Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Four-wave mixing properties in bilayer graphene nanosystem

Jiang Yang-Yang Xia Xiao-Shuang Li Jian-Bo

Citation:

Four-wave mixing properties in bilayer graphene nanosystem

Jiang Yang-Yang, Xia Xiao-Shuang, Li Jian-Bo
PDF
HTML
Get Citation
  • Graphene thin films are often used to manufacture various optoelectronic nanodevices owing to their advantages such as light weight, small size, high quality factor, and good conductivity. So far, there have been few studies of the four-wave mixing characteristics in a bilayer graphene nanosystem, especially theoretical research. In this work, we study theoretically the four-wave mixing properties in a bilayer graphene nanosystem. Firstly, the analytical formula of the four-wave mixing signal is derived by quantum mechanical method, which is divided into three steps. 1) Total Hamiltonian of the system is written in the rotating wave approximation. 2) By using the Heisenberg equation of motion and the commutation relations between different operators, the corresponding density matrix equations are obtained. 3) To solve these density matrix equations, we make an ansatz and obtain the analytical formula of the four-wave mixing signal. Secondly, we explore the dependence of the four-wave mixing signal on the phonon-exciton coupling strength, pumping intensity and the detuning between the exciton and the pump field. The calculated results show that the lineshape of four-wave mixing spectrum can be switched among two-peaked, three-peaked, four-peaked, five-peaked and six-peaked by adjusting the phonon-exciton coupling strength, the pumping intensity, and the detuning between the exciton and the pump field. In a weak phonon-exciton coupling regime (i.e. phonon-exciton coupling strength g < dephasing rate of exciton Γ2), the intensity of the left peak and right peak of four-wave mixing signal first increase and then decrease with the increase of the pumping intensity $ {\varOmega }_{{\text{pu}}}^{\text{2}} $. In the intermediate and strong phonon-exciton coupling regime (i.e. g = Γ2 and g > Γ2), the four-wave mixing spectrum exhibits a two-peaked structure. The maximum values of these two peaks increase as $ {\varOmega }_{{\text{pu}}}^{\text{2}} $ increases, and their spacing is equal to 2g. Especially, for a given pumping intensity $ {\varOmega }_{{\text{pu}}}^{\text{2}} $ (= 10 THz2), the maximum value of the peak for g = 4 THz becomes 0.4% of that for g = 1 THz, indicating that the phonon-exciton coupling inhibits the enhancement of the four-wave mixing signal to a certain extent. Our findings can not only offer an efficient way to measure the phonon-exciton coupling strength in the bilayer graphene system, but also help one to further explore the underlying physical mechanism in such a nanosystem.
      Corresponding author: Li Jian-Bo, jbli_opt@csuft.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11404410) and the Natural Science Foundation of Hunan Province, China (Grant No. 2020JJ4935).
    [1]

    Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R, Geim A K 2008 Science 320 1308Google Scholar

    [2]

    Chen C, Rosenblatt S, Bolotin K I, Kalb W, Kim P, Kymissis I, Stormer H L, Heinz T F, Hone J 2009 Nat. Nanotechnol. 4 861Google Scholar

    [3]

    Jiang J W, Park H S, Rabczuk T 2012 Nanotechnology 23 475501Google Scholar

    [4]

    Xiang Y J, Dai X Y, Guo J, Wen S C, Tang D Y 2014 Appl. Phys. Lett. 104 051108Google Scholar

    [5]

    Yi Y, Chen Z, Yu X F, Zhou Z K, Li J 2019 Adv. Quantum Technol. 2 1800111Google Scholar

    [6]

    Zhang X J, Yuan Z H, Yang R X, He Y L, Qin Y L, Xiao S, He J 2019 J. Cent. South Univ. 26 2295Google Scholar

    [7]

    Tan Y, Xia X S, Liao X L, Li J B, Zhong H H, Liang S, Xiao S, Liu L H, Luo J H, He M D, Chen L Q 2020 Carbon 157 724Google Scholar

    [8]

    王波, 张纪红, 李聪颖 2021 物理学报 70 054207Google Scholar

    Wang B, Zhang J H, Li C Y 2021 Acta Phys. Sin. 70 054207Google Scholar

    [9]

    郭晓蒙, 青芳竹, 李雪松 2021 物理学报 70 098102Google Scholar

    Guo X M, Qing F Z, Li X S 2021 Acta Phys. Sin. 70 098102Google Scholar

    [10]

