-
Graphene is a novel quasi-two-dimensional honeycomb nanomaterial. It exhibits excellent properties and modification options, and the layer-number and configuration of graphene have an important influence on its performance. The quantum state of a quasi-particle in a solid is determined by its own symmetrical nature. The twisted bilayer graphene breaks the symmetry and produces a long-period Moiré pattern due to the slight misalignment between the honeycomb lattices of each layer, which leads to a strong coupling between the layers, and thus changing some physical properties of graphene such as electronic energy band, phonon dispersion, and energy barrier and presents unique performance. For example, the superconductor phase transition can be excited by the gate voltage. The band gap can be continuously controlled in a range of 0-250 meV, and the responsiveness of the photoelectric effect is 80 times higher than that of the single-layer graphene. Therefore, it is of great significance to study the functionalization of twisted bilayer graphene. At the same time, the theoretical and experimental research progress of the transformation of the twisted bilayer layered graphene into the diamond-like carbon is also discussed, which presents the structure and performance of diamond-like carbon. It is found that hydrogenated twisted bilayer graphene bonds between layers and forms sp3 hybrid bonds, which transforms into a diamond-like structure. The number and distribution of sp3 hybrid bonds have an important influence on its performance. The twist angle of twisted bilayer graphene affects its phase transition structure and energy barrier. The effect of the twist angle of the twisted bilayer graphene on its intrinsic properties is further evaluated and reveals the behavioral characteristics of this novel nanomaterial. The unique properties of twisted bilayer graphene give rise to a wide range of applications. It is the key to the application of twisted bilayer graphene with a large area, high quality and controlled twist angle. The mechanical exfoliation method can prepare angle-controlled twisted bilayer graphene, but there are problems such as low efficiency and inability to prepare large-area twisted bilayer graphene. The large-area twisted bilayer graphene can be prepared directly by epitaxial growth and chemical vapor deposition methods, but the twist angle cannot be precisely controlled.
Finally, we mention how to control the preparation of twisted bilayer graphene, analyze its regulation mechanism, and discuss the shortcomings and development trends of those processes. Therefore, in this paper, the three aspects of the transport properties, crystal structure transformation and preparation of twisted bilayer graphene are expounded, and its potential application in the field of advanced electronic devices is also prospected.-
