer V, Marino A M, Pooser R C, Lett P D 2008 Science 321 544  Google Scholar Google Scholar[16] Boyer V, Marino A M, Lett P D 2008 Phys. Rev. Lett. 100 143601  Google Scholar Google Scholar[17] Kumar P, Kolobov M I 1994 Opt. Commun. 104 374  Google Scholar Google Scholar[18] Qin Z Z, Jing J T, Zhou J, Liu C J, Pooser R C, Zhou Z F, Zhang W P 2012 Opt. Lett. 37 3141  Google Scholar Google Scholar[19] McCormick C F, Marino A M, Boyer V, Lett P D 2008 Phys. Rev. A 78 043816  Google Scholar Google Scholar[20] MacRae A, Brannan T, Achal R, Lvovsky A I 2012 Phys. Rev. Lett. 109 033601  Google Scholar Google Scholar[21] Pooser R C, Lawrie B 2015 Optica 2 393  Google Scholar Google Scholar[22] Marino A M, Trejo N V C, Lett P D 2012 Phys. Rev. A 86 023844  Google Scholar Google Scholar[23] Li T, Anderson B E, Horrom T, Jones K M, Lett P D 2016 Opt. Express 24 19871  Google Scholar Google Scholar[24] Marino A M, Pooser R C, Boyer V, Lett P D 2009 Nature 457 859  Google Scholar Google Scholar[25] Fan W J, Lawrie B J, Pooser R C 2015 Phys. Rev. A 92 053812  Google Scholar Google Scholar[26] Li Z P, Wang X L, Li C Y, Zhang Y F, Wen F, Ahmed I, Zhang Y P 2016 Laser Phys. Lett. 13 025402  Google Scholar Google Scholar[27] Abdisa G, Ahmed I, Wang X X, Liu Z C, Wang H X, Zhang Y P 2016 Phys. Rev. A 94 023849  Google Scholar Google Scholar[28] Li C B, Jiang Z H, Zhang Y Q, Zhang Z Y, Wen F, Chen H X, Zhang Y P, Xiao M 2017 Phys. Rev. Appl. 7 014023  Google Scholar Google Scholar[29] Li C B, Li W, Zhang D, Zhang Z Y, Gu B L, Li K K, Zhang Y P 2019 Laser Phys. Lett. 17 015401  Google Scholar Google Scholar[30] Pooser R C, Marino A M, Boyer V, Jones K M, Lett P D 2009 Phys. Rev. Lett. 103 010501  Google Scholar Google Scholar[31] Werner R F, Wolf M M 2001 Phys. Rev. Lett. 86 3658  Google Scholar Google Scholar[32] Simon R 2000 Phys. Rev. Lett. 84 2726  Google Scholar Google Scholar[33] Jasperse M, Turner L D, Scholten R E 2011 Opt. Express 19 3765  Google Scholar Google Scholar
- 
				
    
    