    Mayorov A S, Elias D C, Mucha-Kruczynski M, Gorbachev R V, Tudorovskiy T, Zhukov A, Morozov S V, Katsnelson M I, Fal’ko V I, Geim A K, Novoselov K S 2011 Science 333 860Google Scholar

    [11]

    Grigorenko A N, Polini M, Novoselov K S 2012 Nat. Photon. 6 749Google Scholar

    [12]

    Fei Z, Iwinski E G, Ni G X, Zhang L M, Bao W, Rodin A S, Lee Y, Wagner M, Liu M K, Dai S, Goldflam M D, Thiemens M, Keilmann F, Lau C N, Castro-Neto A H, Fogler M M, Basov D N 2015 Nano Lett. 15 4973Google Scholar

    [13]

    Zhao X J, Hou H, Fan X T, Wang Y, Liu Y M, Tang C, Liu S H, Ding P P, Cheng J, Lin D H, Wang C, Yang Y, Tan Y Z 2019 Nat. Commun. 10 3057Google Scholar

    [14]

    Xu S, Al Ezzi M M, Balakrishnan   N, Garcia-Ruiz A, Tsim B, Mullan  C, Barrier J, Xin N, Piot B A, Taniguchi T, Watanabe  K, Carvalho A, Mishchenko A, Geim  A K, Vladimir I. Fal’ko  V I, Adam   S, Castro Neto  A H, Novoselov  K S, Shi Y M 2021 Nat. Phys. 17 619Google Scholar

    [15]

    Malard L M, Nilsson J, Elias D C, Brant J C, Plentz F, Alves E S, Castro Neto A H, Pimenta M A 2007 Phys. Rev. B 76 201401(RGoogle Scholar

    [16]

    Tang T T, Zhang Y B, Park C H, Geng B S, Girit C, Hao Z, Martin M C, Zettl A, Crommie M F, Louie S G, Shen Y R, Wang F 2009 Nat. Nanotechnol. 5 32Google Scholar

    [17]

    Yang T Y, Balakrishnan J, Volmer F, Avsar A, Jaiswal M, Samm J, Ali S R, Pachoudeng A, Popinciuc M, Güntherodt G, Beschoten B 2011 Phys. Rev. Lett. 107 047206Google Scholar

    [18]

    Kou A, Feldman B E, Levin A J, Halperin B I, Watanabe K, Taniguchi T, Yacoby A 2014 Science 345 6192Google Scholar

    [19]

    Ki D K, Fal'ko V I, Abanin D A, Morpurgo A F 2014 Nano Lett. 14 2135Google Scholar

    [20]

    Da H X, Yan X H 2016 Opt. Lett. 41 151Google Scholar

    [21]

    Yu G, Wu Z, Zhan Z, Katsnelson M I, Yuan S J 2020 Phys. Rev. B 102 115123Google Scholar

    [22]

    Yan J, Henriksen E A, Kim P, Pinczuk A 2008 Phys. Rev. Lett. 101 136804Google Scholar

    [23]

    Castro Neto A H, Guinea F 2007 Phys. Rev. B 75 045404Google Scholar

    [24]

    Yan J A, Ruan W Y, Chou M Y 2009 Phys. Rev. B 79 115443Google Scholar

    [25]

    Pisana S, Lazzeri M, Casiraghi C, Novoselov K S, Geim A K, Ferrari A C, Mauri F 2007 Nat. Mater. 6 198Google Scholar

    [26]

    Wu W H, Zhu K D 2015 Opt. Commun. 342 199Google Scholar

    [27]

    Boyd R W 2008 Nonlinear Optics (San Diego: Academic Press) p278

    [28]

    Bin W, Zhu K D 2013 Appl. Opt. 52 5816Google Scholar

    [29]

    Park C H, Giustino F, Cohen M L, Louie S G 2008 Nano lett. 8 4229Google Scholar

    [30]

    Sadeghi M, Naghdabadi R 2010 Nanotechnology 21 105705Google Scholar

    [31]

    Barton R A, Alden J S, Ruiz-Vargas C S, Whitney W S, Pham P H O, Park J, Parpia J M, Craighead H G, McEuen P L 2010 Nano Lett. 10 4869Google Scholar

    [32]

    Guo Q Q, Liang S, Gong B, Li J B, Xiao S, He M D, Chen L Q 2022 Opt. Express 30 6630Google Scholar

    [33]

    Li J B, He M D, Chen L Q 2014 Opt. Express 22 24734Google Scholar

  • 图 1  (a) 双层石墨烯薄膜体系与一个垂直作用于它的平面电场E的结构示意图, 该体系处于强泵浦场和弱探测场的共同作用下; (b) 双层石墨烯薄膜体系的能级示意图

    Figure 1.  (a) Schematic diagram of a bilayer graphene nanosystem and an electric field E being perpendicular to the plane of graphene, where the nanosystem is simultaneously subjected to a strong pump field and a weak probe field; (b) energy level diagram of the bilayer graphene system.

