搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多铁材料HoMnO3中光学吸收和畸变驱动的第一性原理研究

陈强 仲崇贵 袁国秋 董正超 方靖淮

引用本文:
Citation:

多铁材料HoMnO3中光学吸收和畸变驱动的第一性原理研究

陈强, 仲崇贵, 袁国秋, 董正超, 方靖淮

Research on optical absorption and distortion driving in multiferroic HoMnO3 from the first principles

Chen Qiang, Zhong Chong-Gui, Yuan Guo-Qiu, Dong Zheng-Chao, Fang Jing-Huai
PDF
导出引用
  • 六角钙钛矿结构锰氧化物HoMnO3磁电效应的研究近年来已成为多铁性材料研究中极其重要的一个方面. 本文基于广义梯度近似下的密度泛函理论, 考虑电子自旋的非共线磁性结构, 计算研究了 d电子在位库仑作用和自旋-轨道耦合作用对HoMnO3的电子结构、 轨道杂化和能态密度分布的影响. 结果显示, 当考虑在位库仑排斥势U作用时, 强烈的Ho 5d与O(3, 4) 2p以及Mn 3d与O(1, 2) 2p间的轨道杂化是驱动HoMnO3发生铁电畸变的根源, 此时能隙和能带的分布为解释实验中发现的强烈的光学吸收峰提供了理论依据, 而自旋-轨道耦合使得Mn 3d-O(3, 4) 2p在 ab平面内的轨道交迭略有增强, 平面内部分能带简并消除, HoMnO3材料呈现典型的间接性能隙绝缘体特征.
    The study on magnetoelectric effect in hexagonal perovskite structure HoMnO3 has become a very important aspect in the research of multiferroic materials. In this paper, using the first principles based on the generalized gradient approximation of density functional theory and considering the noncollinear magnetic structure calculation, the effects of the interation between on-site Coulomb of d electron and spin-orbit coupling on the electronic density of states and energy band structure of HoMnO3 are calculated and investigated. The calculations show that due to the on-site Coulomb interaction, the strong hybridization of Ho 5d with O(3, 4) 2p and Mn 3d with O(1, 2) 2p orbits are considered as the origin of driving force for the ferroelectric distortion. At the same time, the distributions of the energy gap and energy band provide a theoretical support for the explanation of strong optical absorption peak in experiment. In addition, the spin-orbit coupling makes the orbital hybridization of Mn 3d with O(3, 4) 2p within the ab plane strengthened, and the partial energy degeneracy in the ab plane is eliminated. The HoMnO3 is shown to possess the insulator characteristics of typical indirect energy gap.
    • 基金项目: 国家自然科学基金(批准号: 10974104, 50832002)、江苏省自然科学基金(批准号: BK2012655)、江苏省教育厅青蓝工程和南通大学博士研究生科研启动基金资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 10974104, 50832002), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK2012655), the Qing Lan Project of Education Department of Jiangsu Province, China, and the Initializing Fund on Scientific Research of Doctors in Nantong University, China.
    [1]

    Ma J, Hu J M, Li Z, Nan C W 2011 Adv. Mater. 23 1062

    [2]

    Wang K F, Liu J M, Ren Z F 2009 Adv. Phys. 58 321

    [3]

    Lottermoser T, Lonkai T, Amann U, Hohlwein D, Ihringer J, Fiebig M 2004 Nature 430 541

    [4]

    Wadati H, Okamoto J, Garganourakis M, Scagnoli V, Staub U, Yamasaki Y, Nakao H, Murakami Y, Mochizuki M, Nakamura M, Kawasaki M, Tokura Y 2012 Phys. Rev. Lett. 108 047203

    [5]

    Han T C, Lin J G 2009 Appl. Phys. Lett. 94 082502

    [6]

    Cheong S W, Mostovoy M 2007 Nature Mater. 6 13

    [7]

    Eerenstein W, Mathur N D, Scott J F 2006 Nature 442 759

    [8]

    Litvinchuk A P, Iliev M N, Popov V N 2004 J. Phys.: Condens. Matter 16 809

    [9]

    Vajk O P, Kenzelmann M, Lynn J W, Kim S B, Cheong S W 2005 Phys. Rev. Lett. 94 087601

    [10]

    Katsufuji T, Mori S, Masaki M, Moritomo Y, Yamamoto N, Takagi H 2001 Phys. Rev. B 64 104419

    [11]

    Ueland B G, Lynn J W, Laver M, Choi Y J, Cheong S W 2010 Phys. Rev. Lett. 104 147204

    [12]

    Hur N, Jeong I K, Hundley M F, Kim S B, Cheong S B 2009 Phys. Rev. B 79 134120

    [13]