- 
				
[1] Horodecki R, Horodecki P, Horodecki M, Horodecki K 2009 Rev. Mod. Phys. 81 865  Google Scholar Google Scholar[2] Braunstein S L, Look P van 2005 Rev. Mod. Phys. 77 513  Google Scholar Google Scholar[3] Weedbrook C, Pirandola S, García-Patrón R, Cerf N J, Ralph T C, Shapiro J H, Lloyd S 2012 Rev. Mod. Phys. 84 621  Google Scholar Google Scholar[4] Ekert A K 1991 Phys. Rev. Lett. 67 661  Google Scholar Google Scholar[5] Ralph T C 1999 Phys. Rev. A 61 010303  Google Scholar Google Scholar[6] Naik D S, Peterson C G, White A G, Berglund A J, Kwiat P G 2000 Phys. Rev. Lett. 84 4733  Google Scholar Google Scholar[7] Bennett C H, Wiesner S J 1992 Phys. Rev. Lett. 69 2881  Google Scholar Google Scholar[8] Zhang J, Peng K C 2000 Phys. Rev. A 62 064302  Google Scholar Google Scholar[9] Heaney L, Vedral V 2009 Phys. Rev. Lett. 103 200502  Google Scholar Google Scholar[10] Ou Z Y, Pereira S F, Kimble H J, Peng K C 1992 Phys. Rev. Lett. 68 3663  Google Scholar Google Scholar[11] Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H, Zeilinger A 1997 Nature 390 575  Google Scholar Google Scholar[12] Furusawa A, Sørensen J L, Braunstein S L, Fuchs C A, Kimble H J, Polzik E S 1998 Science 282 706  Google Scholar Google Scholar[13] Li X Y, Pan Q, Jing J T, Zhang J, Xie C D, Peng K C 2002 Phys. Rev. Lett. 88 047904  Google Scholar Google Scholar[14] McCormick C F, Boyer V, Arimondo E, Lett P D 2007 Opt. Lett. 32 178  Google Scholar Google Scholar[15] Boyer V, Marino A M, Pooser R C, Lett P D 2008 Science 321 544  Google Scholar Google Scholar[16] Boyer V, Marino A M, Lett P D 2008 Phys. Rev. Lett. 100 143601  Google Scholar Google Scholar[17] Kumar P, Kolobov M I 1994 Opt. Commun. 104 374  Google Scholar Google Scholar[18] Qin Z Z, Jing J T, Zhou J, Liu C J, Pooser R C, Zhou Z F, Zhang W P 2012 Opt. Lett. 37 3141  Google Scholar Google Scholar[19] McCormick C F, Marino A M, Boyer V, Lett P D 2008 Phys. Rev. A 78 043816  Google Scholar Google Scholar[20] MacRae A, Brannan T, Achal R, Lvovsky A I 2012 Phys. Rev. Lett. 109 033601  Google Scholar Google Scholar[21] Pooser R C, Lawrie B 2015 Optica 2 393  Google Scholar Google Scholar[22] Marino A M, Trejo N V C, Lett P D 2012 Phys. Rev. A 86 023844  Google Scholar Google Scholar[23] Li T, Anderson B E, Horrom T, Jones K M, Lett P D 2016 Opt. Express 24 19871  Google Scholar Google Scholar[24] Marino A M, Pooser R C, Boyer V, Lett P D 2009 Nature 457 859  Google Scholar Google Scholar[25] Fan W J, Lawrie B J, Pooser R C 2015 Phys. Rev. A 92 053812  Google Scholar Google Scholar[26] Li Z P, Wang X L, Li C Y, Zhang Y F, Wen F, Ahmed I, Zhang Y P 2016 Laser Phys. Lett. 13 025402  Google Scholar Google Scholar[27] Abdisa G, Ahmed I, Wang X X, Liu Z C, Wang H X, Zhang Y P 2016 Phys. Rev. A 94 023849  Google Scholar Google Scholar[28] Li C B, Jiang Z H, Zhang Y Q, Zhang Z Y, Wen F, Chen H X, Zhang Y P, Xiao M 2017 Phys. Rev. Appl. 7 014023  Google Scholar Google Scholar[29] Li C B, Li W, Zhang D, Zhang Z Y, Gu B L, Li K K, Zhang Y P 2019 Laser Phys. Lett. 17 015401  Google Scholar Google Scholar[30] Pooser R C, Marino A M, Boyer V, Jones K M, Lett P D 2009 Phys. Rev. Lett. 103 010501  Google Scholar Google Scholar[31] Werner R F, Wolf M M 2001 Phys. Rev. Lett. 86 3658  Google Scholar Google Scholar[32] Simon R 2000 Phys. Rev. Lett. 84 2726  Google Scholar Google Scholar[33] Jasperse M, Turner L D, Scholten R E 2011 Opt. Express 19 3765  Google Scholar Google Scholar
Catalog
Metrics
- Abstract views: 6632
- PDF Downloads: 139
- Cited By: 0


 
					 
		         
	         
  
					 
												






 
							 DownLoad:
DownLoad: 
				 
							



 
							 
							