    图 2  (a) 四波混频信号参量α随激子-泵浦场失谐量Δex的变化关系; (b)三峰型四波混频谱的形成机理图; (c) L峰和R峰的峰值大小和位置随Δex的变化关系; 已知g = 1 THz和$ {\varOmega }_{{\text{pu}}}^{\text{2}} $ = 10 THz2

    Figure 2.  (a) Parameter of the four-wave mixing signal α as a function of the detuning between the exciton and the pump field Δex; (b) the formation mechanism diagram of three-peaked four-wave mixing spectrum; (c) the maximum values and positions of L and R peaks as a function of Δex, the parameters used are g = 1 THz and $ {\varOmega }_{{\text{pu}}}^{\text{2}} $ = 10 THz2.

    图 3  (a) 四波混频信号参量α随声子-激子耦合强度g的变化关系(插图显示g = 0.2 THz时四波混频谱为五峰结构); (b) L峰和R峰的峰值大小和位置随声子-激子耦合强度g的变化关系

    Figure 3.  (a) Parameter of the four-wave mixing signal α as a function of the phonon-exciton coupling strength g (inset exhibits that the four-wave mixing spectrum for g = 0.2 THz is five-peaked structure); (b) the maximum values and positions of L and R peaks as a function of the exciton-phonon coupling strength g.

    图 4  (a) 在弱耦合情况下(g = 0.2 THz), 四波混频信号参量α随泵浦强度$ {\varOmega }_{{\text{pu}}}^{\text{2}} $的变化关系(插图显示$ {\varOmega }_{{\text{pu}}}^{\text{2}} $= 5 THz2时四波混频光谱为五峰结构); (b) L峰和R峰的峰值大小和位置随泵浦强度$ {\varOmega }_{{\text{pu}}}^{\text{2}} $的变化关系

    Figure 4.  (a) In the weak phonon-exciton coupling regime (g = 0.2 THz), the dependence of the parameter of the four-wave mixing signal α on the pumping intensity $ {\varOmega }_{{\text{pu}}}^{\text{2}} $ (the inset exhibits that the four-wave mixing spectrum for $ {\varOmega }_{{\text{pu}}}^{\text{2}} $ = 5 THz2 is five-peaked structure); (b) the maximum values and positions of L and R peaks as a function of the pumping intensity $ {\varOmega }_{{\text{pu}}}^{\text{2}} $.

    图 5  (a), (b) 在中间耦合(g = 1 THz = Γ2)和强耦合情况下(g = 4 THz >Γ2), 四波混频信号参量α随泵浦强度$ {\varOmega }_{{\text{pu}}}^{\text{2}} $的变化关系; (c), (d) L峰和R峰的峰值大小和位置随泵浦强度$ {\varOmega }_{{\text{pu}}}^{\text{2}} $的变化关系

    Figure 5.  (a), (b) In the intermediate and strong coupling regimes (g = 1 THz = Γ2 and g = 4 THz > Γ2), the parameter of the four-wave mixing signal α as a function of the pumping intensities $ {\varOmega }_{{\text{pu}}}^{\text{2}} $; (c), (d) the dependence of peak values and positions for corresponding L and R peaks on the pumping intensities $ {\varOmega }_{{\text{pu}}}^{\text{2}} $.

    图 6  (a) 当$ {\varOmega }_{{\text{pu}}}^{\text{2}} $ = 10 THz2时, 比较3种不同耦合情况下四波混频信号参量α随探测-泵浦失谐量的变化关系; (b)在3种不同耦合情况下, 在δpr = 0 THz位置处的四波混频信号随泵浦强度$ {\varOmega }_{{\text{pu}}}^{\text{2}} $的变化关系

    Figure 6.  (a) In three different coupling regimes, the parameter of the four-wave mixing signal α as a function of the probe-pump detuning δpr for $ {\varOmega }_{{\text{pu}}}^{\text{2}} $ = 10 THz2; (b) in three different coupling regimes, the dependence of the four-wave mixing signal positioned at δpr = 0 THz on the pumping intensity $ {\varOmega }_{{\text{pu}}}^{\text{2}} $.