    Vermette J, Jandl S, Orlita M, Gospodinov M M 2012 Phys. Rev. B 85 134445

    [14]

    Zhong C G, Chen Q, Dong Z C, Fang J H 2011 Journal of Nantong University (Nat. Sci. Ed.) 10 58 (in Chinese) [仲崇贵, 陈强, 董正超, 方靖淮 2011 南通大学学报 (自然科学版) 10 58]

    [15]

    Guo X, Wang X, Zheng W, Tang W H 2010 Acta Phys. Sin. 59 2815 (in Chinese) [郭熹, 王霞, 郑鹉, 唐为华 2010 物理学报 59 2815]

    [16]

    Zhong C G, Cao H X, Fang J H, Jiang X F, Ji X M, Dong Z C 2010 Appl. Phys. Lett. 97 049103

    [17]

    Oak M A, Lee J H, Jang H M 2011 Phys. Rev. B 84 153106

    [18]

    Zhong C G, Fang J H, Yang J H, Dong Z C, Jiang X F 2011 Acta Phys. Chim. Sin. 27 388 (in Chinese) [仲崇贵, 方靖淮, 杨建华, 董正超, 江学范2011 物理化学学报 27 388]

    [19]

    Mochizuki M, Furukawa N 2009 J. Phys. Soc. Jpn. 78 053704

    [20]

    Mochizuki M, Furukawa N 2009 Phys. Rev. B 80 134416

    [21]

    Lorenz B, Litvinchuk A P, Gospodinov M M, Chu C W 2004 Phys. Rev. Lett. 92 087204

    [22]

    Brown P J, Chatterji T 2008 Phys. Rev. B 77 104407

    [23]

    Fiebig M, Lottermoser T, Pisarec R V 2003 J. Appl. Phys. 93 8194

    [24]

    Nandi S, Kreyssig A, Tan L Kim J W, Yan J Q, Lang J C, Haskel D, McQueeney J, Goldman A I 2008 Phys. Rev. Lett. 100 217201

    [25]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [26]

    Blochl P E 1994 Phys. Rev. B 50 17953

    [27]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [28]

    Choi W S, Kim D G, Seo S S A, Moon S J, Lee D, Lee J H, Lee H S 2008 Phys. Rev. B 77 045137

    [29]

    Kang J S, Han S W, Park J G, Wi S C, Lee S S, Kim G, Song H J, Shin H J, Jo W, Min B I 2005 Phys. Rev. B 71 092405

    [30]

    Souchkov A B, Simpson J R, Quijada M, Ishibashi H, Hur N, Ahn J S, Cheong S W, Millis A J, Drew H D 2003 Phys. Rev. Lett. 91 027203

    [31]

    Lee J S, Lee Y S, Noh T W, Char K, Park J, Oh S J, Park J H, Eom C B, Takeda T, Kanno R 2001 Phys. Rev. B 64 245107

    [32]

    Filippetti A, Hill N A 2002 Phys. Rev. B 65 195120

  • [1]

    Ma J, Hu J M, Li Z, Nan C W 2011 Adv. Mater. 23 1062

    [2]

    Wang K F, Liu J M, Ren Z F 2009 Adv. Phys. 58 321

    [3]

    Lottermoser T, Lonkai T, Amann U, Hohlwein D, Ihringer J, Fiebig M 2004 Nature 430 541

    [4]

    Wadati H, Okamoto J, Garganourakis M, Scagnoli V, Staub U, Yamasaki Y, Nakao H, Murakami Y, Mochizuki M, Nakamura M, Kawasaki M, Tokura Y 2012 Phys. Rev. Lett. 108 047203

    [5]

    Han T C, Lin J G 2009 Appl. Phys. Lett. 94 082502

    [6]

    Cheong S W, Mostovoy M 2007 Nature Mater. 6 13

    [7]

    Eerenstein W, Mathur N D, Scott J F 2006 Nature 442 759

    [8]

    Litvinchuk A P, Iliev M N, Popov V N 2004 J. Phys.: Condens. Matter 16 809

    [9]

    Vajk O P, Kenzelmann M, Lynn J W, Kim S B, Cheong S W 2005 Phys. Rev. Lett. 94 087601

    [10]

    Katsufuji T, Mori S, Masaki M, Moritomo Y, Yamamoto N, Takagi H 2001 Phys. Rev. B 64 104419

    [11]

    Ueland B G, Lynn J W, Laver M, Choi Y J, Cheong S W 2010 Phys. Rev. Lett. 104 147204

    [12]

    Hur N, Jeong I K, Hundley M F, Kim S B, Cheong S B 2009 Phys. Rev. B 79 134120

    [13]

