搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

垂直电场下扭转双层石墨烯光学吸收性质的理论研究

周畅 龚蕊 冯小波

引用本文:
Citation:

垂直电场下扭转双层石墨烯光学吸收性质的理论研究

周畅, 龚蕊, 冯小波

Theoretical studies on optical absorption in twisted bilayer graphene under vertical electric field

Zhou Chang, Gong Rui, Feng Xiao-Bo
PDF
HTML
导出引用
  • 层间扭转角度是对石墨烯物理性质宽波段可调谐的一个新参量. 本文采用2° < θ < 15°扭转角度下的连续近似模型, 获得了不同扭转角度双层石墨烯分别在有、无电场下的能带结构, 通过电子-光子相互作用跃迁速率, 计算模拟了范霍夫奇点附近电子带内跃迁和带间跃迁所引起的光学吸收谱. 结果表明, 在无外加电场时, 带间跃迁吸收峰的位置随着扭转角度的增大而发生从红外到可见光波段的蓝移, 且吸收系数增大, 带内跃迁的光学吸收系数相对于带间跃迁高出2个数量级; 而存在外加电场时, 两个范霍夫奇点在波矢空间的位置发生偏移, 带间跃迁吸收峰发生分裂, 且两个分裂的吸收峰位置随着电场强度的不断增大而反向行进. 上述研究结果对石墨烯材料在光电器件方面的应用有一定指导作用.
    The interlayer twist angle is an important parameter that can tune the physical properties of graphene in a wide wavelength range. In this paper, we employ an effective continuum model to calculate the band structure of twisted bilayer graphene with different twist angles in the presence and absence of vertical electric field. Based on the transition rate of the electron-photon interaction, we calculate and simulate the optical absorption spectra caused by the interband and intraband transitions around the van Hove singularities. The calculation results show that the optical absorption caused by the interband transitions occurs in the wavelength range from visible light to near-infrared while it appears in far-infrared for intraband transitions. The optical absorption coefficient of the intra-band transitions is almost two orders of magnitude larger than that of inter-band transitions. In the absence of an external electric field, as the twist angle increases, the absorption peak of the inter band transition moves from the infrared light band to the visible light band, but the resonant peak position of its intra-band transition does not change. At the same time, the absorption coefficient values corresponding to the above two transitions will increase. When an electric field is applied perpendicular to the twisted bilayer graphene, the symmetry of the initial band structure of bilayer graphene is destroyed, which results in the splitting of the absorption peaks associated the with interband transitions, and the distance between the two splitting peaks increases with the electric field intensity increasing; while the position and amplitude of the absorption peak associated with the intraband transition are completely unaffected by the applied electric field. The theoretical calculation results in this paper can provide the theoretical guidance for further applying twisted graphene to optoelectronic devices such as tunable dual-band filters.
      通信作者: 冯小波, fengxiaobo1220@gmail.com
    • 基金项目: 国家自然科学基金(批准号: 11304275, 11764047)资助的课题
      Corresponding author: Feng Xiao-Bo, fengxiaobo1220@gmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11304275, 11764047).
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Gregorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109Google Scholar

    [3]

    Zhou S Y, Gweon G H, Graf J, Fedorov A V, Spataru C D, Diehl R D, Kopelevich Y, Lee D H, Louie S G, Lanzara A 2006 Nat. Phys. 2 595Google Scholar

    [4]

    Mak K F, Sfeir M Y, Wu Y, Lui C H, Misewich J A, Heinz T F 2008 Phys. Rev. Lett. 101 196405Google Scholar

    [5]

    Stauber T, Peres N, Geim A K 2008 Phys. Rev. B 78 085432Google Scholar

    [6]

    Rutter G M, Crain J N, Guisinger N P, Li T, First P N, Stroscio J A 2007 Science 317 219Google Scholar

    [7]

    Geim A K, Grigorieva I V 2013 Nature 499 419Google Scholar

    [8]