    表 1  四波混频谱的线型与Δex调控区间的关系

    Table 1.  Relation between the line-shapes of four-wave mixing spectra and the modulation region of Δex.

    线型二峰三峰六峰五峰
    Δex/THz$ \pm [0, 0.02) $$ \pm [0.02, 0.12) $$ \pm [0.12, 0.19) $$ \pm [0.19, 10.0] $
    DownLoad: CSV

    表 2  四波混频谱的线型与g调控区间的关系

    Table 2.  Relation between the line-shapes of four-wave mixing spectra and the modulation region of g

    线型三峰四峰五峰二峰
    g/THz[0, 0.03)[0.03, 0.12)[0.12, 0.32)[0.32, 15.0]
    DownLoad: CSV

    表 3  四波混频谱的线型与${\varOmega }_{{\text{pu}}}^{\text{2}}$调控区间的关系

    Table 3.  Relation between the line-shapes of four-wave mixing spectra and the modulation region of ${\varOmega }_{{\text{pu}}}^{\text{2}}$.

    线型二峰三峰五峰三峰
    ${\varOmega }_{ {\text{pu} } }^{\text{2} }$/THz2[0.1, 3.32)[3.32, 3.95)[3.95, 89.41]> 89.41
    DownLoad: CSV
  • [1]

    Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R, Geim A K 2008 Science 320 1308Google Scholar

    [2]

    Chen C, Rosenblatt S, Bolotin K I, Kalb W, Kim P, Kymissis I, Stormer H L, Heinz T F, Hone J 2009 Nat. Nanotechnol. 4 861Google Scholar

    [3]

    Jiang J W, Park H S, Rabczuk T 2012 Nanotechnology 23 475501Google Scholar

    [4]

    Xiang Y J, Dai X Y, Guo J, Wen S C, Tang D Y 2014 Appl. Phys. Lett. 104 051108Google Scholar

    [5]

    Yi Y, Chen Z, Yu X F, Zhou Z K, Li J 2019 Adv. Quantum Technol. 2 1800111Google Scholar

    [6]

    Zhang X J, Yuan Z H, Yang R X, He Y L, Qin Y L, Xiao S, He J 2019 J. Cent. South Univ. 26 2295Google Scholar

    [7]

    Tan Y, Xia X S, Liao X L, Li J B, Zhong H H, Liang S, Xiao S, Liu L H, Luo J H, He M D, Chen L Q 2020 Carbon 157 724Google Scholar

    [8]

    王波, 张纪红, 李聪颖 2021 物理学报 70 054207Google Scholar

    Wang B, Zhang J H, Li C Y 2021 Acta Phys. Sin. 70 054207Google Scholar

    [9]

    郭晓蒙, 青芳竹, 李雪松 2021 物理学报 70 098102Google Scholar

    Guo X M, Qing F Z, Li X S 2021 Acta Phys. Sin. 70 098102Google Scholar

    [10]

    Mayorov A S, Elias D C, Mucha-Kruczynski M, Gorbachev R V, Tudorovskiy T, Zhukov A, Morozov S V, Katsnelson M I, Fal’ko V I, Geim A K, Novoselov K S 2011 Science 333 860Google Scholar

    [11]

    Grigorenko A N, Polini M, Novoselov K S 2012 Nat. Photon. 6 749Google Scholar

    [12]

    Fei Z, Iwinski E G, Ni G X, Zhang L M, Bao W, Rodin A S, Lee Y, Wagner M, Liu M K, Dai S, Goldflam M D, Thiemens M, Keilmann F, Lau C N, Castro-Neto A H, Fogler M M, Basov D N 2015 Nano Lett. 15 4973Google Scholar

    [13]

    Zhao X J, Hou H, Fan X T, Wang Y, Liu Y M, Tang C, Liu S H, Ding P P, Cheng J, Lin D H, Wang C, Yang Y, Tan Y Z 2019 Nat. Commun. 10 3057Google Scholar

    [14]

    Xu S, Al Ezzi M M, Balakrishnan   N, Garcia-Ruiz A, Tsim B, Mullan  C, Barrier J, Xin N, Piot B A, Taniguchi T, Watanabe  K, Carvalho A, Mishchenko A, Geim  A K, Vladimir I. Fal’ko  V I, Adam   S, Castro Neto  A H, Novoselov  K S, Shi Y M 2021 Nat. Phys. 17 619Google Scholar