Keywords:
- graphene /
- twist angle /
- property manipulation /
- numerical simulation
[1] Li D S, Ye Y, Liao X J, Qin Q H 2018 Nano Res. 11 1642
[2] Li D S, Zuo D W, Xiang B K, Chen R F, Lu W Z, W M 2008 Solid State Ion. 179 1263
[3] Kroto H W, Heath J R, O'Brien S C, Curl R F, Smalley R E 1985 Nature 318 162
[4] Iijima S 1991 Nature 354 56
[5] Novoselov K S, Geim A K, Morozov S V, Jiang D A, Zhang Y, Dubonos S V, Firsov A A 2004 Science 306 666
[6] Novoselov K S, Jiang Z, Zhang Y, Morozov S V, Stormer H L, Zeitler U, Geim A K 2007 Science 315 1379
[7] Qiao Z, Ren W, Chen H, Bellaiche L, Zhang Z, MacDonald A H, Niu Q 2014 Phys. Rev. Lett. 112 116404
[8] Peng Y, Lu B, Chen S https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.201801995 [2018-9-17]
[9] Ding R, Li W H, Wang X, Gui T J, Li B J, Han P, Tian H W, Liu A, Wang X, Liu X J, Gao X, Wang W, Song L Y 2018 J. Alloy. Compd. 764 1039
[10] Dai S, Xiang Y, Srolovitz D J 2016 Nano Lett. 16 5923
[11] Ohta T, Robinson J T, Feibelman P J, Bostwick A, Rotenberg E, Beechem T E 2012 Phys. Rev. Lett. 109 186807
[12] Schmidt H, Lüdtke T, Barthold P, McCann E, Fal'ko V I, Haug R J 2008 Appl. Phys. Lett. 93 172108
[13] Haering R R 1958 Can. J. Phys. 36 352
[14] Gao Y, Cao T, Cellini F, Berger C, de Heer W A, Tosatti E, Bongiorno A 2018 Nature Nanotech. 13 133
[15] Liu M, Artyukhov V I, Lee H, Xu F, Yakobson B I 2013 ACS Nano 7 10075
[16] Martins L G P, Matos M J, Paschoal A R, Freire P T, Andrade N F, Aguiar A L, Kong J, Neves Bernardo R A, Oliveira do A B, Souza Filho A G 2017 Nat. Commun. 8 96
[17] Manaf M N, Santoso I, Hermanto A 2015 The 5th International Conference on Mathematics and Natural Sciences Bandung, Indonesia, Novembe 2–3, 2014 p070004
[18] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P 2018 Nature 556 43
[19] Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Ashoori R C 2018 Nature 556 80
[20] Xu X, Dou S X, Wang X L, Kim J H, Stride J A, Choucair M, Ringer S P 2010 Supercond. Sci. Tech. 23 085003
[21] Uchoa B, Castro Neto A H 2007 Phys. Rev. Lett. 98 146801
[22] Xue M, Chen G, Yang H, Zhu Y, Wang D, He J, Cao T 2012 J. Am. Chem. Soc. 134 6536
[23] Roy B, Juricic 2018 arXiv: 1803.11190v2 [cond-mat.mes-hall]
[24] González J, Stauber T 2018 arXiv: 1807.01275v1 [cond-mat.mes-hall]
[25] Po H C, Zou L, Vishwanath A, Senthil T 2018 arXiv: 1803.09742v2 [cond-mat.str-el]
[26] Lian B, Wang Z, Bernevig B A 2018 arXiv: 1807.04382v2 [cond-mat.mes-hall]
[27] Wang Y, Ni Z, Liu L, Liu Y, Cong C, Yu T, Shen Z 2010 ACS Nano 4 4074
[28] Moon P, Koshino M 2013 Phys. Rev. B 87 205404
[29] Yin J, Wang H, Peng H, Tan Z, Liao L, Lin L, Liu Z 2016 Nat. Commun. 7 10699
