Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First-principles study of modulation of graphene Dirac plasmons

LI Pengfei HAN Lijun ZHANG Lin HUI Ningju

Citation:

First-principles study of modulation of graphene Dirac plasmons

LI Pengfei, HAN Lijun, ZHANG Lin, HUI Ningju
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Graphene Dirac plasmons, which are collective oscillations of charge carriers behaving as massless Dirac fermions, have emerged as a transformative platform for nanophotonics due to their exceptional capability for deep subwavelength light confinement in the infrared-to-terahertz spectral region and their unique dynamic tunability. Although external controls such as electrostatic doping, mechanical strain, and substrate engineering are empirically known to be able to modulate plasmonic responses, a comprehensive and quantitative theoretical framework from first principles is essential to reveal the distinct efficiency and fundamental mechanisms of each tuning strategy. To address this issue, we conduct a systematic first-principles study of three primary modulation pathways—carrier density, biaxial strain, and substrate integration—by using linear-response time-dependent density functional theory in the random-phase approximation (LR-TDDFT-RPA) as implemented in the computational code ABACUS. A truncated Coulomb potential is adopted in order to accurately model the isolated two-dimensional system, while structural and electronic properties are computed using the PBE functional with SG15 norm-conserving pseudopotentials and van der Waals corrections for heterostructures. Our research results indicate that modulating carrier concentration can cause the plasmon dispersion to follow the characteristic $\omega \propto n^{1/4}$ scaling law, thereby tuning within a wide range from 0.45 eV to 1.38 eV at the Landau damping threshold—a 207% change for the carrier density varying from 0.005 electrons per unit cell to 0.1 electrons, although efficiency decreases at higher concentrations due to the sublinear nature of the scaling law. Biaxial strain linearly changes the plasmon energy by modifying the Fermi velocity ($v_{\mathrm{F}}$) near the Dirac point, yielding a 30.4% tuning range (0.78–1.12 eV) under $\pm 10{\text{%}}$ strain. Introducing an hBN substrate induces a small band gap ($\sim 43$ meV) and causes a general redshift in plasmon energy due to band renormalization, while remarkably preserving the linear strain-tuning capability in a $30.1{\text{%}}$ energy range (0.72–1.03 eV) in the heterostructure, demonstrating robust compatibility between strain engineering and substrate integration. These results quantitatively elucidate the different physical mechanisms—Fermi level shifting, Fermi velocity modification, and substrate-induced symmetry breaking and hybridization—underpinning each strategy, thereby providing a solid theoretical foundation for designing dynamically tunable optoelectronic devices based on graphene and its van der Waals heterostructures.
  • 图 1  石墨烯的电子结构及等离激元分布 (a) 石墨烯的倒空间结构及高对称点位置与高对称路径方向, 红线和蓝线分别表示从K点出发的$ \varGamma-K $方向和$ \varGamma-M $方向; (b) 石墨烯能带图, 其中黑色曲线表示占据态, 红色曲线表示非占据态; (c) 石墨烯态密度图, 黑色线表示总态密度, 红色线为π能带态密度分布, 蓝色线为σ能带态密度分布; (d) 石墨烯在0.03电子/原胞掺杂浓度时沿$ \varGamma-M $方向不同q值对应的电子能量损失谱, 其中q的取值范围为0.029/Å 到0.294/Å

    Figure 1.  Graphene’s electronic structure and plasmon distributions (a) the reciprocal space structure of graphene along with the positions of high-symmetry points and the directions of high-symmetry paths, where the red and blue lines represent the $ \varGamma-K $ and $ \varGamma-M $ directions from the K point, respectively; (b) graphene's band structure, where the black curve denotes the occupied states and the red curve represents the unoccupied states; (c) graphene's density of states (DOS), with the black line indicating the total DOS, the red line showing the projected DOS of the π-band, and the blue line displaying the projected DOS of the σ-band; (d) electron energy loss spectroscopy (EELS) of graphene along the $ \varGamma-M $ direction for different q values at 0.03 electrons/unit cell concentration, where q ranges from 0.029/Å to 0.294/Å.