    Dai S, Xiang Y, Srolovitz D J 2016 Nano Lett. 16 5923Google Scholar

    [9]

    Li G, Luican A, Santos J, Neto A, Reina A, Kong J, Andrei E Y 2009 Nature 6 109Google Scholar

    [10]

    Yan W, Liu M X, Dou R F, Meng L, Feng L, Chu Z D, Zhang Y F 2012 Phys. Rev. Lett. 109 126801Google Scholar

    [11]

    Bistritzer R, MacDonald A H 2011 Proc. Natl. Acad. Sci. U. S. A. 108 12233Google Scholar

    [12]

    Bistritzer R, MacDonald A H 2011 Phys. Rev. B 84 035440Google Scholar

    [13]

    Moon P, Koshino M 2012 Phys. Rev. B 85 195458Google Scholar

    [14]

    Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P 2018 Nature 556 43Google Scholar

    [15]

    Liu J P, Dai X 2020 NPJ Comput. Mater. 6 57Google Scholar

    [16]

    Yang F, Song W, Meng F, Luo F, Luo S, Lin S, Gong Z, Cao J, Bernard E, Chan E, Yang L, Yao J 2020 Matter 3 1361Google Scholar

    [17]

    Deng B, Ma C, Wang Q, Yuan S, Watanabe K, Taniguchi T, Zhang F, Xia F 2020 Nat. Photonics 14 549Google Scholar

    [18]

    Yin J, Wang H, Peng H, Tan Z, Liao L, Lin L, Sun X, Koh A L, Chen Y, Peng H, Liu Z 2016 Nat. Commun. 7 10699Google Scholar

    [19]

    Ha S, Park N H, Kim H, Shin J, Choi J, Park S, Moon J, Chae K, Jung J, Lee J, Yoo Y, Park J, Ahn K J, Yeom D 2021 Light-Sci. Appl. 10 19Google Scholar

    [20]

    Yu K, Luan N V, Kim T, Jeon J, Kim J, Moon P, Lee Y H, Choi E J 2019 Phys. Rev. B 99 241405Google Scholar

    [21]

    Moon P, Koshino M 2013 Phys. Rev. B 87 205404Google Scholar

    [22]

    Moon P, Son Y, Koshino M 2014 Phys. Rev. B 90 155427Google Scholar

    [23]

    Tabert C Jand Nicol E J 2013 Phys. Rev. B 87 121402Google Scholar

    [24]

    Stauber T, San-Jose P, Brey L 2013 New J. Phys. 15 113050Google Scholar

    [25]

    McCann E 2006 Phys. Rev. B 74 161403Google Scholar

    [26]

    McCann E, Abergel D S L, Fal’ko V I 2007 Solid State Commun. 143 110Google Scholar

    [27]

    Aoki M, Amawashi H 2010 Solid State Commun. 142 123Google Scholar

    [28]

    Lu C L, Chang C P, Huang Y C, Chen R B, Lin M L 2006 Phys. Rev. B 73 144427Google Scholar

    [29]

    Brihuega I, Mallet P, González-Herrero H, Laissardière G T D, Ugeda M M, Magaud L, Gómez-Rodríguez J M, Ynduráin F, Veuillen J Y 2012 Phys. Rev. Lett. 109 196802Google Scholar

    [30]

    Yan W, Meng L, Liu M, Qiao J B, Chu Z D, Dou R F, Liu Z, Nie J C, Naugle D G, He L 2014 Phys. Rev. B 90 115402Google Scholar

    [31]

    Lopes dos Santos J M B, Peres N M R, Castro Neto A H 2007 Phys. Rev. Lett. 99 256802Google Scholar

    [32]

    Gail R D, Goerbig M O, Guinea F, Montambaux G, Neto A H C 2011 Phys. Rev. B 84 045436Google Scholar

    [33]

    Koshino M 2015 New J. Phys. 17 015014Google Scholar

    [34]

    Yin L, Qiao J, Wang W, Zuo W, Yan W, Xu R, Dou R, Nie J, He L 2015 Phys. Rev. B 92 201408Google Scholar