[30] Wu J B, Zhang X, Ijäs M, Han W P, Qiao X F, Li X L, Tan P H 2014 Nat. Commun. 5 5309
[31] Neto A C, Guinea F, Peres N M, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109
[32] Muniz A R, Maroudas D 2012 Phys. Rev. B 86 075404
[33] Denis P A 2010 Chem. Phys. Lett. 492 251
[34] Coletti C, Riedl C, Lee D S, Krauss B, Patthey L, von Klitzing K, Starke U 2010 Phys. Rev. B 81 235401
[35] Varykhalov A, Scholz M R, Kim T K, Rader O 2010 Phys. Rev. B 82 121101
[36] Zhang Y, Tang T T, Girit C, Hao Z, Martin M C, Zettl A, Wang F 2009 Nature 459 820
[37] Sboychakov A O, Rozhkov A V, Rakhmanov A L, Nori F 2017 arXiv:1707.08886v1 [cond-mat.str-el]
[38] Li H, Ying H, Chen X, Nika D L, Cocemasov A I, Cai W, Chen S 2014 Nanoscale 6 13402
[39] Cocemasov A I, Nika D L, Balandin A A 2013 Phys. Rev. B 88 035428
[40] Nika D L, Cocemasov A I, Balandin A A 2014 Appl. Phys. Lett. 105 031904
[41] Limbu T B, Hahn K R, Mendoza F, Sahoo S, Razink J J, Katiyar R S, Weiner B R, Morell G 2017 Carbon 117 367
[42] Stankovich S, Dikin D A, Dommett G H, Kohlhaas K M, Zimney E J, Stach E A, Ruoff R S 2006 Nature 442 282
[43] Hall E H 1879 Am. J. Math. 2 287
[44] Zhang Y, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201
[45] Lee D S, Riedl C, Beringer T, Neto A C, von Klitzing K, Starke U, Smet J H 2011 Phys. Rev. Lett. 107 216602
[46] Moon P, Koshino M 2012 Phys. Rev. B 85 195458
[47] Löfwander T, San-Jose P, Prada E 2013 Phys. Rev. B 87 205429
[48] Marchenko D, Varykhalov A, Scholz M R, Bihlmayer G, Rashba E I, Rybkin A, Rader O 2012 Nat. Commun. 3 1232
[49] Vlassiouk I, Regmi M, Fulvio P, Dai S, Datskos P, Eres G, Smirnov S 2011 ACS Nano 5 6069
[50] Kawarada H 1996 Surf. Sci. Rep. 26 205
[51] Harpale A, Chew H B 2017 Carbon 117 82
[52] Boukhvalov D W, Katsnelson M I, Lichtenstein A I 2008 Phys. Rev. B 77 035427
[53] Frenklach M 1989 J. Appl. Phys. 65 5142
[54] Sofo J O, Chaudhari A S, Barber G D 2007 Phys. Rev. B 75 153401
[55] Elias D C, Nair R R, Mohiuddin T M G, Morozov S V, Blake P, Halsall M P, Ferrari A C, Boukhvalov D W, Katsnelson M I, Geim A K, Novoselov K S 2009 Science 323 610
[56] Zhu L, Hu H, Chen Q, Wang S, Wang J, Ding F 2011 Nanotechnology 22 185202
[57] Ao Z M, Hernández-Nieves A D, Peeters F M, Li S 2010 Appl. Phys. Lett. 97 233109
[58] Luo Z, Yu T, Kim K J, Ni Z, You Y, Lim S, Lin J 2009 ACS Nano 3 1781
[59] Zhou J, Wang Q, Sun Q, Chen X S, Kawazoe Y, Jena P 2009 Nano Lett. 9 3867
[60] Muniz A R, Maroudas D 2012 J. Appl. Phys. 111 043513
[61] Muniz A R, Maroudas D 2013 J. Phys. Chem. C 117 7315
[62] Campanera J M, Savini G, Suarez-Martinez I, Heggie M I 2007 Phys. Rev. B 75 235449
[63] Shallcross S, Sharma S, Pankratov O A 2008 J. Phys.: Condens. Matter 20 454224
[64] Dong J, Zhang K, Ding F 2015 Nano Res. 8 3887
[65] Zhang Y Y, Wang C M, Cheng Y, Xiang Y 2011 Carbon 49 4511