    [15]

    Malard L M, Nilsson J, Elias D C, Brant J C, Plentz F, Alves E S, Castro Neto A H, Pimenta M A 2007 Phys. Rev. B 76 201401(RGoogle Scholar

    [16]

    Tang T T, Zhang Y B, Park C H, Geng B S, Girit C, Hao Z, Martin M C, Zettl A, Crommie M F, Louie S G, Shen Y R, Wang F 2009 Nat. Nanotechnol. 5 32Google Scholar

    [17]

    Yang T Y, Balakrishnan J, Volmer F, Avsar A, Jaiswal M, Samm J, Ali S R, Pachoudeng A, Popinciuc M, Güntherodt G, Beschoten B 2011 Phys. Rev. Lett. 107 047206Google Scholar

    [18]

    Kou A, Feldman B E, Levin A J, Halperin B I, Watanabe K, Taniguchi T, Yacoby A 2014 Science 345 6192Google Scholar

    [19]

    Ki D K, Fal'ko V I, Abanin D A, Morpurgo A F 2014 Nano Lett. 14 2135Google Scholar

    [20]

    Da H X, Yan X H 2016 Opt. Lett. 41 151Google Scholar

    [21]

    Yu G, Wu Z, Zhan Z, Katsnelson M I, Yuan S J 2020 Phys. Rev. B 102 115123Google Scholar

    [22]

    Yan J, Henriksen E A, Kim P, Pinczuk A 2008 Phys. Rev. Lett. 101 136804Google Scholar

    [23]

    Castro Neto A H, Guinea F 2007 Phys. Rev. B 75 045404Google Scholar

    [24]

    Yan J A, Ruan W Y, Chou M Y 2009 Phys. Rev. B 79 115443Google Scholar

    [25]

    Pisana S, Lazzeri M, Casiraghi C, Novoselov K S, Geim A K, Ferrari A C, Mauri F 2007 Nat. Mater. 6 198Google Scholar

    [26]

    Wu W H, Zhu K D 2015 Opt. Commun. 342 199Google Scholar

    [27]

    Boyd R W 2008 Nonlinear Optics (San Diego: Academic Press) p278

    [28]

    Bin W, Zhu K D 2013 Appl. Opt. 52 5816Google Scholar

    [29]

    Park C H, Giustino F, Cohen M L, Louie S G 2008 Nano lett. 8 4229Google Scholar

    [30]

    Sadeghi M, Naghdabadi R 2010 Nanotechnology 21 105705Google Scholar

    [31]

    Barton R A, Alden J S, Ruiz-Vargas C S, Whitney W S, Pham P H O, Park J, Parpia J M, Craighead H G, McEuen P L 2010 Nano Lett. 10 4869Google Scholar

    [32]

    Guo Q Q, Liang S, Gong B, Li J B, Xiao S, He M D, Chen L Q 2022 Opt. Express 30 6630Google Scholar

    [33]