    图 2  石墨烯狄拉克等离激元分布及色散图 (a) 沿$ \varGamma-M $方向的分布; (b) 沿$ \varGamma-K $方向的分布; (c) 两种不同方向二维狄拉克等离激元色散关系的对比图, 其中蓝色竖虚线代表费米波矢$ k_F $的位置

    Figure 2.  The distribution and dispersion behaviors of graphene Dirac plasmons. (a) distributions along the $ \varGamma-M $ direction; (b) distributions along the $ \varGamma-K $ direction; (c) A comparative of the dispersion relationships for two-dimensional Dirac plasmons along $ \varGamma-M $ and $ \varGamma-K $ directions, where the blue vertical dashed line represents the position of the Fermi wave vector $ k_F $.

    图 3  载流子浓度对石墨烯狄拉克等离激元的调控 (a) 不同载流子浓度下沿$ \varGamma-M $方向的等离激元色散关系, 正值表示电子掺杂, 负值表示空穴掺杂, 子图为同浓度下电子/空穴掺杂的色散行为对比; (b) 狄拉克等离激元阈值能量随载流子浓度的演化规律

    Figure 3.  Modulation of graphene Dirac plasmons by carrier concentrations. (a) Plasmon dispersion along the $ \varGamma-M $ direction under varied carrier concentrations. Positive/negative values indicate electron/hole doping. Inset: comparative dispersion behavior of electron- and hole-doped systems at identical carrier concentration; (b) Evolution of Dirac plasmon threshold energy as a function of carrier concentration.

    图 4  双轴应变对石墨烯狄拉克等离激元的调控 (a) 10%压缩应变下石墨烯的能带结构, 其中红线表示非占据态, 黑线表示占据态; (b) 掺杂浓度为0.03电子/原胞时, 不同程度双轴应变下石墨烯狄拉克等离激元沿$ \varGamma-M $方向的色散关系; (c) 狄拉克等离激元阈值能量随双轴应变大小的演化规律

    Figure 4.  Tuning graphene Dirac plasmons via biaxial strain. (a) Band structure of graphene under 10%! compressive strain, the red lines represent the unoccupied states and the black lines represent the occupied states; (b) Dispersion relation of Dirac plasmons under varying biaxial strains along the $ \varGamma-M $ direction at 0.03 electrons per unit cell; (c) Evolution of Dirac plasmon threshold energy with biaxial strain.

    图 5  基底引入对石墨烯狄拉克等离激元的调控 (a) 石墨烯/六角氮化硼异质结在费米能级附近的能带结构, 其中黑线表示石墨烯的贡献, 红线表示六方氮化硼的贡献; (b) 掺杂浓度为0.03电子/原胞时, 纯石墨烯与石墨烯/六角氮化硼沿$ \varGamma-M $方向狄拉克等离激元色散关系对比图; (c) 掺杂浓度为0.03电子/原胞时, 不同程度双轴应变下石墨烯/六角氮化硼狄拉克等离激元沿$ \varGamma-M $方向的色散关系; (d) 石墨烯/六角氮化硼狄拉克等离激元阈值能量随双轴应变大小的演化规律

    Figure 5.  Tuning graphene Dirac plasmons via substrate integration. (a) Band structure of graphene/hexagonal boron nitride(hBN) heterostructure near the Fermi level, where the black line indicates the contribution from graphene and the red line represents the contribution from hBN; (b) Dirac plasmon dispersions along $ \varGamma-M $ direction at 0.03 electrons per unit cell; (c) Strain-dependent Dirac plasmon dispersions(graphene/hBN) under biaxial strains (–10% to 10%); (d) Evolution of plasmon threshold energy with biaxial strain in graphene/hBN heterostructure.

    图 6  石墨烯等离激元激发能与载流子浓度($ n^{1/4} $)在固定波矢处(q = 0.029/Å)的标度关系

    Figure 6.  Scaling relation between plasmon excitation energy and carrier concentration($ n^{1/4} $) in graphene at fixed wave vector (q = 0.029/Å).