    [35]

    San-Jose P, Prada E 2013 Phys. Rev. B 88 121408Google Scholar

    [36]

    Morell E S, Correa J D, Vargas P, Pacheco M, Barticevic Z 2010 Phys. Rev. B 82 121407Google Scholar

    [37]

    Shallcross S, Sharma S, Pankratov O 2013 Phys. Rev. B 87 245403Google Scholar

    [38]

    Laissardière G T D, Mayou D, Magaud L 2010 Nano Lett. 10 804Google Scholar

    [39]

    Luican A, Li G, Reina A, Kong J, Nair R R, Novoselov K S, Geim A K, Andrei E Y 2011 Phys. Rev. Lett. 106 126802Google Scholar

    [40]

    Mele E J 2012 J. Phys. D: Appl. Phys. 45 154004Google Scholar

    [41]

    McCann E, Fal’ko V I 2006 Phys. Rev. Lett. 96 086805Google Scholar

  • 图 1  (a) tBLG的原子结构图, θ为层间扭转角度; (b) tBLG的第一布里渊区, KKθ 为来自于上下两个单层石墨烯的狄拉克点

    Fig. 1.  (a) Atomic structure for tBLG, θ is the twist angle between layers; (b) the first Brillouin region of tBLG, where K and Kθ are the Dirac points of the upper and lower monolayers.

    图 2  无外电场时θ = 3.89°的tBLG三维能带结构图. KK θ为两个狄拉克点, VHS1和VHS2为两个范霍夫奇点

    Fig. 2.  The 3D band structure of tBLG at θ = 3.89° without external electric field. K and K θ are two separate Dirac points, VHS1 and VHS2 are two van Hove singularities.

    图 3  无外电场时四个扭转角度下tBLG的能带结构图 (a) θ = 3.89°; (b) θ = 5.09°; (c) θ = 7.34°; (d) θ = 9.43°. 其中红色(蓝色)箭头表示可能发生的带间(带内)跃迁, 蓝色虚线为费米面

    Fig. 3.  The energy band structure of TBG at four twisted angles without electric field: (a) θ = 3.89°; (b) θ = 5.09°; (c) θ = 7.34°; (d) θ = 9.43°. Red (blue) arrow is the possible interband (intraband) transitions, and the dashed blue line shows the Fermi level.

    图 4  不同扭转角度下tBLG在范霍夫奇点附近的光学吸收谱 (a) 带间跃迁光学吸收谱; (b) 带内跃迁光学吸收谱

    Fig. 4.  Optical spectrums for tBLG around VHS with 5 different twisted angles: (a) Optical spectrums for interband transitions; (b) optical spectrums for intraband transitions.

    图 5  不同外加电场下tBLG的能带结构图(θ = 3.89°) (a) U = 0 meV; (b) U = 40 meV; (c) U = 60 meV; (d) U = 100 meV. 其中箭头表示可能发生的带间或者带内跃迁, 蓝色虚线为费米面, 黑色虚线表示范霍夫奇点的位置

    Fig. 5.  The energy band structure of tBLG at θ = 3.89° with or without electric field: (a) U = 0 meV; (b) U = 40 meV (c) U = 60 meV; (d) U = 100 meV. The arrows are the possible interband (intraband) transitions, and the dashed blue line shows the Fermi level, and the dashed black lines are the positions of VHS.

    图 6  不同电场强度下tBLG范霍夫奇点附近的光学吸收谱, 三种扭转角度下的带间跃迁吸收谱(左列)和带内跃迁吸收谱(右列) (a), (b) θ = 3.89°; (c), (d) θ = 6.01°; (e), (f) θ = 9.43°

    Fig. 6.  Optical spectra for tBLG around VHS with different perpendicular electric field intensities, and optical spectra for interband transitions (left column) and Optical spectrums for intraband transitions (right column) under three twist angles: (a), (b) θ = 3.89°; (c), (d) θ = 6.01°; (e), (f) θ = 9.43°.