[66] Machado A S, Maroudas D, Muniz A R 2013 Appl. Phys. Lett. 103 013113
[67] Muniz A R, Machado A S, Maroudas D 2015 Carbon 81 663
[68] Kim K, Yankowitz M, Fallahazad B, Kang S, Movva H C, Huang S, Banerjee S K 2016 Nano Lett. 16 1989
[69] Cao Y, Luo J Y, Fatemi V, Fang S, Sanchez-Yamagishi J D, Watanabe K, Jarillo-Herrero P 2016 Phys. Rev. Lett. 117 116804
[70] Kim K, DaSilva A, Huang S, Fallahazad B, Larentis S, Taniguchi T, Tutuc E 2017 Proc. Natl. Acad. Sci. USA 114 3364
[71] Riedl C, Coletti C, Starke U 2010 J. Phys. D: Appl. Phys. 43 374009
[72] Emtsev K V, Bostwick A, Horn K, Jobst J, Kellogg G L, Ley L, Rotenberg E 2009 Nat. Mater. 8 203
[73] Al-Temimy A, Riedl C, Starke U 2009 Appl. Phys. Lett. 95 231907
[74] de Heer W A, Berger C, Wu X, First P N, Conrad E H, Li X, Potemski M 2007 Solid State Commun. 143 92
[75] Riedl C, Zakharov A A, Starke U 2008 Appl. Phys. Lett. 93 033106
[76] Sung J A, Moon P, Kim T H, Kim H W, Shin H C, Kim E H, Cha H W, Kahng S J, Kim P, Koshino M, Son Y W, Yang C W, Ahn J R 2018 arXiv: 1804.04261v1 [cond-mat.mes-hall]
[77] Chen J, Guo Y, Jiang L, Xu Z, Huang L, Xue Y, Ceng D, Wu B, Yu Gui, Liu Y 2014 Adv. Mater. 26 1348
[78] Yan Z, Peng Z, Sun Z, Yao J, Zhu Y, Liu Z, Tour J M 2011 ACS Nano 5 8187
[79] Chen J, Wen Y, Guo Y, Wu B, Huang L, Xue Y, Geng D, Wang D, Yu G, Liu Y 2011 J. Am. Chem. Soc. 133 17548
[80] Pang J, Mendes R G, Wrobel P S, Wlodarski M D, Ta H Q, Zhao L, Giebeler L, Trzebicka B, Gemming T, Fu L, Liu Z, Eckert J, Bachmatiuk A, Rümmeli M H 2017 ACS Nano 11 1946
[81] Peng Z, Yan Z, Sun Z, Tour J M 2011 ACS Nano 5 8241
[82] Nie S, Wu W, Xing S, Yu Q, Bao J, Pei S S, McCarty K F 2012 New J. Phys. 14 093028
[83] Liu J B, Li P J, Chen Y F, Wang Z G, Qi F, He J R, Zheng B J, Zhou J H, Zhang W L, Gu L, Li Y R 2015 Sci. Rep. 5 15285
[84] Liu L, Zhou H, Cheng R, Yu W J, Liu Y, Chen Y, Duan X 2012 ACS Nano 6 8241
[85] Gao L, Ren W, Xu H, Jin L, Wang Z, Ma T, Ma L P, Zhang Z, Fu Q, Peng L M, Bao X, Cheng H M 2012 Nat. Commun. 3 699
[86] Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, Ruff R S 2009 Science 324 1312
[87] Bae S, Kim H, Lee Y, Xu X, Park J S, Zheng Y, Balakrishnan J, Lei T, Kim H R, Song Y, Kim Y J, Kim K S, Özyilmaz B, Ahn J H, Hong B H, Iijima S 2010 Nat. Nanotech. 5 574
[88] Huang P Y, Ruiz-Vargas C S, van der Zande A M, Whitney W S, Levendorf M P, Kevek J W, Garg S, Alden J S, Hustedt C J, Zhu Y, Park J, Mceuen P L, Muller D A 2011 Nature 469 389
[89] Kosynkin D V, Higginbotham A L, Sinitskii A, Lomeda J R, Dimiev A, Price B K, Tour J M 2009 Nature 458 872
[90] Jiao L, Zhang L, Wang X, Diankov G, Dai H 2009 Nature 458 877
[91] Morell, E S, Vergara R, Pacheco M, Brey L, Chico L 2014 Phys. Rev. B 89 205405