    图 7  双轴应变与基底引入调控石墨烯等离激元机制 (a) 狄拉克锥斜率对等离激元激发的影响示意图; (b) 施加不同应变(–10%压缩应变到10%拉伸应变)对石墨烯K点附近能带结构的影响; (c) 基底效应诱变能带形变对等离激元激发的影响示意图; (d) 纯净石墨烯与石墨烯/六角氮化硼异质结K点附近能带结构对比

    Figure 7.  Mechanisms for tuning graphene plasmons via biaxial strain and substrate effects. (a) The impact of Dirac cone slope on plasmon excitations; (b) Strain-dependent band structure near K-point under varying biaxial strains (–10% compressive to 10% tensile); (c) Substrate-induced band deformation modulating plasmon excitation; (d) Band structure comparison near K-point: pristine graphene vs. graphene/hBN heterostructure.

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D e, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183Google Scholar

    [3]

    Allen M J, Tung V C, Kaner R B 2010 Chem. Rev. 110 132Google Scholar

    [4]

    杨晓霞, 孔祥天, 戴庆 2018 物理学报 64 106801

    Yang X X, Kong X T, Dai Q 2018 Acta Phys. Sin. 64 106801

    [5]

    杨肖杰, 许辉, 徐海烨, 李铭, 于鸿飞, 成昱轩, 侯海良, 陈智全 2024 物理学报 67 157802

    Yang X J, Xu H, Xu H Y, Li M, Yu H F, Cheng Y X, Hou H L, Chen Z Q 2024 Acta Phys. Sin. 67 157802

    [6]

    Jablan M, Buljan H, Soljačić M 2009 Phys. Rev. B 80 245435Google Scholar

    [7]

    Alonso-González P, Nikitin A Y, Golmar F, Centeno A, Pesquera A, Vélez S, Chen J, Navickaite G, Koppens F, Zurutuza A, Casanova F, Hueso L E, Hillenbrand R 2014 Science 344 1369Google Scholar

    [8]

    Fei Z, Rodin A, Andreev G O, Bao W Z, McLeod A, Wagner M, Zhang L, Zhao Z, Thiemens M, Dominguez G, Fogler M M, Castro Neto A H, Lau C N, Keilmann F, Basov D N 2012 Nature 487 82Google Scholar

    [9]

    Chen J, Badioli M, Alonso-González P, Thongrattanasiri S, Huth F, Osmond J, Spasenović M, Centeno A, Pesquera A, Godignon P, Elorza A Z, Camara N, Javier García de Abajo F, Hillenbrand R, Koppens F H L 2012 Nature 487 77Google Scholar

    [10]

    Woessner A, Lundeberg M B, Gao Y, Principi A, Alonso-González P, Carrega M, Watanabe K, Taniguchi T, Vignale G, Polini M, Hone J, Hillenbrand R, Koppens F H L 2015 Nat. Mater. 14 421Google Scholar

    [11]

    Basov D N, Fogler M M, García de Abajo F J 2016 Science 354 aag1992Google Scholar

    [12]

    Rodrigo D, Limaj O, Janner D, Etezadi D, García de Abajo F J, Pruneri V, Altug H 2015 Science 349 165Google Scholar

    [13]

    Liu M, Yin X B, Ulin-Avila E, Geng B S, Zentgraf T, Ju L, Wang F, Zhang X 2011 Nature 474 64Google Scholar

    [14]

    Grigorenko A N, Polini M, Novoselov K S 2012 Nat. Photon. 6 749Google Scholar

    [15]

    Lundeberg M B, Gao Y, Asgari R, Tan C, Duppen B V, Autore M, Alonso-González P, Woessner A, Watanabe K, Taniguchi T, Hillenbrand R, Hone J, Polini M, Koppens F H L 2017 Science 357 187Google Scholar

    [16]