    表 1  不同电场强度下tBLG能带结构几个关键点的位置及带间能级差(θ = 3.89°)

    Table 1.  Positions of key points and energy level differences (θ = 3.89°) in the band structure of tBLG under different electric field intensities.

    U/meVVHS奇点位置带间跃迁能级差带内跃迁能级差
    k1Kk2KΔEα1/eVΔEα2/eVΔEβ/eV
    0000.75500.75500.11
    20–0.0150.0150.75110.75880.1101
    40–0.0300.0300.73060.76920.1101
    60–0.0400.0400.72890.78100.11
    80–0.0550.0550.71240.79760.11
    100–0.0650.0650.69770.81240.11
    下载: 导出CSV
  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Gregorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109Google Scholar

    [3]

    Zhou S Y, Gweon G H, Graf J, Fedorov A V, Spataru C D, Diehl R D, Kopelevich Y, Lee D H, Louie S G, Lanzara A 2006 Nat. Phys. 2 595Google Scholar

    [4]

    Mak K F, Sfeir M Y, Wu Y, Lui C H, Misewich J A, Heinz T F 2008 Phys. Rev. Lett. 101 196405Google Scholar

    [5]

    Stauber T, Peres N, Geim A K 2008 Phys. Rev. B 78 085432Google Scholar

    [6]

    Rutter G M, Crain J N, Guisinger N P, Li T, First P N, Stroscio J A 2007 Science 317 219Google Scholar

    [7]

    Geim A K, Grigorieva I V 2013 Nature 499 419Google Scholar

    [8]

    Dai S, Xiang Y, Srolovitz D J 2016 Nano Lett. 16 5923Google Scholar

    [9]

    Li G, Luican A, Santos J, Neto A, Reina A, Kong J, Andrei E Y 2009 Nature 6 109Google Scholar

    [10]

    Yan W, Liu M X, Dou R F, Meng L, Feng L, Chu Z D, Zhang Y F 2012 Phys. Rev. Lett. 109 126801Google Scholar

    [11]

    Bistritzer R, MacDonald A H 2011 Proc. Natl. Acad. Sci. U. S. A. 108 12233Google Scholar

    [12]

    Bistritzer R, MacDonald A H 2011 Phys. Rev. B 84 035440Google Scholar

    [13]

    Moon P, Koshino M 2012 Phys. Rev. B 85 195458Google Scholar

    [14]

    Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P 2018 Nature 556 43Google Scholar

    [15]

    Liu J P, Dai X 2020 NPJ Comput. Mater. 6 57Google Scholar

    [16]

    Yang F, Song W, Meng F, Luo F, Luo S, Lin S, Gong Z, Cao J, Bernard E, Chan E, Yang L, Yao J 2020 Matter 3 1361Google Scholar

    [17]

    Deng B, Ma C, Wang Q, Yuan S, Watanabe K, Taniguchi T, Zhang F, Xia F 2020 Nat. Photonics 14 549Google Scholar

    [18]

    Yin J, Wang H, Peng H, Tan Z, Liao L, Lin L, Sun X, Koh A L, Chen Y, Peng H, Liu Z 2016 Nat. Commun. 7 10699Google Scholar

    [19]

    Ha S, Park N H, Kim H, Shin J, Choi J, Park S, Moon J, Chae K, Jung J, Lee J, Yoo Y, Park J, Ahn K J, Yeom D 2021 Light-Sci. Appl. 10 19Google Scholar

    [20]

    Yu K, Luan N V, Kim T, Jeon J, Kim J, Moon P, Lee Y H, Choi E J 2019 Phys. Rev. B 99 241405Google Scholar

    [21]

    Moon P, Koshino M 2013 Phys. Rev. B 87 205404Google Scholar

    [22]

    Moon P, Son Y, Koshino M 2014 Phys. Rev. B 90 155427Google Scholar

    [23]