[92] Xie, L, Wang H, Jin C, Wang X, Jiao L, Suenaga K, Dai H 2011 J. Am. Chem. Soc. 133 10394
-
[1] Li D S, Ye Y, Liao X J, Qin Q H 2018 Nano Res. 11 1642
[2] Li D S, Zuo D W, Xiang B K, Chen R F, Lu W Z, W M 2008 Solid State Ion. 179 1263
[3] Kroto H W, Heath J R, O'Brien S C, Curl R F, Smalley R E 1985 Nature 318 162
[4] Iijima S 1991 Nature 354 56
[5] Novoselov K S, Geim A K, Morozov S V, Jiang D A, Zhang Y, Dubonos S V, Firsov A A 2004 Science 306 666
[6] Novoselov K S, Jiang Z, Zhang Y, Morozov S V, Stormer H L, Zeitler U, Geim A K 2007 Science 315 1379
[7] Qiao Z, Ren W, Chen H, Bellaiche L, Zhang Z, MacDonald A H, Niu Q 2014 Phys. Rev. Lett. 112 116404
[8] Peng Y, Lu B, Chen S https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.201801995 [2018-9-17]
[9] Ding R, Li W H, Wang X, Gui T J, Li B J, Han P, Tian H W, Liu A, Wang X, Liu X J, Gao X, Wang W, Song L Y 2018 J. Alloy. Compd. 764 1039
[10] Dai S, Xiang Y, Srolovitz D J 2016 Nano Lett. 16 5923
[11] Ohta T, Robinson J T, Feibelman P J, Bostwick A, Rotenberg E, Beechem T E 2012 Phys. Rev. Lett. 109 186807
[12] Schmidt H, Lüdtke T, Barthold P, McCann E, Fal'ko V I, Haug R J 2008 Appl. Phys. Lett. 93 172108
[13] Haering R R 1958 Can. J. Phys. 36 352
[14] Gao Y, Cao T, Cellini F, Berger C, de Heer W A, Tosatti E, Bongiorno A 2018 Nature Nanotech. 13 133
[15] Liu M, Artyukhov V I, Lee H, Xu F, Yakobson B I 2013 ACS Nano 7 10075
[16] Martins L G P, Matos M J, Paschoal A R, Freire P T, Andrade N F, Aguiar A L, Kong J, Neves Bernardo R A, Oliveira do A B, Souza Filho A G 2017 Nat. Commun. 8 96
[17] Manaf M N, Santoso I, Hermanto A 2015 The 5th International Conference on Mathematics and Natural Sciences Bandung, Indonesia, Novembe 2–3, 2014 p070004
[18] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P 2018 Nature 556 43
[19] Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Ashoori R C 2018 Nature 556 80
[20] Xu X, Dou S X, Wang X L, Kim J H, Stride J A, Choucair M, Ringer S P 2010 Supercond. Sci. Tech. 23 085003
[21] Uchoa B, Castro Neto A H 2007 Phys. Rev. Lett. 98 146801
[22] Xue M, Chen G, Yang H, Zhu Y, Wang D, He J, Cao T 2012 J. Am. Chem. Soc. 134 6536
[23] Roy B, Juricic 2018 arXiv: 1803.11190v2 [cond-mat.mes-hall]
[24] González J, Stauber T 2018 arXiv: 1807.01275v1 [cond-mat.mes-hall]
[25] Po H C, Zou L, Vishwanath A, Senthil T 2018 arXiv: 1803.09742v2 [cond-mat.str-el]
[26] Lian B, Wang Z, Bernevig B A 2018 arXiv: 1807.04382v2 [cond-mat.mes-hall]
[27] Wang Y, Ni Z, Liu L, Liu Y, Cong C, Yu T, Shen Z 2010 ACS Nano 4 4074
[28] Moon P, Koshino M 2013 Phys. Rev. B 87 205404
[29] Yin J, Wang H, Peng H, Tan Z, Liao L, Lin L, Liu Z 2016 Nat. Commun. 7 10699
[30] Wu J B, Zhang X, Ijäs M, Han W P, Qiao X F, Li X L, Tan P H 2014 Nat. Commun. 5 5309
[31] Neto A C, Guinea F, Peres N M, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109