    Zhang H Y, Fan X D, Wang D L, Zhang D B, Li X G, Zeng C G 2022 Phys. Rev. Lett. 129 237402Google Scholar

    [17]

    Zhao W Y, Wang S X, Chen S D, Zhang Z C, Kenji W, Takashi T, Alex Z, Wang F 2023 Nature 614 688Google Scholar

    [18]

    Li P F, Ren X G, He L X 2017 Phys. Rev. B 96 165417Google Scholar

    [19]

    Ju L, Geng B S, Jason H, Caglar G, Michael M, Hao Z, A B H, Liang X, Alex Z, Shen Y R, Wang F 2011 Nat. Nanotechnol. 6 630Google Scholar

    [20]

    Yan H G, Low T, Zhu W J, Wu Y Q, Freitag M, Li X, Guinea F, Avouris P, Xia F N 2013 Nat. Photon. 7 394Google Scholar

    [21]

    Ni G X, Wang L, Goldflam M, Wagner M, Fei Z, McLeod A S, Liu M K, Keilmann F, Özyilmaz B, Neto A H C, Hone J, Fogler M M, Basov D N 2016 Nat. Photon. 10 244Google Scholar

    [22]

    Chen M H, Guo G C, He L X 2010 J. Phys. Condens. Mat. 22 445501Google Scholar

    [23]

    Li P F, Liu X H, Chen M H, Lin P Z, Ren X G, Lin L, Yang C, He L X 2016 Comp. Mater. Sci. 112 503Google Scholar

    [24]

    Schlipf M, Gygi F 2015 Comput. Phys. Commun. 196 36Google Scholar

    [25]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [26]

    Wu Y Y, Li G L, Camden J P 2017 Chem. Rev. 118 2994

    [27]

    Onida G, Reining L, Rubio A 2002 Rev. Mod. Phys. 74 601Google Scholar

    [28]

    Silkin V M, Chulkov E V, Echenique P M 2004 Phys. Rev. Lett. 93 176801Google Scholar

    [29]

    Yuan Z, Gao S W 2009 Comput. Phys. Commun. 180 466Google Scholar

    [30]

    Mowbray D J 2014 Phys. Status Solidi B 251 2509Google Scholar

    [31]

    Li P F, Shi R, Lin P Z, Ren X G 2023 Phys. Rev. B 107 035433Google Scholar

    [32]

    Li P F, Hui N J 2025 Vacuum 240 114424Google Scholar

    [33]

    Adler S L 1962 Phys. Rev. 126 413Google Scholar

    [34]

    Wiser N 1963 Phys. Rev. 129 62Google Scholar

    [35]

    Petersilka M, Gossmann U J, Gross E K U 1996 Phys. Rev. Lett. 76 1212Google Scholar

    [36]

    Rozzi C A, Varsano D, Marini A, Gross E K U, Rubio A 2006 Phys. Rev. B 73 205119Google Scholar

    [37]

    Antonio P, Gennaro C 2014 Nanoscale 6 10927Google Scholar

    [38]

    Pisarra M, Sindona A, Riccardi P, Silkin V M, Pitarke J M 2014 New J. Phys. 16 083003Google Scholar

    [39]

    Pines D 1956 Can. J. Phys. 34 1379Google Scholar

    [40]

    Hwang E H, Sarma S D 2007 Phys. Rev. B 75 205418Google Scholar

    [41]

    Liu Y, Willis R F, Emtsev K V, Seyller T 2008 Phys. Rev. B 78 201403Google Scholar

    [42]

    Wunsch B, Stauber T, Sols F, Guinea F 2006 New J. Phys. 8 318Google Scholar

    [43]

    Marchiani D, Tonelli A, Mariani C, Frisenda R, Avila J, Dudin P, Jeong S, Ito Y, Magnani F S, Biagi R, et al 2022 Nano Lett. 23 170

    [44]

    Lee C G, Wei X D, Kysar J W, Hone J 2008 Science 321 385Google Scholar

    [45]