    Tabert C Jand Nicol E J 2013 Phys. Rev. B 87 121402Google Scholar

    [24]

    Stauber T, San-Jose P, Brey L 2013 New J. Phys. 15 113050Google Scholar

    [25]

    McCann E 2006 Phys. Rev. B 74 161403Google Scholar

    [26]

    McCann E, Abergel D S L, Fal’ko V I 2007 Solid State Commun. 143 110Google Scholar

    [27]

    Aoki M, Amawashi H 2010 Solid State Commun. 142 123Google Scholar

    [28]

    Lu C L, Chang C P, Huang Y C, Chen R B, Lin M L 2006 Phys. Rev. B 73 144427Google Scholar

    [29]

    Brihuega I, Mallet P, González-Herrero H, Laissardière G T D, Ugeda M M, Magaud L, Gómez-Rodríguez J M, Ynduráin F, Veuillen J Y 2012 Phys. Rev. Lett. 109 196802Google Scholar

    [30]

    Yan W, Meng L, Liu M, Qiao J B, Chu Z D, Dou R F, Liu Z, Nie J C, Naugle D G, He L 2014 Phys. Rev. B 90 115402Google Scholar

    [31]

    Lopes dos Santos J M B, Peres N M R, Castro Neto A H 2007 Phys. Rev. Lett. 99 256802Google Scholar

    [32]

    Gail R D, Goerbig M O, Guinea F, Montambaux G, Neto A H C 2011 Phys. Rev. B 84 045436Google Scholar

    [33]

    Koshino M 2015 New J. Phys. 17 015014Google Scholar

    [34]

    Yin L, Qiao J, Wang W, Zuo W, Yan W, Xu R, Dou R, Nie J, He L 2015 Phys. Rev. B 92 201408Google Scholar

    [35]

    San-Jose P, Prada E 2013 Phys. Rev. B 88 121408Google Scholar

    [36]

    Morell E S, Correa J D, Vargas P, Pacheco M, Barticevic Z 2010 Phys. Rev. B 82 121407Google Scholar

    [37]

    Shallcross S, Sharma S, Pankratov O 2013 Phys. Rev. B 87 245403Google Scholar

    [38]

    Laissardière G T D, Mayou D, Magaud L 2010 Nano Lett. 10 804Google Scholar

    [39]

    Luican A, Li G, Reina A, Kong J, Nair R R, Novoselov K S, Geim A K, Andrei E Y 2011 Phys. Rev. Lett. 106 126802Google Scholar

    [40]

    Mele E J 2012 J. Phys. D: Appl. Phys. 45 154004Google Scholar

    [41]