    Vermette J, Jandl S, Orlita M, Gospodinov M M 2012 Phys. Rev. B 85 134445

    [14]

    Zhong C G, Chen Q, Dong Z C, Fang J H 2011 Journal of Nantong University (Nat. Sci. Ed.) 10 58 (in Chinese) [仲崇贵, 陈强, 董正超, 方靖淮 2011 南通大学学报 (自然科学版) 10 58]

    [15]

    Guo X, Wang X, Zheng W, Tang W H 2010 Acta Phys. Sin. 59 2815 (in Chinese) [郭熹, 王霞, 郑鹉, 唐为华 2010 物理学报 59 2815]

    [16]

    Zhong C G, Cao H X, Fang J H, Jiang X F, Ji X M, Dong Z C 2010 Appl. Phys. Lett. 97 049103

    [17]

    Oak M A, Lee J H, Jang H M 2011 Phys. Rev. B 84 153106

    [18]

    Zhong C G, Fang J H, Yang J H, Dong Z C, Jiang X F 2011 Acta Phys. Chim. Sin. 27 388 (in Chinese) [仲崇贵, 方靖淮, 杨建华, 董正超, 江学范2011 物理化学学报 27 388]

    [19]

    Mochizuki M, Furukawa N 2009 J. Phys. Soc. Jpn. 78 053704

    [20]

    Mochizuki M, Furukawa N 2009 Phys. Rev. B 80 134416

    [21]

    Lorenz B, Litvinchuk A P, Gospodinov M M, Chu C W 2004 Phys. Rev. Lett. 92 087204

    [22]

    Brown P J, Chatterji T 2008 Phys. Rev. B 77 104407

    [23]

    Fiebig M, Lottermoser T, Pisarec R V 2003 J. Appl. Phys. 93 8194

    [24]

    Nandi S, Kreyssig A, Tan L Kim J W, Yan J Q, Lang J C, Haskel D, McQueeney J, Goldman A I 2008 Phys. Rev. Lett. 100 217201

    [25]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [26]

    Blochl P E 1994 Phys. Rev. B 50 17953

    [27]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [28]

    Choi W S, Kim D G, Seo S S A, Moon S J, Lee D, Lee J H, Lee H S 2008 Phys. Rev. B 77 045137

    [29]

    Kang J S, Han S W, Park J G, Wi S C, Lee S S, Kim G, Song H J, Shin H J, Jo W, Min B I 2005 Phys. Rev. B 71 092405

    [30]

    Souchkov A B, Simpson J R, Quijada M, Ishibashi H, Hur N, Ahn J S, Cheong S W, Millis A J, Drew H D 2003 Phys. Rev. Lett. 91 027203

    [31]

    Lee J S, Lee Y S, Noh T W, Char K, Park J, Oh S J, Park J H, Eom C B, Takeda T, Kanno R 2001 Phys. Rev. B 64 245107

    [32]

