Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Theoretical studies on optical absorption in twisted bilayer graphene under vertical electric field

Zhou Chang Gong Rui Feng Xiao-Bo

Citation:

Theoretical studies on optical absorption in twisted bilayer graphene under vertical electric field

Zhou Chang, Gong Rui, Feng Xiao-Bo
PDF
HTML
Get Citation
  • The interlayer twist angle is an important parameter that can tune the physical properties of graphene in a wide wavelength range. In this paper, we employ an effective continuum model to calculate the band structure of twisted bilayer graphene with different twist angles in the presence and absence of vertical electric field. Based on the transition rate of the electron-photon interaction, we calculate and simulate the optical absorption spectra caused by the interband and intraband transitions around the van Hove singularities. The calculation results show that the optical absorption caused by the interband transitions occurs in the wavelength range from visible light to near-infrared while it appears in far-infrared for intraband transitions. The optical absorption coefficient of the intra-band transitions is almost two orders of magnitude larger than that of inter-band transitions. In the absence of an external electric field, as the twist angle increases, the absorption peak of the inter band transition moves from the infrared light band to the visible light band, but the resonant peak position of its intra-band transition does not change. At the same time, the absorption coefficient values corresponding to the above two transitions will increase. When an electric field is applied perpendicular to the twisted bilayer graphene, the symmetry of the initial band structure of bilayer graphene is destroyed, which results in the splitting of the absorption peaks associated the with interband transitions, and the distance between the two splitting peaks increases with the electric field intensity increasing; while the position and amplitude of the absorption peak associated with the intraband transition are completely unaffected by the applied electric field. The theoretical calculation results in this paper can provide the theoretical guidance for further applying twisted graphene to optoelectronic devices such as tunable dual-band filters.
      Corresponding author: Feng Xiao-Bo, fengxiaobo1220@gmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11304275, 11764047).
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Gregorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109Google Scholar

    [3]

    Zhou S Y, Gweon G H, Graf J, Fedorov A V, Spataru C D, Diehl R D, Kopelevich Y, Lee D H, Louie S G, Lanzara A 2006 Nat. Phys. 2 595Google Scholar

    [4]

    Mak K F, Sfeir M Y, Wu Y, Lui C H, Misewich J A, Heinz T F 2008 Phys. Rev. Lett. 101 196405Google Scholar

    [5]

    Stauber T, Peres N, Geim A K 2008 Phys. Rev. B 78 085432Google Scholar

    [6]

    Rutter G M, Crain J N, Guisinger N P, Li T, First P N, Stroscio J A 2007 Science 317 219Google Scholar

    [7]

    Geim A K, Grigorieva I V 2013 Nature 499 419Google Scholar

    [8]

    Dai S, Xiang Y, Srolovitz D J 2016 Nano Lett. 16 5923Google Scholar

    [9]

    Li G, Luican A, Santos J, Neto A, Reina A, Kong J, Andrei E Y 2009 Nature 6 109Google Scholar

    [10]

    Yan W, Liu M X, Dou R F, Meng L, Feng L, Chu Z D, Zhang Y F 2012 Phys. Rev. Lett. 109 126801Google Scholar

    [11]

    Bistritzer R, MacDonald A H 2011 Proc. Natl. Acad. Sci. U. S. A. 108 12233Google Scholar

    [12]

    Bistritzer R, MacDonald A H 2011 Phys. Rev. B 84 035440Google Scholar

    [13]

    Moon P, Koshino M 2012 Phys. Rev. B 85 195458Google Scholar

    [14]

    Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P 2018 Nature 556 43Google Scholar

    [15]

    Liu J P, Dai X 2020 NPJ Comput. Mater. 6 57Google Scholar

    [16]

    Yang F, Song W, Meng F, Luo F, Luo S, Lin S, Gong Z, Cao J, Bernard E, Chan E, Yang L, Yao J 2020 Matter 3 1361Google Scholar

    [17]