    Guinea F, Katsnelson M I, Geim A K 2010 Nat. Phys. 6 30Google Scholar

    [46]

    Bao W Z, Miao F, Chen Z, Zhang H, Jang W Y, Dames C, Lau C N 2009 Nat. Nanotechnol. 4 562Google Scholar

    [47]

    Pereira V M, Castro Neto A H 2009 Phys. Rev. Lett. 103 046801Google Scholar

    [48]

    Yasumasa H, Keita K 2012 Phys. Rev. B 86 165430Google Scholar

    [49]

    Wang L J, Baumgartner A, Makk P, Zihlmann S, Varghese B S, Indolese D I, Watanabe K, Taniguchi T, Schönenberger C 2021 Commun. Phys. 4 147Google Scholar

    [50]

    Drogowska-Horna K A, Mirza I, Rodriguez A, Kovaříček P, Sládek J, Derrien T J Y, Gedvilas M, Račiukaitis G, Frank O, Bulgakova N M, Kalbáč M 2020 Nano Res. 13 2332Google Scholar

    [51]

    Lyu B S, Chen J J, Wang S, Lou S, Shen P Y, Xie J X, Qiu L, Mitchell I, Li C, Hu C, Zhou X L, Watanabe K, Taniguchi T, Wang X Q, Jia J F, Liang Q, Chen G, Li T X, Wang S Y, Ouyang W G, Hod O, Ding F, Urbakh M, Shi Z W 2024 Nature 628 758Google Scholar

    [52]

    Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L, et al 2010 Nat. Nanotechnol. 5 722Google Scholar

    [53]

    Cassabois G, Valvin P, Gil B 2016 Nat. Photon. 10 262Google Scholar

    [54]

    Watanabe K, Taniguchi T, Kanda H 2004 Nat. Mater. 3 404Google Scholar

    [55]

    罗曼, 周杨, 成田恬, 孟雨欣, 王奕锦, 鲜佳赤, 秦嘉怡, 余晨辉 2024 光子学报 53 0753307Google Scholar

    Luo M, Zhou Y, Cheng T T, Meng Y X, Wang Y J, Xian J C, Qin J Y, Yu C H 2024 Acta Photon. Sin. 53 0753307Google Scholar

    [56]

    Geim A K, Grigorieva I V 2013 Nature 499 419Google Scholar

    [57]