    McCann E, Fal’ko V I 2006 Phys. Rev. Lett. 96 086805Google Scholar

  • [1] 吕永杰, 陈燕, 叶方成, 蔡李彬, 戴子杰, 任云鹏. 外加电场和B/N掺杂对锡烯带隙的影响. 物理学报, 2024, 73(8): 083101. doi: 10.7498/aps.73.20231935
    [2] 刘义俊, 陈以威, 朱雨剑, 黄焱, 安冬冬, 李庆鑫, 甘祺康, 朱旺, 宋珺威, 王开元, 魏凌楠, 宗其军, 刘硕涵, 李世伟, 刘芝, 张琪, 徐瑛海, 曹新宇, 杨奥, 王浩林, 杨冰, Andy Shen, 于葛亮, 王雷. 转角双层-双层石墨烯中同位旋极化的C = 4陈绝缘态. 物理学报, 2023, 72(14): 147303. doi: 10.7498/aps.72.20230497
    [3] 姜阳阳, 夏晓霜, 李建波. 双层石墨烯薄膜体系中的四波混频特性. 物理学报, 2023, 72(12): 126801. doi: 10.7498/aps.72.20230012
    [4] 张仑, 陈红丽, 义钰, 张振华. As/HfS2范德瓦耳斯异质结电子光学特性及量子调控效应. 物理学报, 2022, 71(17): 177304. doi: 10.7498/aps.71.20220371
    [5] 崔洋, 李静, 张林. 外加横向电场作用下石墨烯纳米带电子结构的密度泛函紧束缚计算. 物理学报, 2021, 70(5): 053101. doi: 10.7498/aps.70.20201619
    [6] 蔡潇潇, 罗国语, 李志强, 贺言. 转角双层石墨烯在应变下的光电导率. 物理学报, 2021, 70(18): 187301. doi: 10.7498/aps.70.20210110
    [7] 周畅, 龚蕊, 冯小波. 垂直电场下扭转双层石墨烯光学吸收性质的理论研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211406
    [8] 林奎鑫, 李多生, 叶寅, 江五贵, 叶志国, Qinghua Qin, 邹伟. 扭转双层石墨烯物理性质、制备方法及其应用的研究进展. 物理学报, 2018, 67(24): 246802. doi: 10.7498/aps.67.20181432
    [9] 范达志, 刘贵立, 卫琳. 扭转形变对石墨烯吸附O原子电学和光学性质影响的电子理论研究. 物理学报, 2017, 66(24): 246301. doi: 10.7498/aps.66.246301
    [10] 杨云畅, 武斌, 刘云圻. 双层石墨烯的化学气相沉积法制备及其光电器件. 物理学报, 2017, 66(21): 218101. doi: 10.7498/aps.66.218101
    [11] 王藩侯, 杨俊升, 黄多辉, 曹启龙, 袁娣. 第一原理研究Mn掺杂LiNbO3晶体的磁性和光吸收性质. 物理学报, 2015, 64(9): 097102. doi: 10.7498/aps.64.097102
    [12] 董海明. 掺杂石墨烯系统电场调控的非线性太赫兹光学特性研究. 物理学报, 2013, 62(23): 237804. doi: 10.7498/aps.62.237804
    [13] 娄淑琴, 鹿文亮, 王鑫. 同时测量扭转角度和扭转方向的侧漏光子晶体光纤扭转传感器. 物理学报, 2013, 62(9): 090701. doi: 10.7498/aps.62.090701
    [14] 陈强, 仲崇贵, 袁国秋, 董正超, 方靖淮. 多铁材料HoMnO3中光学吸收和畸变驱动的第一性原理研究. 物理学报, 2013, 62(12): 127502. doi: 10.7498/aps.62.127502
    [15] 何龙, 宋筠. 双层石墨烯材料中无序导致超导-绝缘体相变的数值研究. 物理学报, 2013, 62(5): 057303. doi: 10.7498/aps.62.057303
    [16] 陈英良, 冯小波, 侯德东. 单层与双层石墨烯的光学吸收性质研究. 物理学报, 2013, 62(18): 187301. doi: 10.7498/aps.62.187301
    [17] 马小凤, 王懿喆, 周呈悦. a-Si ∶H/SiO2多量子阱材料制备及其光学性能和微结构研究. 物理学报, 2011, 60(6): 068102. doi: 10.7498/aps.60.068102
    [18] 封 伟, 高中扩. 有机光伏电池物理性能的模拟. 物理学报, 2008, 57(4): 2567-2573. doi: 10.7498/aps.57.2567
    [19] 陈一匡, 林揆训, 罗 志, 梁锐生, 周甫方. 铝诱导非晶硅薄膜的场致低温快速晶化及其结构表征. 物理学报, 2004, 53(2): 582-586. doi: 10.7498/aps.53.582
    [20] 侯柱锋, 朱梓忠, 黄美纯, 黄荣彬, 郑兰荪. Ag,Au,K吸附在W(001)表面上的功函数随外加电场的变化. 物理学报, 2002, 51(7): 1591-1595. doi: 10.7498/aps.51.1591
计量
  • 文章访问数:  3147
  • PDF下载量:  100
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-30
  • 修回日期:  2021-10-13
  • 上网日期:  2022-02-24
  • 刊出日期:  2022-03-05

/

返回文章
返回