    Deng B, Ma C, Wang Q, Yuan S, Watanabe K, Taniguchi T, Zhang F, Xia F 2020 Nat. Photonics 14 549Google Scholar

    [18]

    Yin J, Wang H, Peng H, Tan Z, Liao L, Lin L, Sun X, Koh A L, Chen Y, Peng H, Liu Z 2016 Nat. Commun. 7 10699Google Scholar

    [19]

    Ha S, Park N H, Kim H, Shin J, Choi J, Park S, Moon J, Chae K, Jung J, Lee J, Yoo Y, Park J, Ahn K J, Yeom D 2021 Light-Sci. Appl. 10 19Google Scholar

    [20]

    Yu K, Luan N V, Kim T, Jeon J, Kim J, Moon P, Lee Y H, Choi E J 2019 Phys. Rev. B 99 241405Google Scholar

    [21]

    Moon P, Koshino M 2013 Phys. Rev. B 87 205404Google Scholar

    [22]

    Moon P, Son Y, Koshino M 2014 Phys. Rev. B 90 155427Google Scholar

    [23]

    Tabert C Jand Nicol E J 2013 Phys. Rev. B 87 121402Google Scholar

    [24]

    Stauber T, San-Jose P, Brey L 2013 New J. Phys. 15 113050Google Scholar

    [25]

    McCann E 2006 Phys. Rev. B 74 161403Google Scholar

    [26]

    McCann E, Abergel D S L, Fal’ko V I 2007 Solid State Commun. 143 110Google Scholar

    [27]

    Aoki M, Amawashi H 2010 Solid State Commun. 142 123Google Scholar

    [28]

    Lu C L, Chang C P, Huang Y C, Chen R B, Lin M L 2006 Phys. Rev. B 73 144427Google Scholar

    [29]

    Brihuega I, Mallet P, González-Herrero H, Laissardière G T D, Ugeda M M, Magaud L, Gómez-Rodríguez J M, Ynduráin F, Veuillen J Y 2012 Phys. Rev. Lett. 109 196802Google Scholar

    [30]

    Yan W, Meng L, Liu M, Qiao J B, Chu Z D, Dou R F, Liu Z, Nie J C, Naugle D G, He L 2014 Phys. Rev. B 90 115402Google Scholar

    [31]

    Lopes dos Santos J M B, Peres N M R, Castro Neto A H 2007 Phys. Rev. Lett. 99 256802Google Scholar

    [32]

    Gail R D, Goerbig M O, Guinea F, Montambaux G, Neto A H C 2011 Phys. Rev. B 84 045436Google Scholar

    [33]

    Koshino M 2015 New J. Phys. 17 015014Google Scholar

    [34]

    Yin L, Qiao J, Wang W, Zuo W, Yan W, Xu R, Dou R, Nie J, He L 2015 Phys. Rev. B 92 201408Google Scholar

    [35]

    San-Jose P, Prada E 2013 Phys. Rev. B 88 121408Google Scholar

    [36]

    Morell E S, Correa J D, Vargas P, Pacheco M, Barticevic Z 2010 Phys. Rev. B 82 121407Google Scholar

    [37]

    Shallcross S, Sharma S, Pankratov O 2013 Phys. Rev. B 87 245403Google Scholar

    [38]

    Laissardière G T D, Mayou D, Magaud L 2010 Nano Lett. 10 804Google Scholar

    [39]

    Luican A, Li G, Reina A, Kong J, Nair R R, Novoselov K S, Geim A K, Andrei E Y 2011 Phys. Rev. Lett. 106 126802Google Scholar

    [40]

    Mele E J 2012 J. Phys. D: Appl. Phys. 45 154004Google Scholar

    [41]

    McCann E, Fal’ko V I 2006 Phys. Rev. Lett. 96 086805Google Scholar

  • 图 1  (a) tBLG的原子结构图, θ为层间扭转角度; (b) tBLG的第一布里渊区, KKθ 为来自于上下两个单层石墨烯的狄拉克点

    Figure 1.  (a) Atomic structure for tBLG, θ is the twist angle between layers; (b) the first Brillouin region of tBLG, where K and Kθ are the Dirac points of the upper and lower monolayers.