    Grimme S 2006 J. Comput. Chem. 27 1787Google Scholar

  • [1] Duan Yu, Dai Xiao-Kang, Wu Chen-Chen, Yang Xiao-Xia. Tunable acoustic graphene plasmon enhanced nano-infrared spectroscopy. Acta Physica Sinica, doi: 10.7498/aps.73.20240489
    [2] Zhu Hong-Qiang, Luo Lei, Wu Ze-Bang, Yin Kai-Hui, Yue Yuan-Xia, Yang Ying, Feng Qing, Jia Wei-Yao. Theoretical calculation study on enhancing the sensitivity and optical properties of graphene adsorption of nitrogen dioxide via doping. Acta Physica Sinica, doi: 10.7498/aps.73.20240992
    [3] Yang Hai-Lin, Chen Qi-Li, Gu Xing, Lin Ning. First-principles calculations of O-atom diffusion on fluorinated graphene. Acta Physica Sinica, doi: 10.7498/aps.72.20221630
    [4] Cui Lei, Liu Hong-Mei, Ren Chong-Dan, Yang Liu, Tian Hong-Yu, Wang Sa-Ke. Influence of local deformation on valley transport properties in the line defect of graphene. Acta Physica Sinica, doi: 10.7498/aps.72.20230736
    [5] Wu Hong-Fen, Feng Pan-Jun, Zhang Shuo, Liu Da-Peng, Gao Miao, Yan Xun-Wang. First-principles study of Fe atom adsorbed biphenylene monolayer. Acta Physica Sinica, doi: 10.7498/aps.71.20211631
    [6] Deng Xu-Liang, Ji Xian-Fei, Wang De-Jun, Huang Ling-Qin. First principle study on modulating of Schottky barrier at metal/4H-SiC interface by graphene intercalation. Acta Physica Sinica, doi: 10.7498/aps.71.20211796
    [7] First principles study of Fe atom adsorbed biphenylene monolayer. Acta Physica Sinica, doi: 10.7498/aps.70.20211631
    [8] Ding Qing-Song, Luo Chao-Bo, Peng Xiang-Yang, Shi Xi-Zhi, He Chao-Yu, Zhong Jian-Xin. First principles study of distributions of Si atoms and structures of siligraphene g-SiC7. Acta Physica Sinica, doi: 10.7498/aps.70.20210621
    [9] Cui Yang, Li Jing, Zhang Lin. Electronic structure of graphene nanoribbons under external electric field by density functional tight binding. Acta Physica Sinica, doi: 10.7498/aps.70.20201619
    [10] Zhao Cheng-Xiang, Qie Yuan, Yu Yao, Ma Rong-Rong, Qin Jun-Fei, Liu Yan. Enhanced optical absorption of graphene by plasmon. Acta Physica Sinica, doi: 10.7498/aps.69.20191645
    [11] Wu Chen-Chen, Guo Xiang-Dong, Hu Hai, Yang Xiao-Xia, Dai Qing. Graphene plasmon enhanced infrared spectroscopy. Acta Physica Sinica, doi: 10.7498/aps.68.20190903
    [12] Wang Xiao, Huang Sheng-Xiang, Luo Heng, Deng Lian-Wen, Wu Hao, Xu Yun-Chao, He Jun, He Long-Hui. First-principles study of electronic structure and optical properties of nickel-doped multilayer graphene. Acta Physica Sinica, doi: 10.7498/aps.68.20190523
    [13] Liu Gui-Li, Yang Zhong-Hua. First-principles calculation of effects of deformation and electric field action on electrical properties of Graphene. Acta Physica Sinica, doi: 10.7498/aps.67.20172491
    [14] Zhang Shu-Ting, Sun Zhi, Zhao Lei. First-principles study of graphene nanoflakes with large spin property. Acta Physica Sinica, doi: 10.7498/aps.67.20180867
    [15] Chen Xian, Cheng Mei-Juan, Wu Shun-Qing, Zhu Zi-Zhong. First-principle study of structure stability and electronic structures of graphyne derivatives. Acta Physica Sinica, doi: 10.7498/aps.66.107102
    [16] Yang Guang-Min, Liang Zhi-Cong, Huang Hai-Hua. The first-principle calculation on the Li cluster adsorbed on graphene. Acta Physica Sinica, doi: 10.7498/aps.66.057301
    [17] Sheng Shi-Wei, Li Kang, Kong Fan-Min, Yue Qing-Yang, Zhuang Hua-Wei, Zhao Jia. Tooth-shaped plasmonic filter based on graphene nanoribbon. Acta Physica Sinica, doi: 10.7498/aps.64.108402
    [18] Zhang Bao-Lei, Wang Jia-Xu, Xiao Ke, Li Jun-Yang. Quasi-static finite element calculation of interaction between graphene and nanoprobe. Acta Physica Sinica, doi: 10.7498/aps.63.154601
    [19] Yu Dong-Qi, Zhang Zhao-Hui. First principles calculations of interaction between an armchair-edge graphene nanoribbon and its graphite substrate. Acta Physica Sinica, doi: 10.7498/aps.60.036104
    [20] Lü Quan, Huang Wei-Qi, Wang Xiao-Yun, Meng Xiang-Xiang. The first-principle calculations and analysis on density of states of silion plane (111) formed by nitrogen film. Acta Physica Sinica, doi: 10.7498/aps.59.7880
Metrics
  • Abstract views:  351
  • PDF Downloads:  11
  • Cited By: 0
Publishing process
  • Received Date:  11 July 2025
  • Accepted Date:  29 August 2025
  • Available Online:  17 September 2025
  • /

    返回文章
    返回