[32] Muniz A R, Maroudas D 2012 Phys. Rev. B 86 075404
[33] Denis P A 2010 Chem. Phys. Lett. 492 251
[34] Coletti C, Riedl C, Lee D S, Krauss B, Patthey L, von Klitzing K, Starke U 2010 Phys. Rev. B 81 235401
[35] Varykhalov A, Scholz M R, Kim T K, Rader O 2010 Phys. Rev. B 82 121101
[36] Zhang Y, Tang T T, Girit C, Hao Z, Martin M C, Zettl A, Wang F 2009 Nature 459 820
[37] Sboychakov A O, Rozhkov A V, Rakhmanov A L, Nori F 2017 arXiv:1707.08886v1 [cond-mat.str-el]
[38] Li H, Ying H, Chen X, Nika D L, Cocemasov A I, Cai W, Chen S 2014 Nanoscale 6 13402
[39] Cocemasov A I, Nika D L, Balandin A A 2013 Phys. Rev. B 88 035428
[40] Nika D L, Cocemasov A I, Balandin A A 2014 Appl. Phys. Lett. 105 031904
[41] Limbu T B, Hahn K R, Mendoza F, Sahoo S, Razink J J, Katiyar R S, Weiner B R, Morell G 2017 Carbon 117 367
[42] Stankovich S, Dikin D A, Dommett G H, Kohlhaas K M, Zimney E J, Stach E A, Ruoff R S 2006 Nature 442 282
[43] Hall E H 1879 Am. J. Math. 2 287
[44] Zhang Y, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201
[45] Lee D S, Riedl C, Beringer T, Neto A C, von Klitzing K, Starke U, Smet J H 2011 Phys. Rev. Lett. 107 216602
[46] Moon P, Koshino M 2012 Phys. Rev. B 85 195458
[47] Löfwander T, San-Jose P, Prada E 2013 Phys. Rev. B 87 205429
[48] Marchenko D, Varykhalov A, Scholz M R, Bihlmayer G, Rashba E I, Rybkin A, Rader O 2012 Nat. Commun. 3 1232
[49] Vlassiouk I, Regmi M, Fulvio P, Dai S, Datskos P, Eres G, Smirnov S 2011 ACS Nano 5 6069
[50] Kawarada H 1996 Surf. Sci. Rep. 26 205
[51] Harpale A, Chew H B 2017 Carbon 117 82
[52] Boukhvalov D W, Katsnelson M I, Lichtenstein A I 2008 Phys. Rev. B 77 035427
[53] Frenklach M 1989 J. Appl. Phys. 65 5142
[54] Sofo J O, Chaudhari A S, Barber G D 2007 Phys. Rev. B 75 153401
[55] Elias D C, Nair R R, Mohiuddin T M G, Morozov S V, Blake P, Halsall M P, Ferrari A C, Boukhvalov D W, Katsnelson M I, Geim A K, Novoselov K S 2009 Science 323 610
[56] Zhu L, Hu H, Chen Q, Wang S, Wang J, Ding F 2011 Nanotechnology 22 185202
[57] Ao Z M, Hernández-Nieves A D, Peeters F M, Li S 2010 Appl. Phys. Lett. 97 233109
[58] Luo Z, Yu T, Kim K J, Ni Z, You Y, Lim S, Lin J 2009 ACS Nano 3 1781
[59] Zhou J, Wang Q, Sun Q, Chen X S, Kawazoe Y, Jena P 2009 Nano Lett. 9 3867
[60] Muniz A R, Maroudas D 2012 J. Appl. Phys. 111 043513
[61] Muniz A R, Maroudas D 2013 J. Phys. Chem. C 117 7315
[62] Campanera J M, Savini G, Suarez-Martinez I, Heggie M I 2007 Phys. Rev. B 75 235449
[63] Shallcross S, Sharma S, Pankratov O A 2008 J. Phys.: Condens. Matter 20 454224
[64] Dong J, Zhang K, Ding F 2015 Nano Res. 8 3887
[65] Zhang Y Y, Wang C M, Cheng Y, Xiang Y 2011 Carbon 49 4511
[66] Machado A S, Maroudas D, Muniz A R 2013 Appl. Phys. Lett. 103 013113