    图 2  无外电场时θ = 3.89°的tBLG三维能带结构图. KK θ为两个狄拉克点, VHS1和VHS2为两个范霍夫奇点

    Figure 2.  The 3D band structure of tBLG at θ = 3.89° without external electric field. K and K θ are two separate Dirac points, VHS1 and VHS2 are two van Hove singularities.

    图 3  无外电场时四个扭转角度下tBLG的能带结构图 (a) θ = 3.89°; (b) θ = 5.09°; (c) θ = 7.34°; (d) θ = 9.43°. 其中红色(蓝色)箭头表示可能发生的带间(带内)跃迁, 蓝色虚线为费米面

    Figure 3.  The energy band structure of TBG at four twisted angles without electric field: (a) θ = 3.89°; (b) θ = 5.09°; (c) θ = 7.34°; (d) θ = 9.43°. Red (blue) arrow is the possible interband (intraband) transitions, and the dashed blue line shows the Fermi level.

    图 4  不同扭转角度下tBLG在范霍夫奇点附近的光学吸收谱 (a) 带间跃迁光学吸收谱; (b) 带内跃迁光学吸收谱

    Figure 4.  Optical spectrums for tBLG around VHS with 5 different twisted angles: (a) Optical spectrums for interband transitions; (b) optical spectrums for intraband transitions.

    图 5  不同外加电场下tBLG的能带结构图(θ = 3.89°) (a) U = 0 meV; (b) U = 40 meV; (c) U = 60 meV; (d) U = 100 meV. 其中箭头表示可能发生的带间或者带内跃迁, 蓝色虚线为费米面, 黑色虚线表示范霍夫奇点的位置

    Figure 5.  The energy band structure of tBLG at θ = 3.89° with or without electric field: (a) U = 0 meV; (b) U = 40 meV (c) U = 60 meV; (d) U = 100 meV. The arrows are the possible interband (intraband) transitions, and the dashed blue line shows the Fermi level, and the dashed black lines are the positions of VHS.

    图 6  不同电场强度下tBLG范霍夫奇点附近的光学吸收谱, 三种扭转角度下的带间跃迁吸收谱(左列)和带内跃迁吸收谱(右列) (a), (b) θ = 3.89°; (c), (d) θ = 6.01°; (e), (f) θ = 9.43°

    Figure 6.  Optical spectra for tBLG around VHS with different perpendicular electric field intensities, and optical spectra for interband transitions (left column) and Optical spectrums for intraband transitions (right column) under three twist angles: (a), (b) θ = 3.89°; (c), (d) θ = 6.01°; (e), (f) θ = 9.43°.

    表 1  不同电场强度下tBLG能带结构几个关键点的位置及带间能级差(θ = 3.89°)

    Table 1.  Positions of key points and energy level differences (θ = 3.89°) in the band structure of tBLG under different electric field intensities.

    U/meVVHS奇点位置带间跃迁能级差带内跃迁能级差
    k1Kk2KΔEα1/eVΔEα2/eVΔEβ/eV
    0000.75500.75500.11
    20–0.0150.0150.75110.75880.1101
    40–0.0300.0300.73060.76920.1101
    60–0.0400.0400.72890.78100.11
    80–0.0550.0550.71240.79760.11
    100–0.0650.0650.69770.81240.11
    DownLoad: CSV
  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Gregorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109Google Scholar

    [3]

    Zhou S Y, Gweon G H, Graf J, Fedorov A V, Spataru C D, Diehl R D, Kopelevich Y, Lee D H, Louie S G, Lanzara A 2006 Nat. Phys. 2 595Google Scholar

    [4]

    Mak K F, Sfeir M Y, Wu Y, Lui C H, Misewich J A, Heinz T F 2008 Phys. Rev. Lett. 101 196405Google Scholar

    [5]