    Li J B, He M D, Chen L Q 2014 Opt. Express 22 24734Google Scholar

  • [1] Xu Xiao-Yin, Liu Sheng-Shuai, Jing Jie-Tai. Amplification of entangled beam based on four-wave mixing process. Acta Physica Sinica, 2022, 71(5): 050301. doi: 10.7498/aps.71.20211324
    [2] Zhou Chang, Gong Rui, Feng Xiao-Bo. Theoretical studies on optical absorption in twisted bilayer graphene under vertical electric field. Acta Physica Sinica, 2022, 71(5): 054203. doi: 10.7498/aps.71.20211406
    [3] Zhai Shu-Qin, Kang Xiao-Lan, Liu Kui. Quantum steering based on cascaded four-wave mixing processes. Acta Physica Sinica, 2021, 70(16): 160301. doi: 10.7498/aps.70.20201981
    [4] Amplification of entangled beam based on four-wave mixing process. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211324
    [5] Theoretical studies on optical absorption in twisted bilayer graphene under vertical electric field. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211406
    [6] Chen Hua-Jun. Nonlinear optical effect and nonlinear optical mass sensor based on graphene optomechanical system. Acta Physica Sinica, 2020, 69(13): 134203. doi: 10.7498/aps.69.20191745
    [7] Yu Sheng, Liu Huan-Zhang, Liu Sheng-Shuai, Jing Jie-Tai. Generation of quadripartite entanglement based on four-wave mixing process and linear beam splitter. Acta Physica Sinica, 2020, 69(9): 090303. doi: 10.7498/aps.69.20200040
    [8] Yang Rong-Guo, Zhang Chao-Xia, Li Ni, Zhang Jing, Gao Jiang-Rui. Quantum manipulation of entanglement enhancement in cascaded four-wave-mixing process. Acta Physica Sinica, 2019, 68(9): 094205. doi: 10.7498/aps.68.20181837
    [9] Liu Ya-Qin,  Yang Shi-E,  Zhang Hai-Gang,  Wang Xiao-Han. Compressional-shear wave coupling induced by velocity gradient in elastic medium. Acta Physica Sinica, 2018, 67(23): 234303. doi: 10.7498/aps.67.20181600
    [10] Yang Yun-Chang, Wu Bin, Liu Yun-Qi. Synthesis of bilayer graphene via chemical vapor deposition and its optoelectronic devices. Acta Physica Sinica, 2017, 66(21): 218101. doi: 10.7498/aps.66.218101
    [11] He Long, Song Yun. Numerical study of the superconductor-insulator transition in double-layer graphene driven by disorder. Acta Physica Sinica, 2013, 62(5): 057303. doi: 10.7498/aps.62.057303
    [12] Zhou Zhen-Wei, Chen Xing-Ji, Tian Tao-Tao, Tang Guo-Ning. Study on the control of spiral waves in coupled excitable media. Acta Physica Sinica, 2012, 61(21): 210506. doi: 10.7498/aps.61.210506
    [13] Chen Xing-Ji, Tian Tao-Tao, Zhou Zhen-Wei, Hu Yi-Bo, Tang Guo-Ning. Synchronization of two spiral waves interacting through a passive medium. Acta Physica Sinica, 2012, 61(21): 210509. doi: 10.7498/aps.61.210509
    [14] Ye Tao, Xu Xu-Ming. The design and optimization of high efficiency heterostructure four-wavelength wavelength division multiplexing. Acta Physica Sinica, 2010, 59(9): 6273-6278. doi: 10.7498/aps.59.6273
    [15] Li Pei-Li, Huang De-Xiu, Zhang Xin-Liang. Ultrahigh-speed all-optical encoder based on four-wave mixing in semiconductor optical amplifiers with PolSK modulated signals. Acta Physica Sinica, 2009, 58(3): 1785-1792. doi: 10.7498/aps.58.1785
    [16] Yang Lei, Li Xiao-Ying, Wang Bao-Shan. Experimental schemes for developing fiber-based source of entangled photon pairs. Acta Physica Sinica, 2008, 57(8): 4933-4940. doi: 10.7498/aps.57.4933
    [17] Deng Li, Sun Zhen-Rong, Lin Wei-Zhu, Wen Jin-Hui. The stimulated Raman scattering and the four wave mixing in the generation of sub-10 fs pulses. Acta Physica Sinica, 2008, 57(12): 7668-7673. doi: 10.7498/aps.57.7668
    [18] Zhu Cheng-Yu, Lü Zhi-Wei, He Wei-Ming, Ba De-Xin, Wang Yu-Lei, Gao Wei, Dong Yong-Kang. Theoretical study on temporal behavior of Brillouin-enhanced four-wave mixing. Acta Physica Sinica, 2007, 56(1): 229-235. doi: 10.7498/aps.56.229
    [19] Sun Jiang, Zuo Zhan-Chun, Guo Qing-Lin, Wang Ying-Long, Huai Su-Fang, Wang Ying, Fu Pan-Ming. Observation of Rydberg series of neutral barium by two-photon resonent nondegenerate four-wave mixing. Acta Physica Sinica, 2006, 55(1): 221-225. doi: 10.7498/aps.55.221
    [20] Sun Jiang, Zuo Zhan-Chun, Mi Xin, Yu Zu-He, Wu Ling-An, Fu Pan-Ming. Two-photon resonant nondegenerate four-wave mixing via quantum interference. Acta Physica Sinica, 2005, 54(1): 149-154. doi: 10.7498/aps.54.149
Metrics
  • Abstract views:  2951
  • PDF Downloads:  44
  • Cited By: 0
Publishing process
  • Received Date:  02 January 2023
  • Accepted Date:  08 April 2023
  • Available Online:  26 April 2023
  • Published Online:  20 June 2023

/

返回文章
返回