[67] Muniz A R, Machado A S, Maroudas D 2015 Carbon 81 663
[68] Kim K, Yankowitz M, Fallahazad B, Kang S, Movva H C, Huang S, Banerjee S K 2016 Nano Lett. 16 1989
[69] Cao Y, Luo J Y, Fatemi V, Fang S, Sanchez-Yamagishi J D, Watanabe K, Jarillo-Herrero P 2016 Phys. Rev. Lett. 117 116804
[70] Kim K, DaSilva A, Huang S, Fallahazad B, Larentis S, Taniguchi T, Tutuc E 2017 Proc. Natl. Acad. Sci. USA 114 3364
[71] Riedl C, Coletti C, Starke U 2010 J. Phys. D: Appl. Phys. 43 374009
[72] Emtsev K V, Bostwick A, Horn K, Jobst J, Kellogg G L, Ley L, Rotenberg E 2009 Nat. Mater. 8 203
[73] Al-Temimy A, Riedl C, Starke U 2009 Appl. Phys. Lett. 95 231907
[74] de Heer W A, Berger C, Wu X, First P N, Conrad E H, Li X, Potemski M 2007 Solid State Commun. 143 92
[75] Riedl C, Zakharov A A, Starke U 2008 Appl. Phys. Lett. 93 033106
[76] Sung J A, Moon P, Kim T H, Kim H W, Shin H C, Kim E H, Cha H W, Kahng S J, Kim P, Koshino M, Son Y W, Yang C W, Ahn J R 2018 arXiv: 1804.04261v1 [cond-mat.mes-hall]
[77] Chen J, Guo Y, Jiang L, Xu Z, Huang L, Xue Y, Ceng D, Wu B, Yu Gui, Liu Y 2014 Adv. Mater. 26 1348
[78] Yan Z, Peng Z, Sun Z, Yao J, Zhu Y, Liu Z, Tour J M 2011 ACS Nano 5 8187
[79] Chen J, Wen Y, Guo Y, Wu B, Huang L, Xue Y, Geng D, Wang D, Yu G, Liu Y 2011 J. Am. Chem. Soc. 133 17548
[80] Pang J, Mendes R G, Wrobel P S, Wlodarski M D, Ta H Q, Zhao L, Giebeler L, Trzebicka B, Gemming T, Fu L, Liu Z, Eckert J, Bachmatiuk A, Rümmeli M H 2017 ACS Nano 11 1946
[81] Peng Z, Yan Z, Sun Z, Tour J M 2011 ACS Nano 5 8241
[82] Nie S, Wu W, Xing S, Yu Q, Bao J, Pei S S, McCarty K F 2012 New J. Phys. 14 093028
[83] Liu J B, Li P J, Chen Y F, Wang Z G, Qi F, He J R, Zheng B J, Zhou J H, Zhang W L, Gu L, Li Y R 2015 Sci. Rep. 5 15285
[84] Liu L, Zhou H, Cheng R, Yu W J, Liu Y, Chen Y, Duan X 2012 ACS Nano 6 8241
[85] Gao L, Ren W, Xu H, Jin L, Wang Z, Ma T, Ma L P, Zhang Z, Fu Q, Peng L M, Bao X, Cheng H M 2012 Nat. Commun. 3 699
[86] Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, Ruff R S 2009 Science 324 1312
[87] Bae S, Kim H, Lee Y, Xu X, Park J S, Zheng Y, Balakrishnan J, Lei T, Kim H R, Song Y, Kim Y J, Kim K S, Özyilmaz B, Ahn J H, Hong B H, Iijima S 2010 Nat. Nanotech. 5 574
[88] Huang P Y, Ruiz-Vargas C S, van der Zande A M, Whitney W S, Levendorf M P, Kevek J W, Garg S, Alden J S, Hustedt C J, Zhu Y, Park J, Mceuen P L, Muller D A 2011 Nature 469 389
[89] Kosynkin D V, Higginbotham A L, Sinitskii A, Lomeda J R, Dimiev A, Price B K, Tour J M 2009 Nature 458 872
[90] Jiao L, Zhang L, Wang X, Diankov G, Dai H 2009 Nature 458 877
[91] Morell, E S, Vergara R, Pacheco M, Brey L, Chico L 2014 Phys. Rev. B 89 205405
[92] Xie, L, Wang H, Jin C, Wang X, Jiao L, Suenaga K, Dai H 2011 J. Am. Chem. Soc. 133 10394
Catalog
Metrics
- Abstract views: 11500
- PDF Downloads: 683
- Cited By: 0