    Stauber T, Peres N, Geim A K 2008 Phys. Rev. B 78 085432Google Scholar

    [6]

    Rutter G M, Crain J N, Guisinger N P, Li T, First P N, Stroscio J A 2007 Science 317 219Google Scholar

    [7]

    Geim A K, Grigorieva I V 2013 Nature 499 419Google Scholar

    [8]

    Dai S, Xiang Y, Srolovitz D J 2016 Nano Lett. 16 5923Google Scholar

    [9]

    Li G, Luican A, Santos J, Neto A, Reina A, Kong J, Andrei E Y 2009 Nature 6 109Google Scholar

    [10]

    Yan W, Liu M X, Dou R F, Meng L, Feng L, Chu Z D, Zhang Y F 2012 Phys. Rev. Lett. 109 126801Google Scholar

    [11]

    Bistritzer R, MacDonald A H 2011 Proc. Natl. Acad. Sci. U. S. A. 108 12233Google Scholar

    [12]

    Bistritzer R, MacDonald A H 2011 Phys. Rev. B 84 035440Google Scholar

    [13]

    Moon P, Koshino M 2012 Phys. Rev. B 85 195458Google Scholar

    [14]

    Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P 2018 Nature 556 43Google Scholar

    [15]

    Liu J P, Dai X 2020 NPJ Comput. Mater. 6 57Google Scholar

    [16]

    Yang F, Song W, Meng F, Luo F, Luo S, Lin S, Gong Z, Cao J, Bernard E, Chan E, Yang L, Yao J 2020 Matter 3 1361Google Scholar

    [17]

    Deng B, Ma C, Wang Q, Yuan S, Watanabe K, Taniguchi T, Zhang F, Xia F 2020 Nat. Photonics 14 549Google Scholar

    [18]

    Yin J, Wang H, Peng H, Tan Z, Liao L, Lin L, Sun X, Koh A L, Chen Y, Peng H, Liu Z 2016 Nat. Commun. 7 10699Google Scholar

    [19]

    Ha S, Park N H, Kim H, Shin J, Choi J, Park S, Moon J, Chae K, Jung J, Lee J, Yoo Y, Park J, Ahn K J, Yeom D 2021 Light-Sci. Appl. 10 19Google Scholar

    [20]

    Yu K, Luan N V, Kim T, Jeon J, Kim J, Moon P, Lee Y H, Choi E J 2019 Phys. Rev. B 99 241405Google Scholar

    [21]

    Moon P, Koshino M 2013 Phys. Rev. B 87 205404Google Scholar

    [22]

    Moon P, Son Y, Koshino M 2014 Phys. Rev. B 90 155427Google Scholar

    [23]

    Tabert C Jand Nicol E J 2013 Phys. Rev. B 87 121402Google Scholar

    [24]

    Stauber T, San-Jose P, Brey L 2013 New J. Phys. 15 113050Google Scholar

    [25]

    McCann E 2006 Phys. Rev. B 74 161403Google Scholar

    [26]

    McCann E, Abergel D S L, Fal’ko V I 2007 Solid State Commun. 143 110Google Scholar

    [27]

    Aoki M, Amawashi H 2010 Solid State Commun. 142 123Google Scholar

    [28]

    Lu C L, Chang C P, Huang Y C, Chen R B, Lin M L 2006 Phys. Rev. B 73 144427Google Scholar

    [29]

    Brihuega I, Mallet P, González-Herrero H, Laissardière G T D, Ugeda M M, Magaud L, Gómez-Rodríguez J M, Ynduráin F, Veuillen J Y 2012 Phys. Rev. Lett. 109 196802Google Scholar

    [30]

    Yan W, Meng L, Liu M, Qiao J B, Chu Z D, Dou R F, Liu Z, Nie J C, Naugle D G, He L 2014 Phys. Rev. B 90 115402Google Scholar

    [31]

    Lopes dos Santos J M B, Peres N M R, Castro Neto A H 2007 Phys. Rev. Lett. 99 256802Google Scholar

    [32]