    Filippetti A, Hill N A 2002 Phys. Rev. B 65 195120

  • [1] 周畅, 龚蕊, 冯小波. 垂直电场下扭转双层石墨烯光学吸收性质的理论研究. 物理学报, 2022, 71(5): 054203. doi: 10.7498/aps.71.20211406
    [2] 周畅, 龚蕊, 冯小波. 垂直电场下扭转双层石墨烯光学吸收性质的理论研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211406
    [3] 周勇, 李纯健, 潘昱融. 磁致伸缩/压电层叠复合材料磁电效应分析. 物理学报, 2018, 67(7): 077702. doi: 10.7498/aps.67.20172307
    [4] 王藩侯, 杨俊升, 黄多辉, 曹启龙, 袁娣. 第一原理研究Mn掺杂LiNbO3晶体的磁性和光吸收性质. 物理学报, 2015, 64(9): 097102. doi: 10.7498/aps.64.097102
    [5] 李诚迪, 赵敬龙, 仲崇贵, 董正超, 方靖淮. 量子顺电EuTiO3材料基态磁性的第一性原理研究. 物理学报, 2014, 63(8): 087502. doi: 10.7498/aps.63.087502
    [6] 陈英良, 冯小波, 侯德东. 单层与双层石墨烯的光学吸收性质研究. 物理学报, 2013, 62(18): 187301. doi: 10.7498/aps.62.187301
    [7] 鲍丙豪, 骆英. 纵向极化与磁化叠层复合材料磁电效应理论及计算. 物理学报, 2011, 60(6): 067504. doi: 10.7498/aps.60.067504
    [8] 马小凤, 王懿喆, 周呈悦. a-Si ∶H/SiO2多量子阱材料制备及其光学性能和微结构研究. 物理学报, 2011, 60(6): 068102. doi: 10.7498/aps.60.068102
    [9] 李廷先, 张铭, 王光明, 郭宏瑞, 李扩社, 严辉. La2/3Sr1/3MnO3/BaTiO3复合薄膜的制备及其电致磁电效应研究. 物理学报, 2011, 60(8): 087501. doi: 10.7498/aps.60.087501
    [10] 刘建军. 掺Ga对ZnO电子态密度和光学性质的影响. 物理学报, 2010, 59(9): 6466-6472. doi: 10.7498/aps.59.6466
    [11] 仲崇贵, 蒋青, 方靖淮, 江学范, 罗礼进. 1-3型纳米多铁复合薄膜中电场诱导的磁化研究. 物理学报, 2009, 58(10): 7227-7234. doi: 10.7498/aps.58.7227
    [12] 卞雷祥, 文玉梅, 李平. 磁致伸缩/压电叠层复合材料磁-机-电耦合系数分析. 物理学报, 2009, 58(6): 4205-4213. doi: 10.7498/aps.58.4205
    [13] 孙源, 明星, 孟醒, 孙正昊, 向鹏, 兰民, 陈岗. 多铁材料BaCoF4电子结构的第一性原理研究. 物理学报, 2009, 58(8): 5653-5660. doi: 10.7498/aps.58.5653
    [14] 孙源, 黄祖飞, 范厚刚, 明星, 王春忠, 陈岗. BiFeO3中各离子在铁电相变中作用本质的第一性原理研究. 物理学报, 2009, 58(1): 193-200. doi: 10.7498/aps.58.193.1
    [15] 曹鸿霞, 张 宁. 过渡族元素掺杂BaTiO3-Tb1-xDyxFe2-y层状复合材料中的磁电效应. 物理学报, 2008, 57(10): 6582-6586. doi: 10.7498/aps.57.6582
    [16] 阳昌海, 文玉梅, 李 平, 卞雷祥. 偏置磁场对磁致伸缩/弹性/压电层合材料磁电效应的影响. 物理学报, 2008, 57(11): 7292-7297. doi: 10.7498/aps.57.7292
    [17] 周剑平, 施 展, 刘 刚, 何泓材, 南策文. 铁电/铁磁1-3型结构复合材料磁电性能分析. 物理学报, 2006, 55(7): 3766-3771. doi: 10.7498/aps.55.3766
    [18] 万 红, 谢立强, 吴学忠, 刘希从. TbDyFe/PZT层状复合材料的磁电效应研究. 物理学报, 2005, 54(8): 3872-3877. doi: 10.7498/aps.54.3872
    [19] 万 红, 沈仁发, 吴学忠. 对称磁电层合板磁电转换效应理论研究. 物理学报, 2005, 54(3): 1426-1430. doi: 10.7498/aps.54.1426
    [20] 施 展, 南策文. 铁电/铁磁三相颗粒复合材料的磁电性能计算. 物理学报, 2004, 53(8): 2766-2770. doi: 10.7498/aps.53.2766
计量
  • 文章访问数:  3557
  • PDF下载量:  727
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-02-05
  • 修回日期:  2013-03-12
  • 刊出日期:  2013-06-05

多铁材料HoMnO3中光学吸收和畸变驱动的第一性原理研究

  • 1. 南通大学理学院, 南通 226007;
  • 2. 南通航运职业技术学院基础部, 南通 226010;
  • 3. 苏州大学物理科学与技术学院, 苏州 215006
    基金项目: 国家自然科学基金(批准号: 10974104, 50832002)、江苏省自然科学基金(批准号: BK2012655)、江苏省教育厅青蓝工程和南通大学博士研究生科研启动基金资助的课题.

摘要: 六角钙钛矿结构锰氧化物HoMnO3磁电效应的研究近年来已成为多铁性材料研究中极其重要的一个方面. 本文基于广义梯度近似下的密度泛函理论, 考虑电子自旋的非共线磁性结构, 计算研究了 d电子在位库仑作用和自旋-轨道耦合作用对HoMnO3的电子结构、 轨道杂化和能态密度分布的影响. 结果显示, 当考虑在位库仑排斥势U作用时, 强烈的Ho 5d与O(3, 4) 2p以及Mn 3d与O(1, 2) 2p间的轨道杂化是驱动HoMnO3发生铁电畸变的根源, 此时能隙和能带的分布为解释实验中发现的强烈的光学吸收峰提供了理论依据, 而自旋-轨道耦合使得Mn 3d-O(3, 4) 2p在 ab平面内的轨道交迭略有增强, 平面内部分能带简并消除, HoMnO3材料呈现典型的间接性能隙绝缘体特征.

English Abstract

参考文献 (32)

目录

    /

    返回文章
    返回