    Gail R D, Goerbig M O, Guinea F, Montambaux G, Neto A H C 2011 Phys. Rev. B 84 045436Google Scholar

    [33]

    Koshino M 2015 New J. Phys. 17 015014Google Scholar

    [34]

    Yin L, Qiao J, Wang W, Zuo W, Yan W, Xu R, Dou R, Nie J, He L 2015 Phys. Rev. B 92 201408Google Scholar

    [35]

    San-Jose P, Prada E 2013 Phys. Rev. B 88 121408Google Scholar

    [36]

    Morell E S, Correa J D, Vargas P, Pacheco M, Barticevic Z 2010 Phys. Rev. B 82 121407Google Scholar

    [37]

    Shallcross S, Sharma S, Pankratov O 2013 Phys. Rev. B 87 245403Google Scholar

    [38]

    Laissardière G T D, Mayou D, Magaud L 2010 Nano Lett. 10 804Google Scholar

    [39]

    Luican A, Li G, Reina A, Kong J, Nair R R, Novoselov K S, Geim A K, Andrei E Y 2011 Phys. Rev. Lett. 106 126802Google Scholar

    [40]

    Mele E J 2012 J. Phys. D: Appl. Phys. 45 154004Google Scholar

    [41]

    McCann E, Fal’ko V I 2006 Phys. Rev. Lett. 96 086805Google Scholar

  • [1] Lü Yong-Jie, Chen Yan, Ye Fang-Cheng, Cai Li-Bin, Dai Zi-Jie, Ren Yun-Peng. Influcence of external electric field and B/N doping on the band gap of stanene. Acta Physica Sinica, 2024, 73(8): 083101. doi: 10.7498/aps.73.20231935
    [2] Liu Yi-Jun, Chen Yi-Wei, Zhu Yu-Jian, Huang Yan, An Dong-Dong, Li Qing-Xin, Gan Qi-Kang, Zhu Wang, Song Jun-Wei, Wang Kai-Yuan, Wei Ling-Nan, Zong Qi-Jun, Liu Shuo-Han, Li Shi-Wei, Liu Zhi, Zhang Qi, Xu Ying-Hai, Cao Xin-Yu, Yang Ao, Wang Hao-Lin, Yang Bing, Andy Shen, Yu Ge-Liang, Wang Lei. Isospin polarized Chern insulator state of C = 4 in twisted double bilayer graphene. Acta Physica Sinica, 2023, 72(14): 147303. doi: 10.7498/aps.72.20230497
    [3] Jiang Yang-Yang, Xia Xiao-Shuang, Li Jian-Bo. Four-wave mixing properties in bilayer graphene nanosystem. Acta Physica Sinica, 2023, 72(12): 126801. doi: 10.7498/aps.72.20230012
    [4] Zhang Lun, Chen Hong-Li, Yi Yu, Zhang Zhen-Hua. Electronic and optical properties and quantum tuning effects of As/Hfs2 van der Waals heterostructure. Acta Physica Sinica, 2022, 71(17): 177304. doi: 10.7498/aps.71.20220371
    [5] Cui Yang, Li Jing, Zhang Lin. Electronic structure of graphene nanoribbons under external electric field by density functional tight binding. Acta Physica Sinica, 2021, 70(5): 053101. doi: 10.7498/aps.70.20201619
    [6] Cai Xiao-Xiao, Luo Guo-Yu, Li Zhi-Qiang, He Yan. Optical conductivity of twisted bilayer graphene under heterostrain. Acta Physica Sinica, 2021, 70(18): 187301. doi: 10.7498/aps.70.20210110
    [7] Theoretical studies on optical absorption in twisted bilayer graphene under vertical electric field. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211406
    [8] Lin Kui-Xin,  Li Duo-Sheng,  Ye Yin,  Jiang Wu-Gui,  Ye Zhi-Guo,  Qinghua Qin,  Zou Wei. Review of fabrication methods, physical properties, and applications of twisted bilayer graphene. Acta Physica Sinica, 2018, 67(24): 246802. doi: 10.7498/aps.67.20181432
    [9] Yang Yun-Chang, Wu Bin, Liu Yun-Qi. Synthesis of bilayer graphene via chemical vapor deposition and its optoelectronic devices. Acta Physica Sinica, 2017, 66(21): 218101. doi: 10.7498/aps.66.218101
    [10] Wang Fan-Hou, Yang Jun-Sheng, Huang Duo-Hui, Cao Qi-Long, Yuan Di. Study on magnetic and optical properties of Mn-doped LiNbO3 by using the first principles. Acta Physica Sinica, 2015, 64(9): 097102. doi: 10.7498/aps.64.097102
    [11] Dong Hai-Ming. Electrically-controlled nonlinear terahertz optical properties of graphene. Acta Physica Sinica, 2013, 62(23): 237804. doi: 10.7498/aps.62.237804
    [12] Lou Shu-Qin, Lu Wen-Liang, Wang Xin. A side-leakage photonic crystal fiber torsion sensor for measuring torsion angle and determining torsion direction simultaneously. Acta Physica Sinica, 2013, 62(9): 090701. doi: 10.7498/aps.62.090701
    [13] Chen Qiang, Zhong Chong-Gui, Yuan Guo-Qiu, Dong Zheng-Chao, Fang Jing-Huai. Research on optical absorption and distortion driving in multiferroic HoMnO3 from the first principles. Acta Physica Sinica, 2013, 62(12): 127502. doi: 10.7498/aps.62.127502
    [14] He Long, Song Yun. Numerical study of the superconductor-insulator transition in double-layer graphene driven by disorder. Acta Physica Sinica, 2013, 62(5): 057303. doi: 10.7498/aps.62.057303
    [15] Chen Ying-Liang, Feng Xiao-Bo, Hou De-Dong. Optical absorptions in monolayer and bilayer graphene. Acta Physica Sinica, 2013, 62(18): 187301. doi: 10.7498/aps.62.187301
    [16] Ma Xiao-Feng, Wang Yi-Zhe, Zhou Cheng-Yue. Structural and optical properties of a-Si ∶H/SiO2 multiple quantum wells. Acta Physica Sinica, 2011, 60(6): 068102. doi: 10.7498/aps.60.068102
    [17] Feng Wei, Gao Zhong-Kuo. Simulation of physical properties of organic photovoltaic cell. Acta Physica Sinica, 2008, 57(4): 2567-2573. doi: 10.7498/aps.57.2567
    [18] Chen Yi-Kuang, Lin Kui-Xun, Luo Zhi, Liang Rui-Sheng, Zhou Fu-Fang. Aluminum-induced rapid crystallization of a-Si films at low temperatures in an electric field and microstructure analyses of the crystallized films. Acta Physica Sinica, 2004, 53(2): 582-586. doi: 10.7498/aps.53.582
    [19] Hou Zhu-Feng, Zhu Zhi-Zhong, Huang Mei-Chun, Huang Rong-Bin, Zheng Lan-Sun. . Acta Physica Sinica, 2002, 51(7): 1591-1595. doi: 10.7498/aps.51.1591
    [20] ZHANG QI-FENG, HOU SHI-MIN, SHAO QING-YI, LIU SHENG, LIU WEI-MIN, XUE ZENG-QUAN, WU JIN-LEI. STUDY OF ENHANCED PHOTOABSORPTION OF BaO THIN FILMS IN THE NEAR-ULTRAVIOLET BAND WITH APPLIED VERTICAL ELECTRIC FIELD ON THE SURFACE. Acta Physica Sinica, 2000, 49(10): 2089-2093. doi: 10.7498/aps.49.2089
Metrics
  • Abstract views:  4138
  • PDF Downloads:  116
  • Cited By: 0
Publishing process
  • Received Date:  30 July 2021
  • Accepted Date:  13 October 2021
  • Available Online:  24 February 2022
  • Published Online:  05 March 2022

/

返回文章
返回